## DIPLOMADO DE PROFUNDIZACIÓN CISCO (DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES INTEGRADAS LAN / WAN)

# PRUEBA DE HABILIDADES PRÁCTICAS CCNA

# **ROBINSON OSORIO RAMÍREZ**

TUTOR:

JOSE IGNACIO CARDONA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCAS BÁSICAS, TECNOLOGÍA E INGENIERÍA INGENIERÍA DE TELECOMUNICACIONES MEDELLÍN 2019 Nota de aceptación

Firma del presidente del Jurado

Firma del Jurado

Firma del Jurado

Medellín 18 de julio de 2019

| INTRODUCCIÓN                                                                          |
|---------------------------------------------------------------------------------------|
| ESCENARIO 111                                                                         |
| Desarrollo escenario 112                                                              |
| Sede Medellín                                                                         |
| Sede Bogotá12                                                                         |
| ISP                                                                                   |
| Conexión física de los dispositivos y topología13                                     |
| Configuración del enrutamiento Router Medellín13                                      |
| Protocolo de Enrutamiento RIP V2                                                      |
| Punto a                                                                               |
| Configuración del enrutamiento Router Bogotá14                                        |
| Punto b14                                                                             |
| Punto c15                                                                             |
| Parte 2 Tabla de Enrutamiento15                                                       |
| Puntos de la letra a al f15                                                           |
| Parte 3: Deshabilitar la propagación del protocolo RIP19                              |
| Routers Medellín                                                                      |
| Routers Bogotá                                                                        |
| Parte 4: Verificación del protocolo RIP19                                             |
| Puntos a y b19                                                                        |
| Tablas de enrutamiento RIP en Routers Medellín, interfaces pasivas y versión de RIP19 |
| Tablas de enrutamiento RIP en Routers Bogotá, interfaces pasivas y versión de RIP.    |
| Parte 5: Configurar encapsulamiento y autenticación PPP25                             |
| Punto a. Enlace Medellín1 con ISP sea configurado con autenticación PAP25             |
| Desde el Router Medellin 125                                                          |
| Desde el Router ISP                                                                   |
| Punto b. Enlace Bogotá1 con ISP sea configurado con autenticación PAP26               |

# Tabla de contenido

| Desde el Router Bogotá1                           | 26 |
|---------------------------------------------------|----|
| Desde el Router ISP                               | 26 |
| Parte 6: Configuración de NAT                     | 27 |
| Puntos a, b y c                                   | 27 |
| Router Medellín1                                  | 27 |
| Router Bogotá1                                    |    |
| Prueba de ping desde host Medellín a ISP          | 29 |
| Estadísticas de NAT GW_Medellin                   |    |
| Prueba de ping desde host Bogotá a ISP            |    |
| Parte 7: Configuración del servicio DHCP          | 31 |
| Puntos a, b, c y d                                | 31 |
| DHCP Server sede Medellín                         | 31 |
| Configuración DHCP Server LAN Router Medellin 3   | 31 |
| Configuración DHCP Relay en Router Medellin 3     | 31 |
| DHCP Server sede Bogotá                           | 31 |
| Pruebas de ping entre Routers desde el simulador  | 32 |
| ESCENARIO 2                                       | 32 |
| Conexión física de los dispositivos y topología   |    |
| Configuración de enable secret en dispositivos    |    |
| Configuración direccionamiento IP en dispositivos | 35 |
| Direccionamiento Router Bogotá                    | 35 |
| Direccionamiento Router Miami                     | 35 |
| Direccionamiento Router Buenos Aires              |    |
| Direccionamiento Switch1                          |    |
| Direccionamiento Switch3                          |    |
| Configuración OSPFv2 area 0                       |    |
| Verificar información de OSPF                     |    |
| Tablas de enrutamiento conectados por OSPFv2      |    |
| Bogotá                                            |    |
| Buenos Aires                                      |    |

| Miami                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Visualización de OSPF Process ID, Router ID, Address summarizations, Routing Networks, and passive interfaces configuradas en cada router                               |
| Bogotá                                                                                                                                                                  |
| Buenos Aires41                                                                                                                                                          |
| Miami41                                                                                                                                                                 |
| Configurar VLANs, Puertos troncales, puertos de acceso, encapsulamiento, Inter-<br>VLAN Routing y Seguridad en los Switch acorde a la topología de red establecida.<br> |
| Switch 1                                                                                                                                                                |
| Switch 3                                                                                                                                                                |
| En el Switch 3 deshabilitar DNS lookup44                                                                                                                                |
| Asignar direcciones IP a los Switchs acorde a los lineamientos44                                                                                                        |
| Switch 145                                                                                                                                                              |
| Switch 345                                                                                                                                                              |
| Desactivar todas las interfaces que no sean utilizadas en el esquema de red45                                                                                           |
| Switch 145                                                                                                                                                              |
| Switch 345                                                                                                                                                              |
| Desarrollo de puntos 7, 8 y 9 DHCP45                                                                                                                                    |
| Configurar NAT en R2 para permitir que los hosts puedan salir a internet46                                                                                              |
| Listas de acceso de tipo estándar para restringir o permitir tráfico desde R1 o R3 hacia R246                                                                           |
| Listas de acceso de tipo extendido o nombradas para restringir o permitir tráfico desde R1 o R3 hacia R246                                                              |
| Verificar procesos de comunicación y redireccionamiento de tráfico en los Routers mediante el uso de Ping y Traceroute                                                  |
| Prueba de ping desde Bogotá a Miami y Buenos Aires47                                                                                                                    |
| Prueba de ping desde Miami a Bogotá y Buenos Aires47                                                                                                                    |
| Prueba de ping desde Buenos Aires a Miami y Bogotá48                                                                                                                    |
| Prueba de tracert desde Bogotá a Miami y Buenos Aires48                                                                                                                 |
| Prueba de traceroute desde Miami a Bogotá y Buenos Aires48                                                                                                              |

| Prueba de tracert desde Buenos Aires a Miami y Bogotá | 49 |
|-------------------------------------------------------|----|
| Prueba de ping entre PC                               | 49 |
| CONCLUSIONES                                          | 50 |
| BIBLIOGRAFIA                                          | 52 |

#### GLOSARIO

**PROTOCOLO DE RED:** Conjunto de normas standard que especifican el método para enviar y recibir datos entre varios ordenadores.

**DIRECCIÓN IP:** es un número que identifica, de manera lógica y jerárquica, a una Interfaz en red de un dispositivo que utilice el protocolo IP

**HOST**: cualquier dispositivo como un Pc, impresora, etc. que hace parte de una red.

**DHCP:** Protocolo de configuración dinámica de host, es de tipo cliente/servidor mediante el cual un servidor de red DHCP asigna de forma dinámica las direcciones IP y otros parámetros de configuración de red a los diferentes dispositivos conectados.

**INTERFAZ:** Se trata de la conexión entre ordenadores o máquinas con el exterior, sea cual sea la comunicación entre distintos niveles.

**OSPF**: es un Internal Gateway Protocol (IGP) que se usa para distribuir la información de ruteo dentro de un solo sistema autónomo. OSPF permite un mejor balanceo de carga.

**RIP:** es un protocolo de enrutamiento del tipo vector distancia. Los protocolos de enrutamiento vector distancia calculan la mejor ruta para encaminar los paquetes IP hacia su destino correspondiente utilizando como métrica el número de saltos. RIP soporta un máximo de 15 saltos. Cualquier ruta que esté a más de 15 saltos se considera inalcanzable.

**ROUTER:** es un dispositivo de red que se encarga de llevar por la ruta adecuada el tráfico. Es el dispositivo encargado de conectar las diferentes redes.

**SWITCH:** dispositivo de capa 2 que proporciona la conexión de red y contiene varios puertos que conecta dispositivos tales como lo son Pc, Teléfonos, impresoras, servidores, entre otros.

**VLAN:** (Red de área local virtual o LAN virtual) es una red de área local que agrupa un conjunto de equipos de manera lógica y no física.

**NAT:** se refiere a un proceso específico que implica la reordenación de una única dirección IP en otra dirección IP, a menudo pública, mediante la alteración de la información de red y la información de dirección que se encuentra en la cabecera IP de los paquetes de datos.

**PING:** es una utilidad de diagnóstico en redes de computadoras que comprueba el estado de la comunicación del anfitrión local con uno o varios equipos remotos de una red que ejecuten IP.

**TRACEROUTE:** es una herramienta que nos va a dar información acerca de la ruta que toma un paquete que será enviado desde nuestro equipo hasta un host de destino, bien sea en una red local o en Internet a un dominio en concreto.

#### RESUMEN

En esta actividad se presenta el desarrollo correspondiente a la evaluación de la prueba de habilidades prácticas CCNA, en la que se plantean dos escenarios de red. Cada escenario cuenta con sus respectivos dispositivos dentro de los cuales se pueden observar Router, Switch de borde y equipos de usuario final en los cuales se debe realizar la respectiva configuración de acuerdo a su topología y requerimientos. A su vez se debe aplicar lo aprendido a lo largo del diplomado con el que se desarrollaron las habilidades y competencias necesarias para dar solución a los escenarios ya antes mencionados. Se aplican conceptos como enrutamiento estático y dinámico a través de RIPv2 y OSPF, Vlan, Acls estándar y extendidas, direccionamiento IP, Dhcp, Nat, Frame relay, ppp, chap, entre otros.

Como parte de la configuración de seguridad en los dispositivos solo se configuro el "enable secret" en todos los equipos de red y se cifraron las contraseñas con el comando service password-encryption. Por supuesto se puede crear un usuario local, configurar las líneas vty y de consola, pero en el presente trabajo no se tuvo como alcance.

# INTRODUCCIÓN

El desarrollo de este diplomado nos permite como aprendices introducirnos en el mundo de las redes a partir del conocimiento de los diferentes conceptos en Networking en lo que corresponde a la arquitectura, estructura, funciones, componentes y modelos de Internet y otras redes de computadores. A través de diferentes escenarios se demuestra la aplicabilidad de los diferentes conceptos aprendidos y se emplean diferentes simuladores (en este caso packet tracert) para realizar las configuraciones de las diferentes topologías y a su vez simular pruebas de conectividad y funcionamiento.

# **ESCENARIO 1**

Una empresa posee sucursales distribuidas en las ciudades de Bogotá y Medellín, en donde el estudiante será el administrador de la red, el cual deberá configurar e interconectar entre sí cada uno de los dispositivos que forman parte del escenario, acorde con los lineamientos establecidos para el direccionamiento IP, protocolos de enrutamiento y demás aspectos que forman parte de la topología de red.



Este escenario plantea el uso de RIP como protocolo de enrutamiento, considerando que se tendrán rutas por defecto redistribuidas; asimismo, habilitar el encapsulamiento PPP y su autenticación.

Los router Bogota2 y medellin2 proporcionan el servicio DHCP a su propia red LAN y a los router 3 de cada ciudad.

Debe configurar PPP en los enlaces hacia el ISP, con autenticación.

Debe habilitar NAT de sobrecarga en los router Bogota1 y medellin1.

#### Desarrollo escenario 1

• Asignación de enable secret password y cifrado de contraseñas en Routers:

Nota: La contraseña que se asignó es **diplomado2019** tanto para los router como los Switch en el escenario 2.

#### Sede Medellín

RTR\_Medellin2#configure terminal RTR\_Medellin2(config)#enable secret diplomado2019 RTR\_Medellin2(config)#service password-encryption

RTR\_Medellin3#configure terminal RTR\_Medellin3(config)#enable secret diplomado2019 RTR\_Medellin3(config)#service password-encryption

GW\_Medellin#configure terminal

GW\_Medellin(config)#enable secret diplomado2019

GW\_Medellin(config)#service password-encryption

#### Sede Bogotá

GW\_Bogota#configure terminal GW\_Bogota(config)#enable secret diplomado2019 GW\_Bogota(config)#service password-encryption

GW\_Bogota2#conf t

GW\_Bogota2(config)#enable secret diplomado2019 GW Bogota2(config)#service password-encryption

GW\_Bogota3#conf t

GW\_Bogota3(config)#enable secret diplomado2019 GW\_Bogota3(config)#service password-encryption

#### ISP

RTR\_ISP#conf t RTR\_ISP(config)#enable se RTR\_ISP(config)#enable secret diplomado2019

## RTR\_ISP(config)#service password-encryption



Conexión física de los dispositivos y topología

## Configuración del enrutamiento Router Medellín

#### Protocolo de Enrutamiento RIP V2

#### Punto a.

RTR\_Medellin2#configure terminal RTR\_Medellin2(config)# router rip RTR\_Medellin2(config-router)# version 2 RTR\_Medellin2(config-router)# passive-interface GigabitEthernet0/0 RTR\_Medellin2(config-router)# network 172.29.4.0 RTR\_Medellin2(config-router)# network 172.29.6.0 RTR\_Medellin2(config-router)# network 172.29.6.4 RTR\_Medellin2(config-router)# no auto-summary GW\_Medellin2(config-router)# no auto-summary GW\_Medellin(config)#router rip GW\_Medellin(config-router)#version 2 GW\_Medellin(config-router)#passive-interface serial 0/1/0

GW\_Medellin(config-router)#network 172.29.0.0

GW\_Medellin(config-router)#default-information originate GW\_Medellin(config-router)#no auto-summary

RTR\_Medellin3#configure terminal RTR\_Medellin3(config)#router rip RTR\_Medellin3(config-router)#version 2 RTR\_Medellin3(config-router)# passive-interface GigabitEthernet0/0 RTR\_Medellin3(config-router)# network 172.29.0.0 RTR\_Medellin3(config-router)# no auto-summary

#### Configuración del enrutamiento Router Bogotá

GW\_Bogota#configure terminal

GW\_Bogota(config)router rip

GW\_Bogota(config-router)#version 2

GW\_Bogota(config-router)# passive-interface serial 0/0/0

GW\_Bogota(config-router)# network 172.29.0.0

GW\_Bogota(config-router)# default-information originate

GW\_Bogota(config-router)# no auto-summary

RTR\_Bogota2#conf t

RTR \_Bogota(config)#router rip

RTR\_Bogota2(config)#version 2

RTR \_Bogota2(config-router)# passive-interface GigabitEthernet0/0

RTR \_Bogota2(config-router)# network 172.29.0.0

RTR \_Bogota2(config-router)# no auto-summary

RTR-Bogota3#conf t

RTR-Bogota3(config)#router rip

RTR-Bogota3(config)#version 2

RTR-Bogota3(config-router)#passive-interface GigabitEthernet0/0

RTR-Bogota3(config-router)#network 172.29.0.0

RTR-Bogota3(config-router)#no auto-summary

#### Punto b.

GW\_Medellin#conf t

GW\_Medellin#ip route 0.0.0.0 0.0.0.0 209.17.220.1

GW\_Bogota#conf t GW\_Bogota#ip route 0.0.0.0 0.0.0.0 209.17.220.5

#### Punto c.

RTR\_ISP#conf t RTR\_ISP(config)#ip route 172.29.4.0 255.255.252.0 209.17.220.2 RTR\_ISP(config)#ip route 172.29.0.0 255.255.252.0 209.17.220.6

#### Parte 2 Tabla de Enrutamiento

Puntos de la letra a al f.

Tabla de Enrutamiento ISP

```
RTR ISP#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B -
BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS
inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     172.29.0.0/22 is subnetted, 2 subnets
s
       172.29.0.0/22 [1/0] via 209.17.220.6
s
        172.29.4.0/22 [1/0] via 209.17.220.2
    209.17.220.0/24 is variably subnetted, 6 subnets, 2 masks
С
      209.17.220.0/30 is directly connected, Serial0/1/0
L
       209.17.220.1/32 is directly connected, Serial0/1/0
С
       209.17.220.2/32 is directly connected, Serial0/1/0
С
       209.17.220.4/30 is directly connected, Serial0/0/0
L
       209.17.220.5/32 is directly connected, Serial0/0/0
С
        209.17.220.6/32 is directly connected, Serial0/0/0
```

Tablas de Enrutamiento Routers Sede Medellín

| GW Medellin#show ip route                                                 |
|---------------------------------------------------------------------------|
| Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP |
| D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area            |
| N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2            |
| El - OSPF external type 1, E2 - OSPF external type 2, E - EGP             |
| i - IS-IS, Ll - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area  |
| * - candidate default, U - per-user static route, o - ODR                 |
| P - periodic downloaded static route                                      |
|                                                                           |
| Gateway of last resort is 209.17.220.1 to network 0.0.0.0                 |
|                                                                           |
| 172.29.0.0/16 is variably subnetted, 9 subnets, 3 masks                   |
| R 172.29.4.0/25 [120/1] via 172.29.6.2, 00:00:22, Seria10/0/0             |
| R 172.29.4.128/25 [120/1] via 172.29.6.14, 00:00:05, Serial0/1/1          |
| [120/1] Via 172.29.6.10, 00:00:05, Seria10/0/1                            |
| C 172.29.6.0/30 is directly connected, Serial0/0/0                        |
| L 172.29.6.1/32 is directly connected, Serial0/0/0                        |
| R 172.29.6.4/30 [120/1] Via 172.29.6.14, 00:00:05, Serial0/1/1            |
| [120/1] Via 172.29.6.2, 00:00:22, Serial0/0/0                             |
| [120/1] Via 1/2.296.10, 00:00:05, Serial0/0/1                             |
| C 172.29.6.8/30 is directly connected, Serial0/0/1                        |
| 2 172.29.6.3/32 is directly composed. Serial0/0/1                         |
| I 172.29.6.12/30 IS directly connected, Serial0/1/1                       |
| 209 17 220 0/24 is variably subpatted 2 subpats 2 masks                   |
| C 200 17 220 0/20 is directly connected. Series, 2 masks                  |
| C 20917 220 1/32 is directly connected. Serial0/1/0                       |
| L 209 17 220 2/32 is directly connected, Serialo/1/0                      |
| S* 0.00.0/0 [1/0] via 209.17.220.1                                        |
|                                                                           |
| GW_Medellin#                                                              |

RTR Medellin2#show ip route Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B -BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 El - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area \* - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route Gateway of last resort is 172.29.6.1 to network 0.0.0.0 172.29.0.0/16 is variably subnetted, 9 subnets, 3 masks С 172.29.4.0/25 is directly connected, GigabitEthernet0/0 L 172.29.4.1/32 is directly connected, GigabitEthernet0/0 R 172.29.4.128/25 [120/1] via 172.29.6.6, 00:00:25, Serial0/1/0 С 172.29.6.0/30 is directly connected, Serial0/0/0 L 172.29.6.2/32 is directly connected, Serial0/0/0 С 172.29.6.4/30 is directly connected, Serial0/1/0 L 172.29.6.5/32 is directly connected, Serial0/1/0 R 172.29.6.8/30 [120/1] via 172.29.6.1, 00:00:03, Serial0/0/0 [120/1] via 172.29.6.6, 00:00:25, Serial0/1/0 172.29.6.12/30 [120/1] via 172.29.6.6, 00:00:25, Serial0/1/0 R [120/1] via 172.29.6.1, 00:00:03, Serial0/0/0 R\* 0.0.0.0/0 [120/1] via 172.29.6.1, 00:00:03, Serial0/0/0 RTR Medellin2#

```
RTR Medellin3#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is 172.29.6.13 to network 0.0.0.0
     172.29.0.0/16 is variably subnetted, 10 subnets, 3 masks
        172.29.4.0/25 [120/1] via 172.29.6.5, 00:00:25, Serial0/1/0
R
С
        172.29.4.128/25 is directly connected, GigabitEthernet0/0
        172.29.4.129/32 is directly connected, GigabitEthernet0/0
L
R
        172.29.6.0/30 [120/1] via 172.29.6.13, 00:00:15, Serial0/1/1
                      [120/1] via 172.29.6.5, 00:00:25, Serial0/1/0
                      [120/1] via 172.29.6.9, 00:00:15, Serial0/0/1
С
       172.29.6.4/30 is directly connected, Serial0/1/0
L
        172.29.6.6/32 is directly connected, Serial0/1/0
       172.29.6.8/30 is directly connected, Serial0/0/1
С
L
       172.29.6.10/32 is directly connected, Serial0/0/1
С
        172.29.6.12/30 is directly connected, Serial0/1/1
L
        172.29.6.14/32 is directly connected, Serial0/1/1
R*
    0.0.0.0/0 [120/1] via 172.29.6.13, 00:00:15, Serial0/1/1
               [120/1] via 172.29.6.9, 00:00:15, Serial0/0/1
RTR_Medellin3#
```

Tablas de Enrutamiento Routers Sede Bogotá

| GW_Bogota#show ip route                                                   |  |
|---------------------------------------------------------------------------|--|
| Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP |  |
| D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area            |  |
| N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2            |  |
| El - OSPF external type 1, E2 - OSPF external type 2, E - EGP             |  |
| i - IS-IS, Ll - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area  |  |
| * - candidate default, U - per-user static route, o - ODR                 |  |
| P - periodic downloaded static route                                      |  |
|                                                                           |  |
| Gateway of last resort is 209.17.220.5 to network 0.0.0.0                 |  |
|                                                                           |  |
| 172.29.0.0/16 is variably subnetted, 9 subnets, 3 masks                   |  |
| R 172.29.0.0/24 [120/1] via 172.29.3.6, 00:00:05, Serial0/1/1             |  |
| [120/1] via 172.29.3.2, 00:00:05, Serial0/1/0                             |  |
| R 172.29.1.0/24 [120/1] via 172.29.3.10, 00:00:02, Serial0/0/1            |  |
| C 172.29.3.0/30 is directly connected, Serial0/1/0                        |  |
| L 172.29.3.1/32 is directly connected, Serial0/1/0                        |  |
| C 172.29.3.4/30 is directly connected, Serial0/1/1                        |  |
| L 172.29.3.5/32 is directly connected, Serial0/1/1                        |  |
| C 172.29.3.8/30 is directly connected, Serial0/0/1                        |  |
| L 172.29.3.9/32 is directly connected, Serial0/0/1                        |  |
| R 172.29.3.12/30 [120/1] via 172.29.3.10, 00:00:02, Serial0/0/1           |  |
| [120/1] via 172.29.3.6, 00:00:05, Serial0/1/1                             |  |
| [120/1] via 172.29.3.2, 00:00:05, Serial0/1/0                             |  |
| 209.17.220.0/24 is variably subnetted, 3 subnets, 2 masks                 |  |
| C 209.17.220.4/30 is directly connected, Serial0/0/0                      |  |
| C 209.17.220.5/32 is directly connected, Serial0/0/0                      |  |
| L 209.17.220.6/32 is directly connected, Serial0/0/0                      |  |
| S* 0.0.0.0/0 [1/0] VIA 209.17.220.5                                       |  |
|                                                                           |  |

```
RTR Bogota2>en
Password:
RTR Bogota2#sho
RTR Bogota2#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is 172.29.3.5 to network 0.0.0.0
     172.29.0.0/16 is variably subnetted, 10 subnets, 3 masks
С
        172.29.0.0/24 is directly connected, GigabitEthernet0/0
L
        172.29.0.1/32 is directly connected, GigabitEthernet0/0
        172.29.1.0/24 [120/1] via 172.29.3.14, 00:00:28, Serial0/0/0
R
        172.29.3.0/30 is directly connected, Serial0/1/0
C
L
        172.29.3.2/32 is directly connected, Serial0/1/0
С
        172.29.3.4/30 is directly connected, Serial0/1/1
        172.29.3.6/32 is directly connected, Serial0/1/1
L
        172.29.3.8/30 [120/1] via 172.29.3.14, 00:00:28, Serial0/0/0
R
                       [120/1] via 172.29.3.5, 00:00:11, Serial0/1/1
                       [120/1] via 172.29.3.1, 00:00:11, Serial0/1/0
С
        172.29.3.12/30 is directly connected, Serial0/0/0
        172.29.3.13/32 is directly connected, Serial0/0/0
L
R*
    0.0.0.0/0 [120/1] via 172.29.3.5, 00:00:11, Serial0/1/1
               [120/1] via 172.29.3.1, 00:00:11, Serial0/1/0
RTR_Bogota2#
```

| RTR-Bogota3>en                                                            |
|---------------------------------------------------------------------------|
| Password:                                                                 |
| RTR-Bogota3#sho                                                           |
| RTR-Bogota3#show ip rou                                                   |
| RTR-Bogota3#show ip route                                                 |
| Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP |
| D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area            |
| N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2            |
| E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP             |
| i - IS-IS, Ll - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area  |
| * - candidate default, U - per-user static route, o - ODR                 |
| P - periodic downloaded static route                                      |
|                                                                           |
| Gateway of last resort is 172.29.3.9 to network 0.0.0.0                   |
|                                                                           |
| 172.29.0.0/16 is variably subnetted, 9 subnets, 3 masks                   |
| R 172.29.0.0/24 [120/1] via 172.29.3.13, 00:00:21, Serial0/0/0            |
| C 172.29.1.0/24 is directly connected, GigabitEthernet0/0                 |
| L 172.29.1.1/32 is directly connected, GigabitEthernet0/0                 |
| R 172.29.3.0/30 [120/1] via 172.29.3.9, 00:00:07, Serial0/0/1             |
| [120/1] via 172.29.3.13, 00:00:21, Serial0/0/0                            |
| R 172.29.3.4/30 [120/1] via 172.29.3.13, 00:00:21, Serial0/0/0            |
| [120/1] via 172.29.3.9, 00:00:07, Serial0/0/1                             |
| C 172.29.3.8/30 is directly connected, Serial0/0/1                        |
| L 172.29.3.10/32 is directly connected, Serial0/0/1                       |
| C 172.29.3.12/30 is directly connected, Serial0/0/0                       |
| L 172.29.3.14/32 is directly connected, Serial0/0/0                       |
| R* 0.0.0.0/0 [120/1] Via 1/2.29.3.9, 00:00:07, Serial0/0/1                |
| RTR-Bogota3#                                                              |

### Parte 3: Deshabilitar la propagación del protocolo RIP

#### **Routers Medellín**

RTR\_Medellin2#conf t RTR\_Medellin2(config)#router rip RTR\_Medellin2(config-router)# passive-interface GigabitEthernet0/0

GW\_Medellin#conf t GW\_Medellin(config)#router rip GW\_Medellin(config-router)#passive-interface serial 0/1/0

RTR\_Medellin3#conf t RTR\_Medellin3(config)#router rip RTR\_Medellin3(config-router)# passive-interface GigabitEthernet0/0

#### **Routers Bogotá**

GW\_Bogota#conf t GW\_Bogota(config)#router rip GW\_Bogota(config-router)# passive-interface serial 0/0/0

RTR\_Bogota2#conf t RTR \_Bogota(config)#router rip RTR \_Bogota2(config-router)# passive-interface GigabitEthernet0/0

RTR-Bogota3#conf t RTR-Bogota3(config)#router rip RTR-Bogota3(config-router)#passive-interface GigabitEthernet0/0

#### Parte 4: Verificación del protocolo RIP

Puntos a y b.

Tablas de enrutamiento RIP en Routers Medellín, interfaces pasivas y versión de RIP.

| 🤻 GW_Medellin                              | - | × |
|--------------------------------------------|---|---|
| Physical Config CLI Attributes             |   |   |
| IOS Command Line Interface                 |   |   |
| shutdown                                   |   | ^ |
| router rip                                 |   |   |
| version 2<br>passive-interface Serial0/1/0 |   |   |
| network 172.29.0.0                         |   |   |

```
GW_Medellin#show ip route rip

172.29.0.0/16 is variably subnetted, 9 subnets, 3 masks

R 172.29.4.0/25 [120/1] via 172.29.6.2, 00:00:12, Serial0/0/0

R 172.29.4.128/25 [120/1] via 172.29.6.14, 00:00:17,

Serial0/1/1

[120/1] via 172.29.6.10, 00:00:17,

Serial0/0/1

R 172.29.6.4/30 [120/1] via 172.29.6.14, 00:00:17, Serial0/1/1

[120/1] via 172.29.6.2, 00:00:12, Serial0/0/0

[120/1] via 172.29.6.10, 00:00:17, Serial0/0/1

209.17.220.0/24 is variably subnetted, 3 subnets, 2 masks

GW_Medellin#
```

| RTR_Medellin2                                                                                                                                                                                                                | _ | × |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| Physical Config CLI Attributes                                                                                                                                                                                               |   |   |
| IOS Command Line Interface                                                                                                                                                                                                   |   |   |
| <pre>clock rate 64000 ! interface Serial0/1/1 no ip address clock rate 2000000 ! interface Vlan1 no ip address shutdown ! router rip version 2 passive-interface GigabitEthernet0/0 network 172.29.0.0 no auto-summary</pre> |   | ^ |

RTR\_Medellin2#show ip route rip 172.29.0.0/16 is variably subnetted, 9 subnets, 3 masks R 172.29.4.128/25 [120/1] via 172.29.6.6, 00:00:01, Serial0/1/0 R 172.29.6.8/30 [120/1] via 172.29.6.1, 00:00:01, Serial0/1/0 [120/1] via 172.29.6.6, 00:00:01, Serial0/1/0 R 172.29.6.12/30 [120/1] via 172.29.6.6, 00:00:01, Serial0/1/0 [120/1] via 172.29.6.1, 00:00:01, Serial0/1/0 [120/1] via 172.29.6.1, 00:00:01, Serial0/0/0 R\* 0.0.0.0/0 [120/1] via 172.29.6.1, 00:00:01, Serial0/0/0 RTR Medellin2#

```
×
RTR_Medellin3
                                                                      Physical
           Config
                   CLI Attributes
                             IOS Command Line Interface
   description UNX-GW Medellin
   ip address 172.29.6.14 255.255.255.252
   clock rate 64000
  interface Vlanl
  no ip address
   shutdown
  router rip
   version 2
  passive-interface GigabitEthernet0/0
   network 172.29.0.0
   no auto-summary
```

```
RTR_Medellin3#show ip route rip
RTR_Medellin3#show ip route rip
172.29.0.0/16 is variably subnetted, 10 subnets, 3 masks
R 172.29.4.0/25 [120/1] via 172.29.6.5, 00:00:20, Serial0/1/0
R 172.29.6.0/30 [120/1] via 172.29.6.13, 00:00:01, Serial0/1/1
[120/1] via 172.29.6.5, 00:00:20, Serial0/1/0
[120/1] via 172.29.6.9, 00:00:01, Serial0/0/1
R* 0.0.0.0/0 [120/1] via 172.29.6.13, 00:00:01, Serial0/1/1
R* 0.0.0.0/0 [120/1] via 172.29.6.9, 00:00:01, Serial0/1/1
R* 0.0.0.0/0 [120/1] via 172.29.6.9, 00:00:01, Serial0/0/1
```

Tablas de enrutamiento RIP en Routers Bogotá, interfaces pasivas y versión de RIP.

| 🤻 GW_Bogota                                                                                                                                                                                                                                              | - | × |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| Physical Config CLI Attributes                                                                                                                                                                                                                           |   |   |
| IOS Command Line Interface                                                                                                                                                                                                                               |   |   |
| <pre>ip nat inside<br/>clock rate 64000<br/>!<br/>interface Vlanl<br/>no ip address<br/>shutdown<br/>!<br/>router rip<br/>version 2<br/>passive-interface Serial0/0/0<br/>network 172.29.0.0<br/>default-information originate<br/>no auto-summary</pre> |   | ^ |

```
RTR_Bogota2
                                                                     х
           Config CLI Attributes
 Physical
                             IOS Command Line Interface
   ip address 172.29.3.2 255.255.255.252
   T.
  interface Serial0/1/1
   description CNX-GW Bogota
   ip address 172.29.3.6 255.255.255.252
  interface Vlan1
   no ip address
   shutdown
   router rip
   version 2
   passive-interface GigabitEthernet0/0
   network 172.29.0.0
   no auto-summary
```

```
RTR_Bogota2#show ip route rip
172.29.0.0/16 is variably subnetted, 10 subnets, 3 masks
R 172.29.1.0/24 [120/1] via 172.29.3.14, 00:00:05, Serial0/0/0
R 172.29.3.8/30 [120/1] via 172.29.3.14, 00:00:05, Serial0/0/0
[120/1] via 172.29.3.5, 00:00:27, Serial0/1/1
[120/1] via 172.29.3.1, 00:00:27, Serial0/1/0
R* 0.0.0.0/0 [120/1] via 172.29.3.5, 00:00:27, Serial0/1/1
R* 0.0.0.0/0 [120/1] via 172.29.3.1, 00:00:27, Serial0/1/0
RTR_Bogota2#
```

```
RTR-Bogota3
                                                                     Х
                                                              _
 Physical
           Config
                 CLI Attributes
                             IOS Command Line Interface
   speed auto
                                                                           ~
   shutdown
   I
  interface Serial0/0/0
   description CNX-RTR_Bogota2
   ip address 172.29.3.14 255.255.255.252
   clock rate 64000
  interface Serial0/0/1
   description CNX-GW Bogota
   ip address 172.29.3.10 255.255.255.252
   I
  interface Vlanl
   no ip address
   shutdown
  router rip
   version 2
   passive-interface GigabitEthernet0/0
   network 1/2.29.0.0
   no auto-summary
```

|   | RTR-Bogota3#sho                                                |
|---|----------------------------------------------------------------|
|   | RTR-Bogota3#show ip route rip                                  |
| П | 172.29.0.0/16 is variably subnetted, 9 subnets, 3 masks        |
| l | R 172.29.0.0/24 [120/1] via 172.29.3.13, 00:00:06, Serial0/0/0 |
| l | R 172.29.3.0/30 [120/1] via 172.29.3.9, 00:00:16, Serial0/0/1  |
| l | [120/1] via 172.29.3.13, 00:00:06, Serial0/0/0                 |
| l | R 172.29.3.4/30 [120/1] via 172.29.3.13, 00:00:06, Serial0/0/0 |
| l | [120/1] via 172.29.3.9, 00:00:16, Serial0/0/1                  |
| l | R* 0.0.0.0/0 [120/1] via 172.29.3.9, 00:00:16, Serial0/0/1     |
| l |                                                                |
|   | RTR-Bogota3#                                                   |

Parte 5: Configurar encapsulamiento y autenticación PPP

Punto a. Enlace Medellín1 con ISP sea configurado con autenticación PAP

Desde el Router Medellin 1

GW\_Medellin# configure terminal GW\_Medellin(config)# username RTR\_ISP secret ppp123 GW\_Medellin(config)# interface serial 0/1/0 GW\_Medellin(config-if)# encapsulation ppp GW\_Medellin(config-if)# ppp authentication pap GW\_Medellin(config-if)# ppp pap sent-username GW\_Medellin password 0 ppp123

#### **Desde el Router ISP**

RTR\_ISP# configure terminal RTR\_ISP(config-if)# username GW\_Medellin secret ppp123 RTR\_ISP(config-if)# encapsulation ppp RTR\_ISP(config-if)# ppp authentication pap RTR\_ISP(config-if)# ppp pap sent-username GW\_Medellin password 0 ppp123

# Punto b. Enlace Bogotá1 con ISP sea configurado con autenticación PAP

## Desde el Router Bogotá1

- GW\_Bogota#conf t
- GW\_Bogota(config)#username RTR\_ISP secret ppp123
- GW\_Bogota(config)# interface serial 0/0/0
- GW\_Bogota(config-if)#encapsulation ppp
- GW\_Bogota(config-if)# ppp authentication pap
- GW\_Bogota(config-if)#ppp pap sent-username GW\_Bogota password 0 ppp123

#### Desde el Router ISP

RTR\_ISP# configure terminal RTR\_ISP(config)# username GW\_Bogota secret ppp123 RTR\_ISP(config)# int s0/0/0 RTR\_ISP(config-if)# encapsulation ppp RTR\_ISP(config-if)# ppp authentication pap RTR\_ISP(config-if)# ppp pap sent-username GW\_Bogota password 0 ppp123

# Parte 6: Configuración de NAT

Puntos a, b y c

## **Router Medellín1**

| W Medellin                                          |
|-----------------------------------------------------|
| C Gw_Medellin                                       |
| Physical Config CLI Attributes                      |
| Physical Connig CEI Attributes                      |
|                                                     |
| Г·                                                  |
| interface Serial0/0/0                               |
| description RTR_Medellin2                           |
| ip address 172.29.6.1 255.255.255.252               |
| ip nat inside                                       |
| clock rate 64000                                    |
| !<br>interface Conicl0/0/1                          |
| decerintion CNV-DTD Modellin2                       |
| ip addross 172 29 6 9 255 255 252                   |
| ip mat inside                                       |
| clock rate 64000                                    |
| I I                                                 |
| interface Serial0/1/0                               |
| description CNX-RTR ISP                             |
| ip address 209.17.220.2 255.255.255.252             |
| encapsulation ppp                                   |
| ppp authentication pap                              |
| ppp pap sent-username GW_Medellin password 0 ppp123 |
| no keepalive                                        |
| ip nat outside                                      |
| !                                                   |
| interface Serial0/1/1                               |
| description CNX-RTR_Medellin3                       |
| ip address 172.29.6.13 255.255.255.252              |
| ip nat inside                                       |

GW\_Medellin#conf t GW\_Medellin(config)#int s0/0/0 GW\_Medellin(config-if)#ip nat inside

GW\_Medellin#conf t

GW\_Medellin(config)#int s0/0/1

GW\_Medellin(config-if)#ip nat inside

GW\_Medellin#conf t GW\_Medellin(config)#int s0/1/0 GW\_Medellin(config-if)#ip nat outside

GW\_Medellin#conf t GW\_Medellin(config)#int s0/1/1 GW\_Medellin(config-if)#ip nat inside

# **Router Bogotá1**

| GW_Bogota                               | _ | 2            |
|-----------------------------------------|---|--------------|
|                                         |   |              |
| Physical Config CLI Attributes          |   |              |
| IOS Command Line Interface              |   |              |
| duplex auto                             |   |              |
| speed auto                              |   | <u>_</u>     |
| shutdown                                |   |              |
| 1                                       |   |              |
| interface Serial0/0/0                   |   |              |
| description CNX-RTR ISP                 |   |              |
| ip address 209.17.220.6 255.255.255.252 |   |              |
| encapsulation ppp                       |   |              |
| ppp authentication chap                 |   |              |
| 1p nat outside                          |   |              |
| !                                       |   |              |
| interface Serial0/0/1                   |   |              |
| description CNX-RTR_Bogota3             |   |              |
| ip address 172.29.3.9 255.255.255.252   |   |              |
| 1p nat inside                           |   |              |
| clock rate 64000                        |   |              |
| 1                                       |   |              |
| interface Serial0/1/0                   |   |              |
| description CNX-RTR_Bogota2             |   |              |
| ip address 172.29.3.1 255.255.255.252   |   |              |
| 10 nat inside                           |   |              |
| clock rate 64000                        |   |              |
| 1                                       |   |              |
| interface Serial0/1/1                   |   |              |
| description CNX-RTR_Bogota2             |   |              |
| 1p address 172.29.3.5 255.255.255.252   |   |              |
| ip nat inside                           |   |              |
| clock rate 64000                        |   | $\checkmark$ |

GW\_Bogota#conf t

GW\_Bogota(config)#int s0/0/0

GW\_Bogota(config-if)#ip nat outside

GW\_Bogota#conf t GW\_Bogota(config)#int s0/0/1 GW\_Bogota(config-if)#ip nat inside

GW\_Bogota#conf t

GW\_Bogota(config)#int s0/1/0

GW\_Bogota(config-if)#ip nat inside

GW\_Bogota#conf t

GW\_Bogota(config)#int s0/1/1

GW\_Bogota(config-if)#ip nat inside

#### Prueba de ping desde host Medellín a ISP

|   |                                          |                                                  | _                                                    |                                                                                   |                                                      |                               |  |
|---|------------------------------------------|--------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------|--|
| ۹ | HOST_LA                                  | NMED3                                            |                                                      |                                                                                   |                                                      |                               |  |
|   | Physical                                 | Config                                           | Desktop                                              | Programming                                                                       | Attributes                                           |                               |  |
|   | Command F                                | Prompt                                           |                                                      |                                                                                   |                                                      |                               |  |
|   | Packet<br>C:\>pin                        | Tracer H<br>lg 172.29                            | 9C Command<br>9.1.1                                  | 1 Line 1.0                                                                        | data -                                               |                               |  |
|   | Request<br>Request<br>Request<br>Request | ; timed o<br>; timed o<br>; timed o<br>; timed o | out.<br>out.<br>out.                                 | S2 Bytes Of                                                                       | uata.                                                |                               |  |
|   | Ping st<br>Pac                           | atistics                                         | 5 for 172.<br>ent = 4, 1                             | .29.1.1:<br>Received = 0,                                                         | Lost = 4                                             | (100% loss),                  |  |
|   | C:\>pin                                  | ig 209.17                                        | 220.5 wit                                            | h 32 bytes o                                                                      | of data:                                             |                               |  |
|   | Reply f<br>Reply f<br>Reply f<br>Reply f | rom 209.<br>rom 209.<br>rom 209.<br>rom 209.     | .17.220.5:<br>.17.220.5:<br>.17.220.5:<br>.17.220.5: | : bytes=32 ti<br>: bytes=32 ti<br>: bytes=32 ti<br>: bytes=32 ti<br>: bytes=32 ti | me=14ms TT<br>me=2ms TTI<br>me=4ms TTI<br>me=4ms TTI | 1=253<br>=253<br>=253<br>=253 |  |
|   | Ping st<br>Pac<br>Approxi<br>Min         | atistics<br>kets: Se<br>mate rou<br>imum = 2     | s for 209.<br>ent = 4, F<br>and trip t<br>2ms, Maxim | .17.220.5:<br>Received = 4,<br>imes in mill<br>num = 14ms, 2                      | Lost = 0<br>Li-seconds:<br>Average = 6               | (0% loss),<br>ms              |  |

Estadísticas de NAT GW\_Medellin

```
GW_Medellin#show ip nat statistics
Total translations: 0 (0 static, 0 dynamic, 0 extended)
Outside Interfaces: Serial0/1/0
Inside Interfaces: Serial0/0/0 , Serial0/0/1 , Serial0/1/1
Hits: 5 Misses: 23
Expired translations: 13
Dynamic mappings:
GW_Medellin#
```

#### Prueba de ping desde host Bogotá a ISP

| HOST_LANBOG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |   | × |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
| Physical Config Desktop Programming Attributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |   |
| Command Prompt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   | х |
| <pre>Ping statistics for 209.17.225.1:<br/>Packets: Sent = 2, Received = 0, Lost = 2 (100% loss),<br/>Control-C<br/>^C<br/>C:\&gt;ping 209.17.220.5<br/>Pinging 209.17.220.5: bytes=32 time=2ms TTL=253<br/>Reply from 209.17.220.5: bytes=32 time=4ms TTL=253<br/>Reply from 209.17.220.5: bytes=32 time=4ms TTL=253<br/>Reply from 209.17.220.5: bytes=32 time=4ms TTL=253<br/>Reply from 209.17.220.5: bytes=32 time=2ms TTL=253<br/>Ping statistics for 209.17.220.5:<br/>Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),<br/>Approximate round trip times in milli-seconds:<br/>Minimum = 2ms, Maximum = 4ms, Average = 3ms</pre> |   |   | ^ |
| GW_Bogota#show ip nat sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | - |   |

```
GW_Bogota#show ip nat statistics
GW Bogota#show ip nat statistics
Total translations: 0 (0 static, 0 dynamic, 0 extended)
Outside Interfaces: Serial0/0/0
Inside Interfaces: Serial0/0/1 , Serial0/1/0 , Serial0/1/1
Hits: 28 Misses: 50
Expired translations: 35
Dynamic mappings:
GW_Bogota#
```

Parte 7: Configuración del servicio DHCP

Puntos a, b, c y d

### **DHCP Server sede Medellín**

RTR\_Medellin2#configure terminal RTR\_Medellin2(config)# RTR\_Medellin2(config)#service dhcp RTR\_Medellin2(config)#ip dhcp pool LAN2 RTR\_Medellin2(dhcp-config)#default-router 172.29.4.1 RTR\_Medellin2(dhcp-config)#network 172.29.4.0 255.255.255.128 RTR\_Medellin2(config)#ip dhcp excluded-address 172.29.4.1

## **Configuración DHCP Server LAN Router Medellin 3**

RTR\_Medellin2(config)#ip dhcp pool LAN3 RTR\_Medellin2(dhcp-config)#network 172.29.4.128 255.255.255.128 RTR\_Medellin2(dhcp-config)#default-router 172.29.4.129 RTR\_Medellin2(config)#ip dhcp excluded-address 172.29.4.129

#### **Configuración DHCP Relay en Router Medellin 3**

RTR\_Medellin3> RTR\_Medellin3# RTR\_Medellin3#configure terminal RTR\_Medellin3(config)#interface g0/0 RTR\_Medellin3(config-if)#ip helper-address 172.29.6.5

#### **DHCP Server sede Bogotá**

RTR\_Bogota2#conf t RTR\_Bogota2(config)# service dhcp RTR\_Bogota2(config)# ip dhcp pool LAN2 RTR\_Bogota2 (dhcp-config)# default-router 172.29.0.1 RTR\_Bogota2 (dhcp-config)# network 172.29.0.0 255.255.255.0 RTR\_Bogota2 (dhcp-config)# ip dhcp excluded-address 172.29.0.1 RTR\_Bogota2 (dhcp-config)# ip dhcp excluded-address 172.29.1.1

# RTR\_Bogota2#conf t

RTR\_Bogota2(config)# ip dhcp pool LAN3

RTR\_Bogota2(dhcp-config)#default-router 172.29.1.1

RTR\_Bogota2(dhcp-config)#network 172.29.1.0 255.255.255.0

#### Pruebas de ping entre Routers desde el simulador

|      |   |             |               |               | 🕽 Re | altime | ) 🚊 Sim   | ulation  |
|------|---|-------------|---------------|---------------|------|--------|-----------|----------|
| Fire | Э | Last Status | Source        | Destination   | Туре | Color  | Time(sec) | Periodic |
|      | • | Successful  | RTR_Medellin2 | RTR_Medellin3 | ICMP |        | 0.000     | Ν        |
| L    | • | Successful  | RTR_Medellin2 | GW_Medellin   | ICMP |        | 0.000     | N        |
|      | • | Successful  | RTR_Medellin2 | RTR_ISP       | ICMP |        | 0.000     | Ν        |

|      |             |             |             | Rea  | altime | ) 📜 Sim   | ulation  |
|------|-------------|-------------|-------------|------|--------|-----------|----------|
| Fire | Last Status | Source      | Destination | Туре | Color  | Time(sec) | Periodio |
|      | Successful  | RTR_Bogota2 | RTR_ISP     | ICMP |        | 0.000     | N        |
|      | Successful  | RTR_Bogota2 | GW_Bogota   | ICMP |        | 0.000     | N        |
| •    | Successful  | RTR-Bogota3 | GW_Bogota   | ICMP |        | 0.000     | N        |
|      |             |             |             |      |        |           |          |

#### **ESCENARIO 2**

Una empresa de Tecnología posee tres sucursales distribuidas en las ciudades de Miami, Bogotá y Buenos Aires, en donde el estudiante será el administrador de la red, el cual deberá configurar e interconectar entre sí cada uno de los dispositivos que forman parte del escenario, acorde con los lineamientos establecidos para el direccionamiento IP, protocolos de enrutamiento y demás aspectos que forman parte de la topología de red.





Conexión física de los dispositivos y topología

#### Configuración de enable secret en dispositivos

RTR\_BOGOTA#conf t RTR\_BOGOTA(config)#enable secret diplomado2019 RTR\_BOGOTA(config)#service password-encryption

RTR\_MIAMI#conf t RTR\_MIAMI(config)#enable secret diplomado2019 RTR\_MIAMI(config)#service password-encryption

RTR\_BUENOSAIRES#conf t RTR\_BUENOSAIRES(config)#enable secret diplomado2019 RTR\_BUENOSAIRES(config)#service password-encryption

SW1#conf t

SW1(config)#enable secret diplomado2019 SW1(config)#service password-encryption

SW3#conf t SW3(config)#enable secret diplomado2019 SW3(config)#service password-encryption

#### Configuración direccionamiento IP en dispositivos

#### Direccionamiento Router Bogotá

RTR\_BOGOTA#conf t RTR\_BOGOTA(config)#interface GigabitEthernet0/0.30 RTR\_BOGOTA(config-subif)#encapsulation dot1Q 30 RTR\_BOGOTA(config-subif)#ip address 192.168.30.1 255.255.255.0

RTR\_BOGOTA#conf t RTR\_BOGOTA(config)#interface GigabitEthernet0/0.40 RTR\_BOGOTA(config-subif)#encapsulation dot1Q 40 RTR\_BOGOTA(config-subif)#ip address 192.168.40.1 255.255.255.0

RTR\_BOGOTA#conf t RTR\_BOGOTA(config)# interface Serial0/0/0 RTR\_BOGOTA(config-if)#ip address 172.31.21.1 255.255.255.252

#### **Direccionamiento Router Miami**

RTR\_MIAMI#conf t RTR\_MIAMI(config)#interface Loopback0 RTR\_MIAMI(config-if)#ip address 10.10.10.10 255.255.255.255

RTR\_MIAMI#conf t RTR\_MIAMI(config)#interface GigabitEthernet0/0 RTR\_MIAMI(config-if)#ip address 209.165.200.225 255.255.255.248

RTR\_MIAMI#conf t RTR\_MIAMI(config)#interface Serial0/0/0 RTR\_MIAMI(config-if)#ip address 172.31.21.2 255.255.255.252

RTR\_MIAMI#conf t RTR\_MIAMI(config)#interface Serial0/0/1 RTR\_MIAMI(config-if)#ip address 172.31.23.1 255.255.255.252

#### **Direccionamiento Router Buenos Aires**

RTR\_BUENOSAIRES#conf t RTR\_BUENOSAIRES(config)#interface Loopback4 RTR\_BUENOSAIRES(config-if)#ip address 192.168.4.1 255.255.255.0

RTR\_BUENOSAIRES#conf t RTR\_BUENOSAIRES(config)# interface Loopback5 RTR\_BUENOSAIRES(config-if)# ip address 192.168.5.1 255.255.255.0

RTR\_BUENOSAIRES#conf t RTR\_BUENOSAIRES(config)# interface Loopback6 RTR\_BUENOSAIRES(config-if)# ip address 192.168.6.1 255.255.255.0

RTR\_BUENOSAIRES#conf t RTR\_BUENOSAIRES(config)# interface Serial0/0/1 RTR\_BUENOSAIRES(config-if)#ip address 172.31.23.2 255.255.255.252

#### **Direccionamiento Switch1**

SW1#conf t SW1(config)#interface Vlan10 SW1(config-if)# ip address 192.168.99.2 255.255.255.0

#### **Direccionamiento Switch3**

SW3#conf t SW3(config)#interface Vlan10 SW3(config-if)#ip address 192.168.99.3 255.255.255.0

#### Configuración OSPFv2 area 0

RTR\_BOGOTA#conf t RTR\_BOGOTA# router ospf 1 RTR\_BOGOTA(config-router)#router-id 1.1.1.1 RTR\_BOGOTA(config-router)#log-adjacency-changes RTR\_BOGOTA(config-router)#passive-interface GigabitEthernet0/0.30 RTR\_BOGOTA(config-router)#passive-interface GigabitEthernet0/0.40 RTR\_BOGOTA(config-router)#network 192.168.30.0 0.0.0.255 area 0 network 192.168.40.0 0.0.0.255 area 0 network 172.31.21.0 0.0.0.3 area 0

RTR\_BOGOTA#conf t RTR\_BOGOTA(config)#interface Serial0/0/0 RTR\_BOGOTA(config-if)#description CNX-RTR\_MIAMI RTR\_BOGOTA(config-if)#bandwidth 256 RTR\_BOGOTA(config-if)#ip address 172.31.21.1 255.255.255.252 RTR\_BOGOTA(config-if)#ip ospf cost 9500 RTR\_BOGOTA(config-if)#clock rate 64000 RTR\_BUENOSAIRES#conf t RTR\_BUENOSAIRES(config)#interface Serial0/0/1 RTR\_BUENOSAIRES(config)#interface Serial0/0/1 RTR\_BUENOSAIRES(config-if)# description CNX-RTR\_MIAMI RTR\_BUENOSAIRES(config-if)# bandwidth 256 RTR\_BUENOSAIRES(config-if)#ip address 172.31.23.2 255.255.252 RTR\_BUENOSAIRES(config-if)#ip ospf cost 9500

RTR\_BUENOSAIRES#conf t RTR\_BUENOSAIRES(config)# router ospf 1 RTR\_BUENOSAIRES(config-router)#router-id 8.8.8.8 RTR\_BUENOSAIRES(config-router)# log-adjacency-changes RTR\_BUENOSAIRES(config-router)# passive-interface Loopback4 RTR\_BUENOSAIRES(config-router)# passive-interface Loopback5 RTR\_BUENOSAIRES(config-router)# passive-interface Loopback6 RTR\_BUENOSAIRES(config-router)# network 172.31.23.0 0.0.0.3 area 0 RTR\_BUENOSAIRES(config-router)# network 192.168.4.0 0.0.0.255 area 0 RTR\_BUENOSAIRES(config-router)# network 192.168.5.0 0.0.0.255 area 0 RTR\_BUENOSAIRES(config-router)# network 192.168.6.0 0.0.0.255 area 0

RTR\_MIAMI#conf t RTR\_MIAMI(config)#interface Serial0/0/1 RTR\_MIAMI(config-if)# description CNX-RTR\_BUENOSAIRES RTR\_MIAMI(config-if)# bandwidth 256 RTR\_MIAMI(config-if)# ip address 172.31.23.1 255.255.255.252 RTR\_MIAMI(config-if)# ip ospf cost 9500 RTR\_MIAMI(config-if)# clock rate 64000

RTR\_MIAMI#conf t RTR\_MIAMI(config)#router ospf 1 RTR\_MIAMI(config-router)# router-id 5.5.5.5 RTR\_MIAMI(config-router)#log-adjacency-changes RTR\_MIAMI(config-router)#passive-interface GigabitEthernet0/0 RTR\_MIAMI(config-router)#passive-interface Loopback0 RTR\_MIAMI(config-router)#network 172.31.21.0 0.0.0.3 area 0 RTR\_MIAMI(config-router)#network 209.165.200.224 0.0.0.7 area 0 RTR\_MIAMI(config-router)#network 10.10.10.10 0.0.0.0 area 0 RTR\_MIAMI(config-router)#network 172.31.23.0 0.0.0.3 area 0

Verificar información de OSPF

Tablas de enrutamiento conectados por OSPFv2

Bogotá

```
RTR_BOGOTA#sh ip route ospf
     10.0.0.0/32 is subnetted, 1 subnets
        10.10.10.10 [110/9501] via 172.31.21.2, 10:16:49, Serial0/0/0
0
     172.31.0.0/16 is variably subnetted, 3 subnets, 2 masks
        172.31.23.0 [110/19000] via 172.31.21.2, 10:16:49,
0
Serial0/0/0
     192.168.4.0/32 is subnetted, 1 subnets
0
        192.168.4.1 [110/19001] via 172.31.21.2, 10:16:39,
Serial0/0/0
     192.168.5.0/32 is subnetted, 1 subnets
0
        192.168.5.1 [110/19001] via 172.31.21.2, 10:16:39,
Serial0/0/0
     192.168.6.0/32 is subnetted, 1 subnets
0
        192.168.6.1 [110/19001] via 172.31.21.2, 10:16:39,
Serial0/0/0
     209.165.200.0/29 is subnetted, 1 subnets
        209.165.200.224 [110/9501] via 172.31.21.2, 10:16:49,
0
Seria10/0/0
RTR BOGOTA#
```

#### **Buenos Aires**

```
RTR BUENOSAIRES#show ip route ospf
     10.0.0.0/32 is subnetted, 1 subnets
0
        10.10.10.10 [110/9501] via 172.31.23.1, 10:18:28, Serial0/0/1
     172.31.0.0/16 is variably subnetted, 3 subnets, 2 masks
0
        172.31.21.0 [110/19000] via 172.31.23.1, 10:18:28,
Serial0/0/1
0
    192.168.30.0 [110/19001] via 172.31.23.1, 10:18:28, Serial0/0/1
0
    192.168.40.0 [110/19001] via 172.31.23.1, 10:18:28, Serial0/0/1
     209.165.200.0/29 is subnetted, 1 subnets
        209.165.200.224 [110/9501] via 172.31.23.1, 10:18:28,
0
Serial0/0/1
RTR BUENOSAIRES#
```

Miami

| RTR | MIAMI#sh ip route ospf                                         |
|-----|----------------------------------------------------------------|
|     | 192.168.4.0/32 is subnetted, 1 subnets                         |
| 0   | 192.168.4.1 [110/9501] via 172.31.23.2, 10:22:55, Serial0/0/1  |
|     | 192.168.5.0/32 is subnetted, 1 subnets                         |
| 0   | 192.168.5.1 [110/9501] via 172.31.23.2, 10:22:55, Serial0/0/1  |
|     | 192.168.6.0/32 is subnetted, 1 subnets                         |
| 0   | 192.168.6.1 [110/9501] via 172.31.23.2, 10:22:55, Serial0/0/1  |
| 0   | 192.168.30.0 [110/9501] via 172.31.21.1, 10:22:55, Serial0/0/0 |
| 0   | 192.168.40.0 [110/9501] via 172.31.21.1, 10:22:55, Serial0/0/0 |
|     |                                                                |
| RTR | MIAMI#                                                         |

Visualización de OSPF Process ID, Router ID, Address summarizations, Routing Networks, and passive interfaces configuradas en cada router

Bogotá

```
RTR_BOGOTA#show ip ospf interface
GigabitEthernet0/0.30 is up, line protocol is up
 Internet address is 192.168.30.1/24, Area 0
 Process ID 1, Router ID 1.1.1.1, Network Type BROADCAST, Cost: 1
 Transmit Delay is 1 sec, State DR, Priority 1
 Designated Router (ID) 1.1.1.1, Interface address 192.168.30.1
 No backup designated router on this network
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   No Hellos (Passive interface)
 Index 1/1, flood queue length 0
 Next 0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 0, Adjacent neighbor count is 0
 Suppress hello for 0 neighbor(s)
GigabitEthernet0/0.40 is up, line protocol is up
 Internet address is 192.168.40.1/24, Area 0
 Process ID 1, Router ID 1.1.1.1, Network Type BROADCAST, Cost: 1
 Transmit Delay is 1 sec, State DR, Priority 1
 Designated Router (ID) 1.1.1.1, Interface address 192.168.40.1
 No backup designated router on this network
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   No Hellos (Passive interface)
 Index 2/2, flood queue length 0
 Next 0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 0, Adjacent neighbor count is 0
 Suppress hello for 0 neighbor(s)
```

```
Serial0/0/0 is up, line protocol is up
 Internet address is 172.31.21.1/30, Area 0
 Process ID 1, Router ID 1.1.1.1, Network Type POINT-TO-POINT, Cost: 9500
 Transmit Delay is 1 sec, State POINT-TO-POINT, Priority 0
 No designated router on this network
 No backup designated router on this network
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:06
 Index 3/3, flood queue length 0
 Next 0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1 , Adjacent neighbor count is 1
   Adjacent with neighbor 5.5.5.5
  Suppress hello for 0 neighbor(s)
RTR BOGOTA#
```

#### **Buenos Aires**

RTR\_BUENOSAIRES#show ip ospf interface

```
Loopback4 is up, line protocol is up
 Internet address is 192.168.4.1/24, Area 0
 Process ID 1, Router ID 8.8.8.8, Network Type LOOPBACK, Cost: 1
 Loopback interface is treated as a stub Host
Loopback5 is up, line protocol is up
 Internet address is 192.168.5.1/24, Area 0
 Process ID 1, Router ID 8.8.8.8, Network Type LOOPBACK, Cost: 1
 Loopback interface is treated as a stub Host
Loopback6 is up, line protocol is up
 Internet address is 192.168.6.1/24, Area 0
 Process ID 1, Router ID 8.8.8.8, Network Type LOOPBACK, Cost: 1
 Loopback interface is treated as a stub Host
Serial0/0/1 is up, line protocol is up
 Internet address is 172.31.23.2/30, Area 0
 Process ID 1, Router ID 8.8.8.8, Network Type POINT-TO-POINT, Cost: 9500
 Transmit Delay is 1 sec, State POINT-TO-POINT, Priority 0
 No designated router on this network
 No backup designated router on this network
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:00
 Index 4/4, flood queue length 0
 Next 0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1 , Adjacent neighbor count is 1
   Adjacent with neighbor 5.5.5.5
 Suppress hello for 0 neighbor(s)
RTR_BUENOSAIRES#
```

Miami

#### RTR\_MIAMI#show ip ospf interface

Loopback0 is up, line protocol is up Internet address is 10.10.10.10/32, Area 0 Process ID 1, Router ID 5.5.5.5, Network Type LOOPBACK, Cost: 1 Loopback interface is treated as a stub Host GigabitEthernet0/0 is up, line protocol is up Internet address is 209.165.200.225/29, Area 0 Process ID 1, Router ID 5.5.5.5, Network Type BROADCAST, Cost: 1 Transmit Delay is 1 sec, State DR, Priority 1 Designated Router (ID) 5.5.5.5, Interface address 209.165.200.225 No backup designated router on this network Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 No Hellos (Passive interface) Index 2/2, flood queue length 0 Next 0x0(0)/0x0(0) Last flood scan length is 1, maximum is 1 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 0, Adjacent neighbor count is 0 Suppress hello for 0 neighbor(s) Serial0/0/1 is up, line protocol is up Internet address is 172.31.23.1/30, Area 0 Process ID 1, Router ID 5.5.5.5, Network Type POINT-TO-POINT, Cost: 9500 Transmit Delay is 1 sec, State POINT-TO-POINT, Priority 0 No designated router on this network No backup designated router on this network Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 Hello due in 00:00:03 Index 3/3, flood queue length 0 Next 0x0(0)/0x0(0) Last flood scan length is 1, maximum is 1 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 1 , Adjacent neighbor count is 1 Adjacent with neighbor 8.8.8.8 Suppress hello for 0 neighbor(s)

```
Serial0/0/1 is up, line protocol is up
  Internet address is 172.31.23.1/30, Area 0
  Process ID 1, Router ID 5.5.5.5, Network Type POINT-TO-POINT, Cost: 9500
 Transmit Delay is 1 sec, State POINT-TO-POINT, Priority 0
 No designated router on this network
 No backup designated router on this network
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:03
  Index 3/3, flood queue length 0
 Next 0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1 , Adjacent neighbor count is 1
   Adjacent with neighbor 8.8.8.8
 Suppress hello for 0 neighbor(s)
Serial0/0/0 is up, line protocol is up
 Internet address is 172.31.21.2/30, Area 0
 Process ID 1, Router ID 5.5.5.5, Network Type POINT-TO-POINT, Cost: 9500
 Transmit Delay is 1 sec, State POINT-TO-POINT, Priority 0
 No designated router on this network
 No backup designated router on this network
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:03
  Index 4/4, flood queue length 0
 Next 0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1 , Adjacent neighbor count is 1
   Adjacent with neighbor 1.1.1.1
 Suppress hello for 0 neighbor(s)
RTR MIAMI#
```

Configurar VLANs, Puertos troncales, puertos de acceso, encapsulamiento, Inter-VLAN Routing y Seguridad en los Switch acorde a la topología de red establecida.

Switch 1 SW1#conf t SW1(config)# interface FastEthernet0/1 SW1(config-if)#description CNX-PC-A SW1(config-if)#switchport access vlan 30 SW1(config-if)#switchport mode access

SW1#conf t SW1(config)# interface GigabitEthernet0/1 SW1(config-if)#description CNX\_RTR-BOGOTA SW1(config-if)#switchport trunk allowed vlan 30,40 SW1(config-if)#switchport mode trunk SW1#conf t

SW1(config)# interface GigabitEthernet0/2 SW1(config-if)# description CNX\_SW3 SW1(config-if)# switchport trunk native vlan 10 SW1(config-if)# switchport trunk allowed vlan 10,30,40 SW1(config-if)#switchport mode trunk

SW1#conf t SW1(config)# interface Vlan10 SW1(config)# ip address 192.168.99.2 255.255.255.0

#### Switch 3

SW3# conf t SW3(config)# interface FastEthernet0/1 SW3(config-if)#description CNX-PC-C SW3(config-if)#switchport access vlan 40 SW3(config-if)#switchport mode Access

SW3# conf t SW3(config)# interface GigabitEthernet0/2 SW3(config-if)# description CNX\_SW1 SW3(config-if)#switchport trunk native vlan 10 SW3(config-if)#switchport trunk allowed vlan 10,30,40 SW3(config-if)#switchport mode trunk

SW3# conf t SW3(config)#interface Vlan10 SW3(config)#ip address 192.168.99.3 255.255.255.0

#### En el Switch 3 deshabilitar DNS lookup

SW3#conf t SW3(config)#no ip domain-lookup SW3(config)#

#### Asignar direcciones IP a los Switchs acorde a los lineamientos

#### Switch 1

SW1#conf t SW1(config)# interface Vlan10 SW1(config)# ip address 192.168.99.2 255.255.255.0

#### Switch 3

SW3# conf t SW3(config)#interface Vlan10 SW3(config)#ip address 192.168.99.3 255.255.255.0

#### Desactivar todas las interfaces que no sean utilizadas en el esquema de red

#### Switch 1

SW1#conf t SW1(config)#int range f0/2-24 SW1(config-if-range)#shu SW1(config-if-range)#shutdown

#### Switch 3

SW3#conf t SW3(config)#interface range f0/2-24 SW3(config-if-range)#shu SW3(config-if-range)#shutdown SW3(config)# interface GigabitEthernet0/1

#### Desarrollo de puntos 7, 8 y 9 DHCP

RTR\_BOGOTA#conf t RTR\_BOGOTA(config)#ip dhcp pool VLAN30 RTR\_BOGOTA(dhcp-config)#network 192.168.30.0 255.255.255.0 RTR\_BOGOTA(dhcp-config)#default-router 192.168.30.1 RTR\_BOGOTA(dhcp-config)#domain-name ccna-unad.com RTR\_BOGOTA(dhcp-config)# dns-server 10.10.10.11 RTR\_BOGOTA#conf t RTR\_BOGOTA(config)#ip dhcp pool VLAN40 RTR\_BOGOTA(dhcp-config)# network 192.168.40.0 255.255.255.0 RTR\_BOGOTA(dhcp-config)# default-router 192.168.40.1 RTR\_BOGOTA(dhcp-config)#domain-name ccna-unad.com RTR\_BOGOTA(dhcp-config)#dns-server 10.10.10.11 RTR\_BOGOTA(dhcp-config)# ip dhcp excluded-address 192.168.30.1 192.168.30.30 RTR\_BOGOTA(dhcp-config)# ip dhcp excluded-address 192.168.40.1 192.168.40.30

#### Configurar NAT en R2 para permitir que los hosts puedan salir a internet

RTR\_MIAMI#conf t RTR\_MIAMI(config)#interface Serial0/0/0 RTR\_MIAMI(config-if)#ip nat inside

# Listas de acceso de tipo estándar para restringir o permitir tráfico desde R1 o R3 hacia R2.

RTR\_BOGOTA#conf t RTR\_BOGOTA(config)# access-list 1 deny 192.168.30.0 0.0.0.255 RTR\_BOGOTA(config)# access-list 1 permit 192.168.40.0 0.0.0.255

# Listas de acceso de tipo extendido o nombradas para restringir o permitir tráfico desde R1 o R3 hacia R2.

RTR\_BUENOSAIRES#conf t RTR\_BUENOSAIRES(config)# ip access-list extended ACL-UNAD RTR\_BUENOSAIRES(config-ext-nacl)# deny tcp any host 172.31.23.1 RTR\_BUENOSAIRES(config-ext-nacl)# permit icmp any echo-reply

RTR\_BUENOSAIRES#conf t RTR\_BUENOSAIRES(config)#interface Serial0/0/1 RTR\_BUENOSAIRES(config-if)#ip access-group ACL-UNAD out

Verificar procesos de comunicación y redireccionamiento de tráfico en los Routers mediante el uso de Ping y Traceroute.

#### Prueba de ping desde Bogotá a Miami y Buenos Aires

|      |   |             |        |             | (    |       | ealtime   | 🚉 Simu   | lation |
|------|---|-------------|--------|-------------|------|-------|-----------|----------|--------|
| Fire | е | Last Status | Source | Destination | Туре | Color | Time(sec) | Periodic | Num    |
| L    |   | Successful  | BOGOTA | MIAMI       | ICMP |       | 0.000     | N        | 0      |
| L    | • | Successful  | BOGOTA | BUENOS A    | ICMP |       | 0.000     | N        | 1      |

```
RTR_BOGOTA#
RTR_BOGOTA#ping 172.31.21.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.31.21.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/5/12 ms
RTR_BOGOTA#ping 172.31.23.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.31.23.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/4/13 ms
RTR_BOGOTA#
```

```
RTR_BOGOTA#ping 172.31.23.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.31.23.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 2/6/25 ms
RTR_BOGOTA#ping 192.168.4.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.4.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 2/4/15 ms
RTR_BOGOTA#
```

Prueba de ping desde Miami a Bogotá y Buenos Aires

|      |   |             |        |             |      |       | ealtime   | ウ Simı   | ulation |
|------|---|-------------|--------|-------------|------|-------|-----------|----------|---------|
| Fire | e | Last Status | Source | Destination | Туре | Color | Time(sec) | Periodic | Num     |
|      | • | Successful  | MIAM   | BOGOTA      | ICMP |       | 0.000     | N        | 0       |
|      | • | Successful  | MIAMI  | BUENOS A    | ICMP |       | 0.000     | Ν        | 1       |
|      |   |             |        |             |      |       |           |          | -       |

# Prueba de ping desde Buenos Aires a Miami y Bogotá

|      |   |             |           |             |      |       | ealtime   | 🚊 Simı   | ulation |
|------|---|-------------|-----------|-------------|------|-------|-----------|----------|---------|
| Fire | • | Last Status | Source    | Destination | Туре | Color | Time(sec) | Periodic | Num     |
|      | • | Successful  | BUENOS AI | MIAMI       | ICMP |       | 0.000     | Ν        | 0       |
|      | • | Successful  | BUENOS AI | BOGOTA      | ICMP |       | 0.000     | N        | 1       |
| -    |   |             |           |             |      |       |           |          |         |
| 1    |   |             |           |             |      |       |           |          |         |

Prueba de tracert desde Bogotá a Miami y Buenos Aires

| RTR BOGOTA#traceroute 172.31.21.2   |
|-------------------------------------|
| Type escape sequence to abort.      |
| Tracing the route to 172.31.21.2    |
|                                     |
| 1 172.31.21.2 0 msec 1 msec 0 msec  |
| RTR_BOGOTA#traceroute 192.168.4.1   |
| Type escape sequence to abort.      |
| Tracing the route to 192.168.4.1    |
|                                     |
| 1 172.31.21.2 10 msec 0 msec 1 msec |
| 2 172.31.23.2 2 msec 1 msec 2 msec  |
| RTR_BOGOTA#                         |

Prueba de traceroute desde Miami a Bogotá y Buenos Aires

```
RTR_MIAMI#tracero

RTR_MIAMI#traceroute 172.31.21.1

Type escape sequence to abort.

Tracing the route to 172.31.21.1

1 172.31.21.1 1 msec 0 msec 0 msec

RTR_MIAMI#traceroute 172.31.23.2

Type escape sequence to abort.

Tracing the route to 172.31.23.2

1 172.31.23.2 0 msec 3 msec 0 msec

RTR_MIAMI#
```

Prueba de tracert desde Buenos Aires a Miami y Bogotá

| RTR BUENOSAIRES#tracer                                 |
|--------------------------------------------------------|
| RTR_BUENOSAIRES#traceroute 172.31.21.1                 |
| Type escape sequence to abort.                         |
| Tracing the route to 172.31.21.1                       |
| 1 172.31.23.1 8 msec 1 msec 1 msec                     |
| 2 172.31.21.1 1 msec 2 msec 1 msec                     |
| RTR_BUENOSAIRES#traceroute 172.31.21.2                 |
| Type escape sequence to abort                          |
| Tracing the route to 172.31.21.2                       |
| 1 172.31.23.1 0 msec 1 msec 3 msec<br>RTR BUENOSAIRES# |

Prueba de ping entre PC

|      |   |             |        |             |      |       | ealtime   | 🚊 Simı   | ulation |
|------|---|-------------|--------|-------------|------|-------|-----------|----------|---------|
| Fire | e | Last Status | Source | Destination | Туре | Color | Time(sec) | Periodic | Num     |
| L    | • | Successful  | PC-A   | PC-C        | ICMP |       | 0.000     | Ν        | 0       |
| L    | • | Successful  | PC-C   | PC-A        | ICMP |       | 0.000     | N        | 1       |
|      |   |             |        |             |      | _     |           |          |         |
| 1    |   |             |        |             |      |       |           |          |         |

#### CONCLUSIONES

- A través del desarrollo de los dos ejercicios se aplicaron en un gran porcentaje todo lo aprendido a lo largo del curso. Conceptos como direccionamiento ip, rutas estáticas, protocolos dinámicos (ospf y rip), vlan, dhcp, nat, ppp, chap, entre otros, permitieron obtener un aprendizaje significativo que perfectamente puede simular un ambiente real.
- El uso del simulador Packet Tracert permitió llevar a cabo los dos escenarios y poder probar el funcionamiento en las topologías. Aunque la aplicación es un poco limitada en cuanto a los comandos de configuración, permite que se puedan simular escenarios como parte de diseños de red y tener una idea clara de los requerimientos.
- El diplomado de profundización me permitió adquirir destrezas en la configuración de diferentes dispositivos como lo son routers, Switch, además de aprender todos los conceptos que se deben tener presentes en el mundo de las redes. El método de aprendizaje es bastante práctico y se puede hacer muy parecido a lo que se presenta en un escenario real.
- Los Routers son dispositivos que operan en la capa 3 del modelo OSI y son los que nos permiten que podamos enrutar todo el tráfico de las diferentes redes conectadas, los Routers no permiten el paso de Broadcast.
- Por medio del protocolo OSPF se facilita en gran medida la implementación de grandes redes, ya que permite establecer la mejor ruta para la transmisión de información mejorando la latencia en la transmisión y facilitando la administración y gestión de la red.
- Los Switch son dispositivos de capa 2 del modelo OSI los cuales nos permiten la conexión de cualquier dispositivo de red como un PC, impresora, teléfono IP, AP, etc. Cada puerto en el Switch es un dominio de colisión. En el Switch se puede segmentar redes a partir de vlan que se pueden asociar a los puertos según la necesidad que se presente y permite además brindar más seguridad a la red.
- El comando como ping permite revisar la correcta o no correcta conectividad entre dispositivos conectados a la red.
- El comando traceroute permite revisar los saltos que hace un paquete para llegar a su destino.
- Servicios como el Dhcp permiten que a los dispositivos finales se les pueda asignar direccionamiento de forma automática permitiendo así que no se

tenga que configurar cada equipo de la red con una ip estática. Este servicio en una red grande es muy útil considerando lo complejo que se hace la administración.

- El NAT nos permite traducir las direcciones IPs privadas de la red en una IP publica para que la red pueda enviar paquetes al exterior; y traducir luego esa IP publica de nuevo a la IP privada del pc que envió el paquete para que pueda recibirlo una vez llega la respuesta.
- Existen diferentes tipos de enrutamiento y según el escenario de conectividad se aplica el enrutamiento estático o dinámico. Las Rutas Estáticas o Enrutamiento Estático son la manera más simple y la menos escalable de armar una tabla de rutas, son más seguras y consumen menos recursos de hardware en un router.

### **BIBLIOGRAFIA**

CISCO. (2014). Exploración de la red. Fundamentos de Networking. Recuperado de https://static-course-

assets.s3.amazonaws.com/ITN50ES/module1/index.html#1.0.1.1

CISCO. (2014). Configuración de un sistema operativo de red. Fundamentos de Networkina. Recuperado https://static-coursede assets.s3.amazonaws.com/ITN50ES/module2/index.html#2.0.1.1

CISCO. (2014). Protocolos y comunicaciones de red. Fundamentos de Networking. Recuperado https://static-coursede assets.s3.amazonaws.com/ITN50ES/module2/index.html#3.0.1.1

CISCO. (2014). Acceso a la red. Fundamentos de Networking. Recuperado de https://static-course-

assets.s3.amazonaws.com/ITN50ES/module2/index.html#4.0.1.1

CISCO. (2014). Ethernet. Fundamentos de Networking. Recuperado de https://static-courseassets.s3.amazonaws.com/ITN50ES/module2/index.html#5.0.1.1

CISCO. (2014). Capa de red. Fundamentos de Networking. Recuperado de https://static-course-

assets.s3.amazonaws.com/ITN50ES/module2/index.html#6.0.1.1

CISCO. (2014). Capa de Transporte. Fundamentos de Networking. Recuperado de https://static-courseassets.s3.amazonaws.com/ITN50ES/module7/index.html#7.0.1.1

CISCO. (2014). Asignación de direcciones IP. Fundamentos de Networking. Recuperado de https://static-courseassets.s3.amazonaws.com/ITN50ES/module8/index.html#8.0.1.1

CISCO. (2014). SubNetting. Fundamentos de Networking. Recuperado de https://static-course-

assets.s3.amazonaws.com/ITN50ES/module9/index.html#9.0.1.1

CISCO. (2014). Capa de Aplicación. Fundamentos de Networking. Recuperado de https://static-course-

assets.s3.amazonaws.com/ITN50ES/module10/index.html#10.0.1.1

CISCO. (2014). Soluciones de Red. Fundamentos de Networking. Recuperado de <u>https://static-course-</u>

assets.s3.amazonaws.com/ITN50ES/module11/index.html#11.0.1.1

CISCO. (2014). Introducción a redes conmutadas. Principios de Enrutamiento y Conmutación. Recuperado de <u>https://static-course-assets.s3.amazonaws.com/RSE50ES/module1/index.html#1.0.1.1</u>

CISCO. (2014). Configuración y conceptos básicos de Switching. Principios de Enrutamiento y Conmutación. Recuperado de <u>https://static-course-assets.s3.amazonaws.com/RSE50ES/module2/index.html#2.0.1.1</u>

CISCO. (2014). VLANs. Principios de Enrutamiento y Conmutación. Recuperado de <u>https://static-course-</u>

assets.s3.amazonaws.com/RSE50ES/module3/index.html#3.0.1.1

CISCO. (2014). Conceptos de Routing. Principios de Enrutamiento y Conmutación. Recuperado de <u>https://static-course-assets.s3.amazonaws.com/RSE50ES/module4/index.html#4.0.1.1</u>

CISCO. (2014). Enrutamiento entre VLANs. Principios de Enrutamiento y Conmutación. Recuperado de <u>https://static-course-assets.s3.amazonaws.com/RSE50ES/module5/index.html#5.0.1.1</u>

CISCO. (2014). Enrutamiento Estático. Principios de Enrutamiento y Conmutación. Recuperado de <u>https://static-course-assets.s3.amazonaws.com/RSE50ES/module6/index.html#6.0.1.1</u>