# DIPLOMADO DE PROFUNDIZACIÓN CISCO CCNP PRUEBA DE HABILIDADES PRÁCTICAS 

## EVALUACIÓN FINAL PASO 10

## PRESENTADO POR:

## PABLO NOGUERA

GRUPO:
208014_3

TUTOR
GERARDO GRANADOS

## UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNAD INGENIERIA ELECTRONICA 29 DE MAYO DE 2018 <br> PASTO

## INTRODUCCION

El siguiente informe, recoge la información obtenida a través del desarrollo de dos ejercicios prácticos entregados y en este se hacen las observaciones, especificaciones técnicas, las limitaciones y las conclusiones surgidas tras el desarrollo, análisis y comprensión de las actividades propuestas.

## Evaluación - Prueba de habilidades prácticas CCNP

## Descripción general de la prueba de habilidades

La evaluación denominada "Prueba de habilidades prácticas", forma parte de las actividades evaluativas del Diplomado de Profundización CCNP, la cual busca identificar el grado de desarrollo de competencias y habilidades que fueron adquiridas a lo largo del diplomado y a través de la cual se pondrá a prueba los niveles de comprensión y solución de problemas relacionados con diversos aspectos de Networking.

Para esta actividad, el estudiante dispone de cerca de dos semanas para realizar las tareas asignadas en cada uno de los escenarios propuestos, acompañado de los respectivos procesos de documentación de la solución, correspondientes al registro de la configuración de cada uno de los dispositivos, la descripción detallada del paso a paso de cada una de las etapas realizadas durante su desarrollo, el registro de los procesos de verificación de conectividad mediante el uso de comandos ping, traceroute, show ip route, entre otros.

Teniendo en cuenta que la Prueba de habilidades está conformada por dos escenarios, el estudiante deberá realizar el proceso de configuración de un escenario en el Laboratorio SmartLab y el otro mediante el uso de herramientas de Simulación (Puede ser Packet Tracer o GNS3). El estudiante es libre de escoger bajo qué mediación tecnológica resolverá cada escenario.

Finalmente, el informe deberá cumplir con las normas ICONTEC para la presentación de trabajos escritos, teniendo en cuenta que este documento deberá ser entregado al final del curso en el Repositorio Institucional, acorde con los lineamientos institucionales para grado. Proceso que les será socializado al finalizar el curso.

Es muy importante mencionar que esta actividad es de carácter INDIVIDUAL. El informe deberá estar acompañado de las respectivas evidencias de configuración de los dispositivos, las cuales generarán veracidad al trabajo realizado. El informe deberá ser entregado en el espacio creado para tal fin en el Campus Virtual de la UNAD.

## Descripción de escenarios propuestos para la prueba de habilidades

Escenario 1: Una empresa de confecciones posee tres sucursales distribuidas en las ciudades de Bogotá, Medellín y Bucaramanga, en donde el estudiante será el administrador de la red, el cual deberá configurar e interconectar entre sí cada uno de los dispositivos que forman parte del escenario, acorde con los lineamientos establecidos para el direccionamiento IP, protocolos de enrutamiento y demás aspectos que forman parte de la topología de red.

## Topología de red



Configurar la topología de red, de acuerdo con las siguientes especificaciones.

## Parte 1: Configuración del escenario propuesto

1. Configurar las interfaces con las direcciones IPv4 e IPv6 que se muestran en la topología de red.
```
Router>enable
Router#config
Configuring from terminal, memory, or network [terminal]?
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #hostname R1
R1(config) #interface s0/0/0
R1(config-if)#ip address 192.168.9.1 255.255.255.252
R1(config-if) #no shutdown
%LINK-5-CHANGED: Interface Serial0/0/0, changed state to down
R1(config-if) #|
```

```
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #hostname R2
R2(config) #interface s0/0/0
R2(config-if)#ip address 192.168.9.2 255.255.255.252
R2(config-if) #no shutdown
R2 (config-if) #
&LINK-5-CHANGED: Interface Serial0/0/0, changed state to up
R2 (config-if) #exit
R2(config) #interface
%LINEPROTO-5-UPDONN: Line protocol on Interface Serial0/0/0, changed state to up
% Incomplete command.
R2(config) #interface go/0
R2(config-if)#ip address 192.168.2.1 255.255.255.0
R2(config-if) #no shutdown
R2(config-if) #
%LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up
R2 (config-if) #exit
R2 (config) #interface s0/0/1
R2 (config-if) #ip address 192.168.9.5 255.255.255.252
R2(config-if) #no shutdown
R2 (config-if) #
&LINK-5-CHANGED: Interface Serial0/0/1, changed state to up
R2 (config-if) #
&LINEPROTO-5-UPDONN: Line protocol on Interface Serial0/0/1, changed state to up
```

Ctrl+F6 to exit CLI focus


```
Router(config) #hostname R3
R3(config) #interface s0/0/1
R3(config-if)#ip address 192.168.9.6 255.255.255.252
R3(config-if) #no shutdown
R3 (config-if) #exit
R3(config) #interface g0/0
R3(config-if)#ip address 192.168.3.1 255.255.255.0
R3(config-if) #no shutdown
R3(config-if) #
```

Ctrl+F6 to exit CLI focus
2. Ajustar el ancho de banda a 128 kbps sobre cada uno de los enlaces seriales ubicados en R1, R2, y R3 y ajustar la velocidad de reloj de las conexiones de DCE según sea apropiado.
3. En R2 y R3 configurar las familias de direcciones OSPFv3 para IPv4 e IPv6. Utilice el identificador de enrutamiento 2.2.2.2 en R2 y 3.3.3.3 en R3 para ambas familias de direcciones.

```
R1(config-if) #exit
RI(config) #
R1(config) #interface s0/0/0
R1(config-if) #bandwidth 128
R1(config-if) #exit
```

R2 (config-if) \#exit
R2 (config) \#interface s0/0/0
R2 (config-if) \#bandwidth 128
R2 (config-if) \#exit
R2 (config) \#interface s0/0/1
R2 (config-if) \#bandwidth 128
R2 (config-if) \#exit
R2 (config) \#router ospf 1
R2 (config-router) \#router-id 2.2.2.2
R2 (config-router) \#exit
R2 (config) \#|

Ctrl+F6 to exit CLI focus

```
R3 (config) #interface s0/0/1
R3 (config-if) #bandwidth }12
R3 (config-if) #exit
R3(config) #router ospf 1
R3 (config-router) #router-id 3.3.3.3
R3(config-router) #exit
R3 (config) #
```

Ctrl+F6 to exit CLI focus
Copy

## Paste

4. En R2, configurar la interfaz F0/0 en el área 1 de OSPF y la conexión serial entre R2 y R3 en OSPF área 0.
5. En R3, configurar la interfaz FO/0 y la conexión serial entre R2 y R3 en OSPF área 0 .
6. Configurar el área 1 como un área totalmente Stubby.
```
R2 (config) #
R2(config) #router ospf 1
R2 (config-router) #network 192.168.9.0 0.0.0.3 area 0
R2(config-router) #network 192.168.4.0 0.0.0.3 area 0
R2(config-router) #area 1 nssa
R2 (config-router) #exit
R2 (config) #
R2 (config) #
```

```
R3(config) #router ospf 1
R3(config-router) #network 192.168.9.4 0.0.0.3 area 0
R3(config-router) #area 1 nssa
R3 (config-router) #exit
R3(config)#
R3 (config) #
```

7. Propagar rutas por defecto de IPv4 y IPv6 en R3 al interior del dominio OSPFv3. Nota: Es importante tener en cuenta que una ruta por defecto es diferente a la definición de rutas estáticas.
8. Realizar la configuración del protocolo EIGRP para IPv4 como IPv6. Configurar la interfaz F0/0 de R1 y la conexión entre R1 y R2 para EIGRP con el sistema autónomo 101. Asegúrese de que el resumen automático está desactivado.
9. Configurar las interfaces pasivas para EIGRP según sea apropiado.
10. En R2, configurar la redistribución mutua entre OSPF y EIGRP para IPv4 e IPv6. Asignar métricas apropiadas cuando sea necesario.
11. En R2, de hacer publicidad de la ruta 192.168.3.0/24 a R1 mediante una lista de distribución y ACL.

## Parte 2: Verificar conectividad de red y control de la trayectoria.

a. Registrar las tablas de enrutamiento en cada uno de los routers, acorde con los parámetros de configuración establecidos en el escenario propuesto.

```
Rl#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
    D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
    N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
    El - OSPF external type 1, E2 - OSPF external type 2, E - EGP
    i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter
area
    * - candidate default, U - per-user static route, o - ODR
    P - periodic downloaded static route
Gateway of last resort is not set
    192.168.9.0/24 is variably subnetted, 2 subnets, 2 masks
    192.168.9.0/30 is directly connected, Serial0/0/0
    192.168.9.1/32 is directly connected, Serial0/0/0
R1#
```

R2\#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, I.2 - IS-IS level-2, ia - IS-IS inter
area
* - candidate default, U - per-user static route, O - ODR
P - periodic downloaded static route
Gateway of last resort is not set
192.168.9.0/24 is variably subnetted, 4 subnets, 2 masks
192.168.9.0/30 is directly connected, Serial0/0/0
192.168.9.2/32 is directly connected, Serial0/0/0
192.168.9.4/30 is directly connected, Serial0/0/1
192.168.9.5/32 is directly connected, Serial0/0/1
R2\#|

```

Ctrl+F6 to exit CLI focus
```

R3\#
R3\#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B -
BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, Ll - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS
inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
Gateway of last resort is not set
192.168.9.0/24 is variably subnetted, 2 subnets, 2 masks
192.168.9.4/30 is directly connected, Serial0/0/1
192.168.9.6/32 is directly connected, Serial0/0/1
R3\#

```

Ctrl+F6 to exit CLI focus
b. Verificar comunicación entre routers mediante el comando ping y traceroute
```

R1\#
R1\#ping 192.168.9.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.9.2, timeout is 2
seconds:
!!!!!
Success rate is }100\mathrm{ percent (5/5), round-trip min/avg/max = 1/1/3
ms
R1\#

```

Ctrl+F6 to exit CLI focus
Copy
Paste
```

K<\#
R2\#ping 192.168.9.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.9.1, timeout is 2
seconds:
!!!!!
Success rate is }100\mathrm{ percent (5/5), round-trip min/avg/max =
1/3/15 ms
R2\#ping 192.168.9.6
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.9.6, timeout is 2
seconds:
!!!!!
Success rate is }100\mathrm{ percent (5/5), round-trip min/avg/max =
1/5/22 ms
R2\#|
Ctrl+F6 to exit CLI focus
R3\#
R3\#ping 192.168.9.5
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.9.5, timeout is 2
seconds:
!!!!!
Success rate is }100\mathrm{ percent (5/5), round-trip min/avg/max =
1/3/12 ms
R3\#|
Ctrl+F6 to exit CLI focus
Copy
Paste

```
c. Verificar que las rutas filtradas no están presentes en las tablas de enrutamiento de los routers correctas.

Nota: Puede ser que Una o más direcciones no serán accesibles desde todos los routers después de la configuración final debido a la utilización de listas de distribución para filtrar rutas y el uso de IPv4 e IPv6 en la misma red.

Escenario 2: Una empresa de comunicaciones presenta una estructura Core acorde a la topología de red, en donde el estudiante será el administrador de la red, el cual deberá configurar e interconectar entre sí cada uno de los dispositivos que forman parte del escenario, acorde con los lineamientos establecidos para el direccionamiento IP, etherchannels, VLANs y demás aspectos que forman parte del escenario propuesto.

Topología de red


Parte 1: Configurar la red de acuerdo con las especificaciones.
a. Apagar todas las interfaces en cada switch.
b. Asignar un nombre a cada switch acorde al escenario establecido.
c. Configurar los puertos troncales y Port-channels tal como se muestra en el diagrama.
1) La conexión entre DLS1 y DLS2 será un EtherChannel capa-3 utilizando LACP. Para DLS1 se utilizará la dirección IP 10.12.12.1/30 y para DLS2 utilizará 10.12.12.2/30.
2) Los Port-channels en las interfaces Fa0/7 y Fa0/8 utilizarán LACP.
3) Los Port-channels en las interfaces \(\mathrm{F} 0 / 9\) y fa0/10 utilizará PAgP.
4) Todos los puertos troncales serán asignados a la VLAN 800 como la VLAN nativa.
d. Configurar DLS1, ALS1, y ALS2 para utilizar VTP versión 3
1) Utilizar el nombre de dominio UNAD con la contraseña cisco123
2) Configurar DLS1 como servidor principal para las VLAN.
3) Configurar ALS1 y ALS2 como clientes VTP.
```

DLS1(config) \#hostname DLS1
DLSl(config) \#vtp mode server
Device mode already VTP SERVER.
DLS1(config) \#ip domain UNAD
\& Invalid input detected at '^' marker.
DLS1(config) \#vpt domain UNAD
\& Invalid input detected at '^' marker.
DLSl(config) \#vtp domain UNAD
Domain name already set to UNAD.
DLSl(config) \#
DLSl(config) \#vtp password ciscol23
Password already set to ciscol23
DLS1 (config) \#

```

Ctrl+F6 to exit CLI focus
Copy
Paste

```

ALSl(config) \#hostname ALSl
ALSl(config) \#vtp mode client
Device mode already VTP CLIENT.
ALSl(config) \#vtp domain UNAD
Domain name already set to UNAD
ALSl(config) \#vtp password ciscol23
Password already set to ciscol23
ALS1(config) \#

```
Ctrl + F6 to exit CLI focus
```

ALS2>enable
ALS2\#config
Configuring from terminal, memory, or network [terminal]?
Enter configuration commands, one per line. End with CNTL/Z.
ALS2(config) \#hostname ALS2
ALS2 (config)\#vtp mode client
Device mode already VTP CLIENT.
ALS2(config)\#vtp domain UNAD
Domain name already set to UNAD.
ALS2(config) \#vtp password ciscol23
Password already set to ciscol23
ALS2 (config) \#

```
e. Configurar en el servidor principal las siguientes VLAN:
\begin{tabular}{|cccc|}
\hline Número de VLAN & \begin{tabular}{c} 
Nombre de \\
VLAN
\end{tabular} & \begin{tabular}{c} 
Número de \\
VLAN
\end{tabular} & Nombre de VLAN \\
\hline \(\mathbf{8 0 0}\) & NATIVA & 434 & ESTACIONAMIENTO \\
\hline \(\mathbf{1 2}\) & EJECUTIVOS & 123 & MANTENIMIENTO \\
\hline \(\mathbf{2 3 4}\) & HUESPEDES & 1010 & VOZ \\
\hline \(\mathbf{1 1 1 1}\) & VIDEONET & 3456 & ADMINISTRACIÓN \\
\hline
\end{tabular}
```

DLS1(config)\#vlan 800
DLSl(config-vlan) \#name NATIVA
DLS1 (config-vlan) \#exit
DLSl(config) \#vlan 434
DLS1(config-vlan) \#name ESTACIONAMIENTO
DLS1 (config-vlan) \#exit
DLSl(config) \#vlan 12
DLS1(config-vlan) \#name EJECUTIVOS
DLS1 (config-vlan) \#exit
DLS1(config) \#vlan 123
DLSl(config-vlan) \#name MANTENIMIENTO
DLS1 (config-vlan) \#exit
DLSl(config)\#vlan 234
DLSl (config-vlan) \#name HUESPEDES
DLS1 (config-vlan) \#exit
DLS1(config)\#vlan 1010
VLAN_CREATE_FAIL: Failed to create VLANs 1010 : extended VLAN(s)
not allowed in current VTP mode
DLS1(config) \#vlan 1111
VLAN_CREATE_FAIL: Failed to create VLANs 1111 : extended VLAN(s)
not allowed in current VTP mode
DLSl(config) \#vlan 3456
VLAN_CREATE_FAIL: Failed to create VLANs 3456 : extended VLAN(s)
not allowed in current VTP mode
DLS1 (config) \#

```
Ctrl 1 F6 to exit CLI focus
f. En DLS1, suspender la VLAN 434.
```

DLSl(config)\#vlan 434
DLS1(config-vlan)\#state suspend
\& Invalid input detected at '^' marker.
DLS1(config-vlan) \#

```
g. Configurar DLS2 en modo VTP transparente VTP utilizando VTP versión 2, y configurar en DLS2 las mismas VLAN que en DLS1.
```

DLS2(config) \#
DLS2 (config) \#vtp mode transparent
Device mode already VTP TRANSPARENT.
DLS2(config) \#vtp version 2
VTP mode already in V2.
DLS2(config) \#vlan 800
DLS2 (config-vlan) \#name NATIVA
DLS2 (config-vlan) \#exit
DLS2(config) \#vlan 434
DLS2 (config-vlan) \#name ESTACIONAMIENTO
DLS2 (config-vlan) \#exit
DLS2(config) \#vlan 12
DLS2 (config-vlan) \#name EJECUTIVOS
DLS2 (config-vlan) \#exit
DLS2 (config) \#vlan 123
DLS2 (config-vlan) \#name MANTENIMIENTO
DLS2 (config-vlan) \#exit
DLS2 (config) \#vlan 234
DLS2 (config-vlan) \#name HUESPEDES
DLS2 (config-vlan) \#exit
DLS2(config)\#vlan 1010
DLS2 (config-vlan) \#name VOZ
DLS2 (config-vlan) \#exit
DLS2 (config)\#vlan 1111
DLS2 (config-vlan) \#name VIDEONET
DLS2 (config-vlan) \#exit
DLS2 (config) \#vlan 3456
DLS2 (config-vlan) \#name ADMINISTRACION
DLS2 (config-vlan) \#exit
DLS2(config) \#

```
Ctrl+F6 to exit CLI focus
h. Suspender VLAN 434 en DLS2.
```

DLS2(config) \#vlan 434
DLS2(config-vlan) \#state suspend
% Invalid input detected at '^' marker.
DLS2(config-vlan) \#

```

Ctrl+F6 to exit CLI focus
Copy Paste
i. En DLS2, crear VLAN 567 con el nombre de CONTABILIDAD. La VLAN de CONTABILIDAD no podrá estar disponible en cualquier otro Switch de la red.
j. Configurar DLS1 como Spanning tree root para las VLAN 1, 12, 434, 800, 1010, 1111 y 3456 y como raíz secundaria para las VLAN 123 y 234.
k. Configurar DLS2 como Spanning tree root para las VLAN 123 y 234 y como una raíz secundaria para las VLAN 12, 434, 800, 1010, 1111 y 3456.
l. Configurar todos los puertos como troncales de tal forma que solamente las VLAN que se
han creado se les permitirá circular a través de éstos puertos.
```

DLS1 (config) \#
DLS1(config) \#spanning-tree vlan 1,12,434,800,1010,1111,3456 root
primary
DLSl(config) \#spanning-tree vlan 123,234 root secondary
DLSI (config) \#
DLSI (config) \#

```

Ctrl+F6 to exit CLI focus

DLS2 (config) \#
DLS2 (config) \#spanning-tree vlan 123,234 root primary
DLS2 (config) \#spanning-tree vlan \(12,434,800,1010,1111,3456\) root
secondary
DLS2 (config) \#
DLS2 (config) \#|

Ctrl+F6 to exit CLI focus

m. Configurar las siguientes interfaces como puertos de acceso, asignados a las VLAN de la siguiente manera:
\begin{tabular}{|ccccc|}
\hline Interfaz & DLS1 & DLS2 & ALS1 & ALS2 \\
\hline Interfaz Fa0/6 & 3456 & 12, & 123, & 234 \\
\hline Interfaz Fa0/15 & 1111 & 1111 & 1010 & 111 \\
\hline Interfaces F0 /16-18 & & 567 & & \\
\hline
\end{tabular}
n. Todas las interfaces que no sean utilizadas o asignadas a alguna VLAN deberán ser apagadas.
o. Configurar SVI en DLS1 y DLS2 como soporte de todas las VLAN y de enrutamiento entre las VLAN. Utilice la siguiente tabla para las asignaciones de subred:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\underset{\mathbf{N}}{\text { VLA }}
\] & \[
\begin{gathered}
\text { Nombre } \\
\text { de } \\
\text { VLAN }
\end{gathered}
\] & subred & \[
\underset{\mathbf{N}}{\text { VLA }}
\] & Nombre de VLAN & \begin{tabular}{l}
subr \\
ed
\end{tabular} \\
\hline 12 & \[
\begin{gathered}
\text { EJECUTIV } \\
\text { OS }
\end{gathered}
\] & \[
\begin{gathered}
10.0 .12 .0 / 2 \\
4
\end{gathered}
\] & 123 & MANTENIMIEN TO & \[
\begin{gathered}
10.0 .123 .0 / \\
24
\end{gathered}
\] \\
\hline 234 & \[
\begin{gathered}
\text { HUESPED } \\
\text { FS }
\end{gathered}
\] & \[
\begin{gathered}
10.0 .234 .0 / \\
24
\end{gathered}
\] & \[
\begin{gathered}
101 \\
0
\end{gathered}
\] & VOZ & \[
\begin{gathered}
\text { 10.10.10.0/ } \\
24 \\
\hline
\end{gathered}
\] \\
\hline \[
\begin{gathered}
111 \\
1
\end{gathered}
\] & VIDEONET & \[
\begin{gathered}
\text { 10.11.11.0/ } \\
24
\end{gathered}
\] & \[
\begin{gathered}
345 \\
6
\end{gathered}
\] & ADMINISTRACI
ÓN & \[
\begin{gathered}
10.34 .56 .0 / \\
24
\end{gathered}
\] \\
\hline
\end{tabular}
- DLS1 siempre utilizará la dirección . 252 y DLS2 siempre utilizará la dirección . 253 para las direcciones IPv4.
- La VLAN 567 en DLS2 no podrá ser soportada para enrutamiento.
p. Configurar una interfaz Loopback 0 en DLS1 y DLS2. Esta interfaz será configurada con la dirección IP 1.1.1.1/32 en ambos Switch.
```

DLS1 (config) \#
DLSl(config) \#interface lo0
DLS1(config-if) \#ip address 1.1.1.1 255.255.2.55.255
DLS1(config-if) \#no shutdown
DLSI (config-if) \#

```

Ctrl+F6 to exit CLI focus
Copy Paste
```

DLS2(config) \#
DLS2 (config) \#interface lo0
DLS2(config-if)\#ip address 1.1.1.1 255.255.255.255
DLS2 (config-if) \#no shutdown
DLS2 (config-if) \#exit
DLS2 (config) \#

```
q. Configurar HSRP con interfaz tracking para las VLAN 12, 123, 234, 1010, y 1111
1) Utilizar HSRP versión 2
2) Crear dos grupos HSRP, alineando VLAN 12, 1010, 1111, y 3456 para el primer grupo y las VLAN 123 y 234 para el segundo grupo.
3) DLS1 será el Switch principal de las VLAN 12, 1010, 1111, y 3456 y DLS2 será el Switch principal para las VLAN 123 y 234.
4) Utilizar la dirección virtual 254 como la dirección de Standby de todas las VLAN
r. Configurar DLS1 como un servidor DHCP para las VLAN 12, 123 y 234
1) Excluir las direcciones desde .251 hasta .254 en cada subred
2) Establecer el servidor DNS a 1.1.1.1 para los tres Pool.
3) Establecer como default-router las direcciones virtuales HSRP para cada VLAN
s. Obtener direcciones IPv4 en los host A, B, y D a través de la configuración por DHCP que fue realizada.

\section*{Part 2: conectividad de red de prueba y las opciones configuradas.}
a. Verificar la existencia de las VLAN correctas en todos los switches y la asignación de puertos troncales y de acceso
b. Verificar que el EtherChannel entre DLS1 y ALS1 está configurado correctamente
c. Verificar la configuración de Spanning tree entre DLS1 o DLS2 para cada VLAN.
d. Verificar configuraciones HSRP mediante comandos Show


\section*{CONCLUSIONES}

Todo el trabajo realizado nos demuestra el aprendizaje obtenido y el manejo de la herramienta de simulación más importante de CISCO que es Packet Tracer, donde se inició con actividades para conocer el entorno de trabajo y las herramientas que como estudiante tenemos en el momento de realizar los talleres propuestos```

