INFORME FINAL- PASANTIAS

CORPORACIÓN AUTÓNOMA REGIONAL DE CUNDINAMARCA - CAR DIRECCIÓN DE GESTIÓN DEL ORDENAMIENTO AMBIENTAL Y TERRITORIAL - DGOAT

PRESENTADO POR:

SANDRA MARLENE BARRERA MORA

Código: 1102716477

(Pasante de Ingeniería Ambiental)

Universidad Nacional Abierta y a Distancia – UNAD

Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente - ECAPMA

Programa Ingeniería Ambiental

Junio de 2018

Bogotá

INFORME FINAL- PASANTIAS

CORPORACIÓN AUTÓNOMA REGIONAL DE CUNDINAMARCA - CAR DIRECCIÓN DE GESTIÓN DEL ORDENAMIENTO AMBIENTAL Y TERRITORIAL DGOAT

SANDRA MARLENE BARRERA MORA - Código: 1102716477

(Pasante de Ingeniería Ambiental)

Trabajo de grado para optar el título de Ingeniería Ambiental

Omar Javier Ramírez

(Asesor interno UNAD)

María Cristina Reyes

(Asesor externo CAR)

Universidad Nacional Abierta y a Distancia – UNAD

Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente - ECAPMA

Programa Ingeniería Ambiental

Junio de 2018

Bogotá

TABLA DE CONTENIDO

RESU	UMEN	7
ABST	ГКАСТ	9
INTR	ODUCCIÓN	11
1.	DESCRIPCIÓN DEL TRABAJO DE LA PASANTIA	13
1.1	Descripción de la problemática de los ríos alto Suarez y negro	13
1.2	Justificación	14
2.	MARCO TEORICO	15
2.1	Objetivo general	17
2.2	Objetivo específicos	17
3.	METODOLOGIA DEL TRABAJO	18
4.	DESCRIPCION DE RESULTADOS	23
5.	CONCLUSIONES	29
6.	RECOMENDACIONES	30
7.	REFERENCIAS BIBLIOGRÁFICAS	31
8.	ANEXOS	34

LISTA DE FIGURAS

Figura 1. Localización Del Río Alto Suarez	<u>5</u>
Figura 2. Localización Del Río Negro	<u>7</u>
Figura 3. Esquema general de la metodología del trabajo	<u>8</u>
Figura 4. Esquema general de la fase de diagnóstico	<u>)</u>
Figura 5. Esquema general de la metodología para la fase de estimación de calidad del agua21	<u>1</u>
Figura6. Esquema actualización base	<u>2</u>
Figura 7. Esquema Plan de Ordenamiento de Cuencas Hidrográficas (POMCA)	<u>3</u>
Figura 8. Esquema Plan de Ordenamiento del Recurso Hídrico (PORH)	4
Figura 9. Matriz Empleada En La Recolección De Información para el diagnóstico de residuos s	sólido
cuenca Río Negro3	<u>35</u>
Figura 10. Plantilla Laboratorio CAR	<u> 36</u>
Figura 11. Base de Datos Chiquinquirá.	<u>37</u>
Figura 12. Base de Datos Ubate	38

LISTA DE TABLAS

Tabla 1. Descripción detallada de las actividades realizadas	24
--	----

TITULO

Apoyo en las actividades para la actualización del Plan de Ordenamiento de Cuencas Hidrográficas (POMCA) del río Negro y del Plan de Ordenamiento de Recursos Hídricos (PORH) del río Alto Suarez, en la jurisdicción de la Corporación Autónoma Regional (CAR).

RESUMEN

El siguiente proyecto realiza una descripción detallada de las actividades adelantadas para el cumplimiento de las funciones misionales y obligatorias de la Corporación Autónoma Regional de Cundinamarca (CAR). Específicamente se apoyó la actualización del Plan de Ordenamiento de Cuencas Hidrográficas (POMCA) y del Plan de Ordenamiento del Recurso Hídrico (PORH) dentro de la jurisdicción de Ubaté y Chiquinquirá, ubicados en el departamento de Cundinamarca, jurisdicción de la CAR.

Dentro de las fuentes hídricas priorizadas para el desarrollo metodológico se ubican dos cuencas. Por un lado, la cuenca del río Alto Suárez, ubicada en el altiplano Cundiboyascense hasta los límites con Santander, con una extensión de 238.716,8 ha, conformada por 11 cuencas de tercer orden. Dentro de la jurisdicción de la CAR tiene una extensión de 41.568 ha. Por otro lado, la cuenca del Río Negro, ubicada en el departamento de Cundinamarca dentro de la jurisdicción de las provincias de Gualivá - Magdalena Centro y Río Negro, y tiene una extensión de 444.524 ha. Estas cuencas son fuentes principales y se encuentran gravemente afectadas por las diferentes actividades económicas que se llevan a cabo en cada uno de los municipios aledaños.

Por esta razón, y en cumplimiento de los objetivos de la Ley General Ambiental de Colombia (Ley 99 de 1993)1, "Por la cual se crea el Ministerio del Medio Ambiente, se reordena el Sector Público encargado de la *gestión y conservación del medio ambiente y los recursos naturales renovables, se organiza el Sistema Nacional Ambiental, SINA y se dictan otras disposiciones*" (Ley 99, 1993).

Para la CAR fue de gran importancia el apoyo de una pasante del programa de Ingeniería Ambiental, contribuyendo con la misión institucional y el cumplimiento de los objetivos propuestos por la CAR relacionados con la conservación, el buen uso y manejo sostenible del recurso hídrico.

¹ El Congreso De Colombia, LEY 99 DE 1993 Por la cual se crea el Ministerio del Medio Ambiente, se reordena el Sector Público encargado de la gestión y conservación del medio ambiente y los recursos naturales renovables, se organiza el Sistema Nacional Ambiental, SINA y se dictan otras disposiciones.

Para el cumplimiento del desarrollo de la pasantía se estableció un plan de trabajo en el que se describieron las actividades a realizar para contribuir al alcance de metas y objetivos trazados por la CAR. Tales actividades estaban enmarcadas en la actualización del POMCA del río Negro y del PORH del río Alto Suarez. Para esto se recopiló y analizó información sobre los planes de ordenación de las cuencas con el fin de precisar ajustes y proponer soluciones al uso inadecuado del recurso hídrico en el sector, garantizando así la disponibilidad del mismo. Dentro de las actividades adelantadas fue necesario incluir componentes educacionales y de capacitación, tales como talleres de socialización, seminarios y foros, sobre la importancia y el buen uso que se le debe dar al recurso hídrico. Esto con el fin de sensibilizar a la población y contribuir al cumplimiento de los planes de ordenación del recurso hídrico. En consecuencia, se obtuvo la actualización de estos planes, aportando al mejoramiento de la utilización del recurso hídrico en los municipios que hacen parte de las cuencas de los ríos Negro y Alto Suarez.

PALABRAS CLAVES

CAR, POMCA, PORH, Cuencas, Recurso hídrico, Cundinamarca, Ordenamiento territorial.

ABSTRACT

The following project makes a detailed description of the activities carried out to fulfill the missionary and mandatory functions of the Autonomous Regional Corporation of Cundinamarca (CAR). Specifically, the updating of the Watershed Management Plan (POMCA) and the Water Resource Management Plan (PORH) within the jurisdiction of Ubaté and Chiquinquirá, located in the department of Cundinamarca, jurisdiction of the CAR, was supported.

Within the water sources prioritized for the methodological development, two basins are located. On the one hand, the basin of the Alto Suárez river, located in the Cundiboyascense highlands up to the limits with Santander, with an extension of 238,716.8 ha, made up of 11 basins of the third order. Within the jurisdiction of the CAR it has an extension of 41,568 ha. On the other hand, the Río Negro basin, located in the department of Cundinamarca within the jurisdiction of the provinces of Gualivá - Magdalena Centro and Río Negro, and has an area of 444,524 ha. These basins are main sources and are severely affected by the different economic activities that are carried out in each of the surrounding municipalities.

For this reason, and in compliance with the objectives of the General Environmental Law of Colombia (Law 99 of 1993), "By which the Ministry of the Environment is created, the Public Sector in charge of the management and conservation of the environment is reordered and renewable natural resources, the National Environmental System, SINA is organized and other provisions are issued "(Law 99, 1993).

For the CAR, the support of an intern in the Environmental Engineering program was of great importance, contributing with the institutional mission and the fulfillment of the objectives proposed by the CAR related to the conservation, good use and sustainable management of the water resource.

To fulfill the development of the internship, a work plan was established in which the activities to be carried out were described in order to contribute to the achievement of goals and objectives set by the CAR. Such activities were framed in the updating of the POMCA of the Negro River and the PORH of the Alto Suarez River. For this purpose, information on watershed management plans was compiled and analyzed in order to specify adjustments and propose solutions to the

inappropriate use of water resources in the sector, thus guaranteeing the availability of the same. Among the activities carried out, it was necessary to include educational and training components, such as socialization workshops, seminars and forums, on the importance and good use that should be given to water resources. This in order to sensitize the population and contribute to the fulfillment of the water resources management plans. As a result, the updating of these plans was obtained, contributing to the improvement of the use of water resources in the municipalities that are part of the basins of the Negro and Alto Suarez rivers.

KEYWORDS

CAR, POMCA, PORH, Watershed, Water resources, Cundinamarca, Territorial planning.

INTRODUCCIÓN

En el presente informe se mostrarán los resultados obtenidos durante el desarrollo de la pasantía realizada como opción de grado para obtener el título de Ingeniero Ambiental de la Universidad Nacional Abierta y a Distancia (UNAD). Esto, gracias al convenio vigente con la Corporación Autónoma Regional de Cundinamarca (CAR) con el fin de que el estudiante ponga en práctica sus conocimientos y habilidades, actualizando y fortaleciendo sus competencias, estableciendo redes de cooperación interinstitucional nacional e internacional, fortaleciendo así su formación integral.

El tema de la pasantía se basó principalmente en el apoyo de las actividades para la actualización del POMCA del río Negro y del PORH del río alto Suarez en la jurisdicción de la CAR. Un POMCA es, según el decreto 1640 de 2012, artículo 18, un "instrumento mediante el cual se realiza la planeación del uso coordinado del suelo, de las aguas, la flora y la fauna y el manejo de la cuenca entendido como la ejecución de obras y tratamientos, con el fin de mantener un equilibrio entre lo social y lo económico de tales recursos, de igual forma conservar la estructura físico-biótica y en especial el recurso hídrico" (DECRETO 1640, 2012).

Teniendo en cuenta lo anterior, uno de los principales objetivos del POMCA y PORH es prevenir y mitigar las emergencias ambientales para proteger y conservar los sistemas naturales y los procesos hidrológicos de los que depende la oferta de agua, aportando sostenibilidad a los territorios para garantizar la oferta hídrica en su jurisdicción. Por ello, el gobierno nacional, a través del Ministerio de Ambiente y Desarrollo Sostenible (MADS), publicó el decreto No. 1640 de 2012, "por medio del cual se reglamentan los instrumentos para la planificación, ordenación y manejo de las cuencas hidrográficas y acuíferos". POMCA- (Sarmiento Villamizar L, Veira S. Pablo, & Pineda G. Claudia P, 2014) y el decreto No. 3930 del 25 de octubre del 2010, el cual consolida la necesidad y pertinencia de formular planes de ordenamiento del recurso hídrico – PORH- (MinAmbiente & Gabriel, Guía Técnica Para La Formulación De Los Planes De Ordenamiento Del Recurso Hidrico, 2014).

El Decreto No. 1640, específicamente en el Título VI, define el régimen de transición que incluye algunas características que la CAR deben actualizar dentro de su jurisdicción, teniendo

en cuenta el marco normativo y técnico que formuló el MADS dentro de un eje programático en un plazo de cinco (5) años (Santos C. Juan M, & MinAmbiente, 2 de agosto de 2012.). En este se incorporan los planes de ordenamiento de cuencas, el ordenamiento territorial, la gestión ambiental y la gestión del riesgo teniendo un diagnóstico económico, biofísico y socio-ambiental, el cual consiste en evaluar las áreas susceptibles al riesgo por inundación, deslizamiento, remoción en masa, etc. que antes no existían (Bello Z, 2013).

Cabe resaltar, que el POMCA se desarrolla en seis fases: aprestamiento, diagnóstico, prospectiva y zonificación ambiental, formulación, ejecución, seguimiento y control. Este plan es financiado con recursos del Fondo de Adaptación del Ministerio de Hacienda y Crédito Público (El Diario Boyacá, 2017).

Para el PORH, el decreto No. 3930 se refiere al numeral 4 del artículo 8 el cual incluye el desarrollo de directrices de planificación y orientación de la administración para el control y vigilancia del recurso hídrico realizado dentro de un rango de 10 años siguientes a su aprobación. Este es emitido por el MADS teniendo en cuenta cuatro fases: declaratoria, diagnóstico, identificación de usos potenciales y elaboración del plan de ordenamiento. (MinAmbiente & Gabriel, Guía Técnica Para La Formulación De Los Planes De Ordenamiento Del Recurso Hidrico, 2014).

1. DESCRIPCIÓN DEL TRABAJO DE LA PASANTIA

1.1 Descripción de la problemática de los ríos alto Suarez y negro

En Colombia existen diferentes problemáticas ambientales que afectan las cuencas hidrográficas, derivadas de diferentes causas. Una de ellas es la minería ilegal causante del vertimiento de residuos del tratamiento con mercurio en las fuentes hídricas, causando daños al medio ambiente. Otras afectaciones importantes que perjudican las fuentes hídricas provienen de la deforestación, el sector ganadero, el sector agrícola y la falta de tratamiento de aguas residuales urbanas. Estas actividades generan contaminación, vulnerabilidad al desabastecimiento, acumulación de sedimentos, pérdida de biodiversidad, crecimiento poblacional y afectaciones sanitarias en las comunidades que habitan las zonas aledañas a las fuentes hídricas (*MinAmbiente & Vallejo L. Gabriel*, 8/11/2015).

En consecuencia, Colombia ha realizado estudios nacionales del agua para evaluar el rendimiento hídrico. Estos estudios han sido liderados por el Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) y el MADS. Como resultado se ha obtenido un marco sobre el deterioro ambiental, con el propósito de prevenir la degradación de la fauna, flora y ecosistemas, así como promover el tratamiento de aguas residuales (*MinAmbiente & Vallejo L. Gabriel*, 8/11/2015).

Así mismo, se ha evidenciado el déficit que existe entre el uso y la conservación de los recursos naturales renovables para la posibilidad de su recuperación, es decir, incluyendo el desarrollo socio-económico ambiental de las comunidades y a su vez el baluarte para el mantenimiento de las funciones ecosistemáticas y la preservación de la biodiversidad. (*Urcuqui B., 2011*).

De acuerdo a lo anterior, en los departamentos cundiboyascense (Cundinamarca y Boyacá) se presenta una problemática ambiental en las cuencas del Río Alto Suarez y Río Negro. Una de ellas hace referencia a los componentes y la calidad del agua por vertimientos líquidos de las actividades que se desarrollan en el sector, tales como ganadería, minería, agricultura, lo industrial y doméstico, además de las condiciones de saneamiento que de alguna manera han perjudicado de forma físico-química el recurso hídrico siendo una amenaza potencial para la alteración de la calidad del agua.

Es por ello que se hace necesaria la formulación de Planes de Ordenamiento de Cuencas Hidrográficas y de recursos hídricos, así mismo su constante actualización con el propósito de mantener el equilibrio entre el aprovechamiento social y el aprovechamiento económico de tales recursos, así como la conservación de la estructura físico -biótica de la cuenca y particularmente del recurso hídrico. Siguiendo lo establecido por el Ministerio de Ambiente y Desarrollo sostenible, en la Guía Técnica para la elaboración de los POMCA, expedida en diciembre de 2013, cuya coordinación para la elaboración estuvo a cargo de la Dirección de Gestión Integral de Recurso Hídrico.

1.2 Justificación

El agua es un recurso natural de gran importancia que satisface las necesidades básicas del ser humano para el desarrollo de las actividades diarias como la producción de alimentos y el mantenimiento de los ecosistemas del planeta. Además de ser una fuente de riqueza es el principal regularizador de los ecosistemas naturales es por ello que el uso inadecuado de la misma compromete su disponibilidad siendo irreversible para su recuperación.

Con lo anterior se deduce que para los municipios que hacen parte de las cuencas de los ríos Alto Suarez y Negro son fuentes principales para su abastecimiento convirtiéndose en una prioridad tanto para las comunidades como para las entidades que se benefician de este valioso recurso. Debido a ello la CAR tiene como objetivo principal el asesorar, proponer, formular y promover las políticas, planes, y estrategias para la conservación, planificación y ordenamiento integral ambiental de las cuencas hidrográficas de la jurisdicción, con énfasis en acciones relacionadas con la gestión del riesgo y del cambio climático, que permitan su incorporación en los instrumentos de planificación territorial para el ejercicio de la autoridad ambiental en el territorio (Reyes, M.C.- Cubillos, R. – Carantón, G.E. - Celis, Agosto 2016.).

En las cuencas hidrográficas del Río Suarez y Río Negro la CAR realiza procesos de recuperación, protección, y conservación, en el territorio, debido a la contaminación ocasionada por las diferentes actividades industriales, agrícolas y de uso doméstico aplicando tratamientos adecuados a las fuentes hídricas. Por ende, se hace necesaria la ejecución de instrumentos de planificación como el PORH y el POMCA con el fin de planificar y coordinar actividades y

proyectos que encaminen iniciativas para el mejoramiento y la conservación de los recursos naturales y, de esta forma, mejorar la forma de aprovechamiento creando un equilibrio socio-ambiental.

Por ello, es de importancia para la CAR realizar una recuperación de las cuencas hidrográficas de los ríos Suarez y Negro, ya que están recibiendo el impacto del acelerado crecimiento de las ciudades, lo que repercute en un deterioro de la calidad del agua y limita su disponibilidad para su aprovechamiento. Como respuesta a esto, se aplican las estrategias del PORH y el POMCA, los cuales permiten analizar la calidad y cantidad del agua, en un marco de sostenibilidad del recurso hídrico para las comunidades (Reyes, M.C.- Cubillos, R. – Carantón, G.E. - Celis, Agosto 2016.)

2. MARCO TEORICO

El río Alto Suarez se encuentra ubicado en el departamento de Boyacá y es la cuarta cuenca de tercer orden de las once que conforman la cuenca de los ríos Suarez y Ubaté, siendo de gran importancia para la planificación del territorio que se abastece de sus recursos y se convierte en eje estructurante de cualquier intervención. Su extensión es de 41.568 hectáreas, constituyendo el 24% del área total de la cuenca, 21% del área de estudio y el 2.22% del área total de la jurisdicción de la CAR. Dentro de su área está ubicada la cabecera municipal de Saboya y ciertas veredas de sus municipios: Chiquinquirá, San Miguel de Sema, Simijaca y Susa. La parte de cada uno de los municipios que conforman la cuenca está dividida así: 53% del municipio de Chiquinquirá, Saboya el 91%, San Miguel de Sema el 64%, Simijaca el 21% y Susa con el 13% (CAR & Plan de Ordenamiento de la Cuenca de los Ríos Ubat, 2006).

Su superficie está dividida en cuatro zonas climáticas determinantes en la distribución de especies de fauna y flora. Estas zonas se distribuyen de la siguiente manera: piso frío semihúmedo 80%, piso de páramo bajo semihúmedo 10%, piso frío semiárido 5% y piso frío húmedo 5%. Teniendo en cuenta lo anterior, este río:

- Atraviesa cerca de tres departamentos y entrega sus aguas en el oriente del país.
- Tiene una zona de regulación hídrica debido a su distribución morfológica, lo que lo hace un importante interceptor de los vientos que entran desde la zona nororiental del país.

- > Tiene un buen desarrollo a nivel agrológico.
- Está ubicado en una cuenca que es portante estratégica en su conjunto, teniendo en cuenta su división macro regional.

La delimitación de la cuenca, es: limita al sur con la subcuenta río Chiquinquirá, al norte con el municipio de Albania y el puente Nacional Santander, al oriente con el municipio de tinjaca y al occidente con el municipio de Briceño y Albania. Se localiza al occidente del departamento de Boyacá y al norte de la cuenca de los ríos Ubaté y Suárez, tal como se muestra en la Figura No. 1 (CAR & Plan de Ordenamiento de la Cuenca de los Ríos Ubat, 2006).

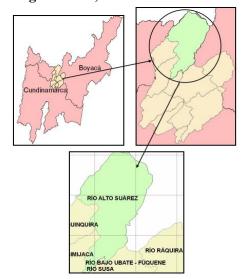


Figura No. 1, Localización del Río Alto Suarez

Fuente: Corporación autónoma Regional de Cundinamarca, CAR, (2006)

Por otro lado, el río Negro es una de las cuencas de segundo orden que hace parte de las nueve que están dentro de la jurisdicción de la CAR. Se ubica al noroccidente del departamento de Cundinamarca dentro de la jurisdicción de las provincias de Gualivá - Magdalena Centro y Río Negro, con una extensión de 444.524 ha. Su nacimiento es en el municipio de Pacho.

Esta cuenca es de gran importancia ya que abastece agua a 23 municipios: Yacopi, La palma, Topaipi, Villagómez, El peñón, Pacho, La peña, Utica, Nimaima, Vergara, Quebrada Negra, Nocaima, Supata, Villeta, La vega, Albán, Caparrapi, guaduas, Puerto Salgar, Bituima, Viani,

Guayabal de Siquima, el Rosal, Puerto Boyacá, Quipama, Otanche y la Victoria. Sus aguas benefician un sector del municipio de Fómeque.

El clima en esta zona se divide en: frío húmedo, frío húmedo y seco, medio húmedo. Es una zona con alto poder de captación de aguas lluvias, índices de escurrimiento altos y procesos erosivos moderados. Se requiere de intensas prácticas de manejo para disminuir la erosión, regular los índices de escurrimiento y evitar eventuales desbordes del río Negro y sus afluentes menores. Su extensión aproximada es de 30.603.4 ha, las cuales pertenecen al 12.1% de la subcuenta del río Meta, tal como se muestra en la Figura No. 2 (Carlos E. Castro M., 2000).

Figura No. 2, Localización del Río Negro

Fuente: Corporación Autónoma Regional de Cundinamarca, CAR (2000)

2.1 Objetivo general

Prestar apoyo a cada una de las actividades establecidas para la actualización del POMCA del río Negro y PORH del río Alto Suarez, en la jurisdicción de la Corporación Autónoma Regional de Cundinamarca.

2.2 Objetivo específicos

-Analizar los diferentes factores ambientales de la cuenca del río Alto Suarez que tienen incidencia en la calidad del agua y deben ser considerados dentro de los procesos del PORH.

-Implementar actividades definidas en la guía técnica del POMCA para el componente de calidad del agua del río Negro.

- -Recolectar información primaria y secundaria de cada una de las cuencas para la actualización de los respectivos planes de ordenamiento del recurso hídrico.
- -Colocar en práctica los conocimientos adquiridos durante cada período de estudio, fortaleciendo las competencias y habilidades profesionales del estudiante.

3. METODOLOGIA DEL TRABAJO

Con el fin de lograr los objetivos del presente proyecto, se realizó un esquema para la metodología, la cual conforma una serie de procesos de acuerdo a lo estipulado en las guías técnicas para la formulación de POMCAS y PORH expedidas por el MADS (Figura No. 3).

Revisión de la información
(Guías Técnicas) POMCA Y
PORH

Actualización Base de datos acueductos rio Alto Suarez

Diagnóstico de residuos solidos

Actualización Base de de agua POMCA del rio Negro.

Figura No. 3, Esquema general de la metodología del trabajo

Fuente: Elaboración propia, 2018

- Revisión de la información (Guías Técnicas) POMCA y PORH

Se inició con un reconocimiento de las guías técnicas para la actualización del POMCA del río Negro y del PORH del río alto Suarez, instrumentos de planificación expedidos por el MADS. Después de revisar minuciosamente los documentos mencionados y de haber recibido instrucciones por parte de los profesionales encargados del tema sobre cómo funcionan los planes de ordenamiento del recurso hídrico y por qué se formulan, se inició con el desarrollo de las diferentes actividades relacionadas con el plan de trabajo, el cual fue realizado con anterioridad.

Previa consulta de la Guía técnica para la formulación de POMCAS, se identificó la información relevante que se debía gestionar para avanzar con el desarrollo de las actividades. La información identificada y gestionada se limitó a aquella generada por la CAR, la cual se considera que es la básica para dar alcance a la caracterización de la cuenca en términos de calidad del recurso hídrico.

Haciendo referencia a la actualización del POMCA del río Negro, cuyo proyecto fue con el que se inició debido a su prioridad, las actividades fueron divididas en el grupo de profesionales encargados del proyecto.

Finalmente se generó un esquema de la guía técnica para la formulación del POMCA y otro para el PORH con el fin de comprender su funcionalidad e importancia en la actualización de los mismos. (*Ver anexo N.1*)

- Recopilación de la información para el diagnóstico

Se acudió a las bases de datos y plataformas propias de la CAR, tales como los planes de gestión integral de residuos sólidos (PGIRS) de cada uno de los municipios, en los cuales se evidencia el estado actual de los mismos.

Para acceder a esta información se visitó al área de Evaluación, seguimiento y control junto con el coordinador del PGIRS, permitiendo el acceso a la información. También se utilizó información del RAS (Reglamento técnico de Agua y Saneamiento) debido a que algunos municipios no reportaron información suficiente sobre la generación de residuos sólidos y su manejo, por esto se hizo necesaria la información de los datos típicos para este caso y así sacar un diagnóstico aproximado del estado actual de dicho municipio. Lo anterior se realizó durante el tiempo que se llevó a cabo la fase del diagnóstico.

A continuación, se presenta el procedimiento para la recopilación de la información (*Figura No. 4*).

Figura No. 4, Esquema de la fase del diagnóstico

Fuente: Elaboración propia, 2018

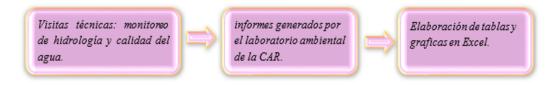
Diagnóstico de los residuos sólidos generados en la cuenca del río Negro

Se utilizó la información recopilada de las diferentes bases de datos propias de la CAR. El documento se hizo dividiendo la zona rural y urbana para determinar la cantidad de residuos generados, su aprovechamiento, manejo y disposición final, dando un diagnóstico más detallado de la situación actual.

Para analizar el aprovechamiento de los residuos en cada uno de los municipios de la cuenca del río Negro, se recolectó información de los PGIRS de los municipios que conforman esta cuenca, haciendo una caracterización de cada uno de los municipios que la componen y así determinar la forma en que los aprovechan.

Finalmente se hizo la descripción de la disposición final identificando el relleno sanitario en donde disponen los residuos generados en cada uno de los municipios de la cuenca y la cantidad dispuesta en toneladas mensualmente. Con el fin de mostrar los datos de una forma más detallada y con una mejor perspectiva se realizaron tablas y gráficas. (*Ver anexo N.2*)

Para analizar los datos se hizo una matriz en formato Excel para reunir la información más relevante con el propósito de hacer un diagnóstico de los residuos. Los datos se obtuvieron de los


PGIRS, y se relacionan con la cobertura del servicio para la población urbana y rural, número de habitantes y número de usuarios del sistema, cantidad de residuos sólidos generados al mes, caracterización de los residuos, sistema de aprovechamiento (reciclaje, compostaje) y sistema de disposición final de cada municipio (*Ver figura N.9*).

Estimación del índice de Calidad del Agua (ICA)

En esta etapa se realizaron actividades de apoyo para la selección, recolección y digitalización de información, la cual fue extraída directamente de los archivos proporcionados por el laboratorio de la CAR (plantillas en formato PDF). (Ver figura N.10). También se apoyó en la elaboración de tablas y gráficas en Excel con la información requerida para tal fin. Esta parte se realizó teniendo en cuenta la información suministrada directamente por el laboratorio de la CAR la cual es recolectada en los monitores de hidrología y calidad de agua realizados en las visitas técnicas por los profesionales encargados del tema. (Ver anexo N.3)

A continuación, se muestra el proceso para la recolección de información en la fase de estimación de calidad de agua ICA (*Figura No. 5*).

Figura No. 5, Esquema general de la metodología para la fase de estimación de la Calidad del Agua

Fuente: Elaboración propia, 2018

Actualización componente de calidad de agua POMCA del Río Negro

Los datos utilizados en esta actividad fueron los mismos que se describieron en la fase de recopilación de información, generando un documento en formato Word en donde se organizó toda la información para un diagnóstico de calidad de agua. (*Ver anexo N.4*)

Teniendo la parte del diagnóstico de los residuos y la estimación del ICA, se describió detalladamente el componente para la calidad del agua de la cuenca del río Negro, el cual define sus alcances de acuerdo a lo establecido en la Guía Técnica para la formulación de Planes de

Ordenación y Manejo de Cuencas Hidrográficas, formulada por el MADS y toma como referencia metodológica la establecida en el Estudio Nacional del Agua – 2010 y los Lineamientos Conceptuales y Metodológicos para la Evaluación Regional del Agua – ERAS 2013, formulados por el IDEAM.

Actualización de la base de datos de los acueductos asociados a la cuenca del río Alto Suarez

Esta fase tuvo como objetivo refinar la información existente tomándola directamente de los expedientes pertenecientes a las concesiones de aguas subterráneas y superficiales vigentes y no vigentes otorgadas por la Corporación, Planes de Ahorro y uso Eficiente del Agua y expedientes de vertimientos.

Se realizó una nueva base de datos en Excel para los municipios de Ubaté y Chiquinquirá, la cual se hizo filtrando la información actual por número de expediente y comparándolas con la información de las plataformas que maneja la CAR, como lo son el Sistema de Administración de Expedientes (SAE) y el Sistema de Información del Recurso Hídrico (SIRH). Esto con el fin de identificar a cada usuario y su punto de captación para su posterior legalización de acuerdo con la normatividad ambiental vigente. De esta forma se apoyaron las actividades del censo de usuarios que se realizará en los municipios que hacen parte de la cuenca del río Alto Suarez (Chiquinquirá y Ubaté) en los próximos meses por los profesionales encargados.

Las bases de datos fueron realizadas en formato Excel y la información que se filtró y comparó fueron las veredas, municipios y coordenadas con el fin de determinar si estos predios están o no dentro de la unidad hidrográfica. (*Ver anexo N. 5*)

Seguidamente se muestra el proceso (Figura No. 6).

Figura No. 6, Esquema actualización de la base de datos

Fuente: Elaboración propia, 2018

4. DESCRIPCION DE RESULTADOS

ANEXOS Teniendo en cuenta la metodología y lo que se hizo en cada actividad se describen los resultados obtenidos.

En la revisión y recopilación de información se logró analizar más a fondo lo que conlleva actualizar un plan de ordenamiento de cuencas y la importancia de ejecutarlo, ya que estos planes son la principal herramienta en la planificación y ordenación del recurso hídrico para garantizar su conservación y disponibilidad. Con la actualización de estos documentos se logra involucrar a la población que está involucrada por estar ubicada en zonas aledañas a estas fuentes hídricas, permitiendo su participación en estos proyectos. Esto les será de gran beneficio para continuar con sus actividades diarias y, al mismo tiempo, contribuir con el cuidado y conservación del agua.

En el diagnóstico de residuos sólidos se evidenció que los municipios que hacen parte de estas cuencas no tienen un control adecuado de la recolección, manejo y disposición final de sus residuos, lo que conlleva a que la calidad del agua de los ríos Negro y Suarez no sea la adecuada. Por esto es de gran importancia la actualización y aplicación de los planes POMCA y PORH con el fin de recuperar la calidad, cantidad y disponibilidad del recurso hídrico en la zona.

En las socializaciones se observó que la mayoría de población no tenía gran conocimiento sobre los planes de conservación y otros desconocían las metas y objetivos que tiene la CAR con los mismos. Pero a medida que se fue capacitando la población se evidenció el interés por involucrarse y contribuir con el cuidado de las cuencas, logrando cambios exitosos por parte de los empresarios dedicados al reciclaje, a partir del reúso de productos, subproductos derivados de las diferentes industrias y el buen manejo que han logrado dar a sus procesos para el buen uso y conservación del recurso hídrico.

Las actividades de socialización tuvieron gran participación de la población colaborando activamente y se mostró interés en seguir creando e implementando prácticas de producción más limpia en sus empresas, como también emplear planes de recolección, manejo y disposición final de sus residuos para disminuir la contaminación de los ríos y la protección del medio ambiente.

Tabla No. 1, Descripción detallada de las actividades realizadas

Actividades Proyectadas	Resultados	% de Cumplimiento	Productos Obtenidos
1. Revisión de las guías técnicas para la actualización del POMCA del río Negro y PORH del río Alto Suarez	Como resultado se obtiene un diagrama con cada una de las fases del POMCA y PORH evidenciando el proceso que se debe tener en cuenta para la formulación de estos planes.	100%	Ver anexo # 1
2. Diagnóstico de los residuos sólidos generados en la cuenca del río Negro	Se generó un documento con el diagnóstico actual de los residuos sólidos para la cuenca del río Negro en las zonas rural y urbana, reflejando el estado actual de la cuenca en cuanto a la problemática de residuos sólidos en el sector y la magnitud en la que se están afectando las fuentes hídricas. En este se describiendo los tipos de residuos generados y su clasificación.	100%	Ver anexo # 2
	El municipio que generó la mayor cantidad de residuos sólidos en la parte urbana fue Villeta con 834,28 ton/mes. Por otro lado, se encontró que el tipo de residuo con mayor producción en los municipios de la cuenca del río Negro fueron los de tipo orgánico, seguido por los llamados "otros", después plástico, metales, papel, cartón y por último el vidrio en menor cantidad. Con lo anterior se determinó que los usuarios que		

del Agua (ICA)	calidad de agua de la cuenca del Río Negro, los cuales son: Conductividad, Demanda		#3
Índice de Calidad	parámetros fisicoquímicos más relevantes para	100%	Ver anexo
3. Estimación del	La información que se tuvo en cuenta fueron los	100-	••
	documento completo, ver el anexo 2.		
	Nota: si el lector está interesado en ver el		
	implementación el programa piloto para tal fin.		
	aprovechamiento o se encuentran en proceso de		
	tienen implementando un programa de		
	aprovechamiento y esto es debido a que aún no		
	reportan información respecto al		
	Caparrapi, guaduas, Puerto Salgar y Viani no		
	Nocaima, Supata, Villeta, La Vega, Albán,		
	Utica, Nimaima, Vergara, Quebrada Negra,		
	También se observó que los municipios La peña,		
	Guayabal de Siquima con 1,549 ton/mes.		
	28,5 ton/mes y el que menos aprovecha es		
	tiene mayor aprovechamiento es Yacopi con		
	En conclusión se observó que el municipio que		
	quemados o en su defecto enterrados.		
	por lo que estos son arrojados a campo abierto,		
	no se hace recolección de los residuos sólidos,		
	del PGIRS, en la zona rural de estos municipios		
	con 160 ton/mes ya que, según la información		
	reportó información el municipio de Vergara		
	reportan 6,89 ton/mes. La parte rural solo		
	Para los municipios de Yacopí y la palma se		
	tipo residencial, con base a la información impuesta en los PGIRS de cada municipio.		
	·		
	mayor cantidad de residuos generan son los de		

Bioquímica de Oxigeno (DBO), Demanda Química de Oxigeno (DQO), Fosforo total (P) Nitrógeno total (N), Oxígeno Disuelto (OD), pH, sólidos suspendidos, sólidos totales, Coliformes fecales, Coliformes totales y temperatura), todos ellos obtenidos por el personal especializado del laboratorio de la CAR mediante los monitoreos realizados a las fuentes hídricas.

El monitoreo se realizó en diferentes puntos del río y el total de puntos de monitoreo habilitados para estimar el Índice de Calidad del Agua para el año 2017 semestre I (33), 3% (1 punto) se encuentra en el rango aceptable, 42% (14 puntos) en el rango regular y 55% (18 puntos) en el rango malo.

Según resultado de la estimación del ICA en cada punto, la calidad del agua se encuentra en su mayoría en el rango regular y con tendencia al rango aceptable. No obstante, los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción del parámetro de Coliformes Fecales, determinante para el uso del agua.

Como resultado de estos cálculos se observa que la calidad del agua en la cuenca del río Negro en general es regular.

			- 7
4. Actualización	Se obtuvo el documento final de calidad de agua		Ver anexo
Componente de	para el POMCA del río Negro, al cual se agregó		# 4
Calidad de agua	el diagnóstico realizado en la fase anterior junto		
POMCA del río	con los cálculos y resultados para el índice de		
Negro.	calidad del agua.		
	En este documento se describen los aspectos		
	fisicoquímicos generales sobre el estado en el		
	que se encuentra la calidad del agua del Río		
	Negro, tales como: turbiedad, sólidos solubles e		
	insolubles, color, olor y sabor, temperatura y pH.		
	Nota: si el lector está interesado en ver el		
	documento completo, ver el anexo 4.		
5. Actualización de	Como resultado se obtiene una base de datos en		
la base de datos de	donde se muestran los últimos datos	100%	Ver anexo
los acueductos	actualizados para Chiquinquirá y Ubaté. En		# 5
asociados a la	estas se encuentran los usuarios que están dentro		
cuenca del río alto	de la unidad Hidrográfica para los siguientes		
Suarez.	municipios:		
	Chiquinquirá: 499 usuarios, de los cuales 89		
	son del SAE y los otros 410 del SIRH, estos se		
	encuentran diferenciados por color en donde el		
	amarillo son los del SAE y el verde		
	corresponden al SIRH.		
	Ubaté: En la base de datos de Ubaté se		
	encuentran 34 usuarios, pero solo uno de ellos		
	está dentro de la unidad hidrográfica (expediente		
	19430) los otros están por fuera y todos los		

expedientes corresponden al SAE. El color naranja indica las coordenadas corregidas de acuerdo con las que están en el SAE, el color amarillo son las veredas corregidas, el verde claro todos los datos que corresponden al SAE y el verde oscuro es el expediente que se encuentra dentro de la unidad.

Para concluir, se tienen 499 usuarios dentro de la unidad para el municipio de Chiquinquirá (89 del SAE - 410 del SIRH) y 1 usuario para el municipio de Ubaté dentro de la unidad hidrográfica, los demás están por fuera.

Fuente: Elaboración propia, 2018

5. CONCLUSIONES

Teniendo en cuenta la normatividad ambiental nacional y las Guías Técnicas para la actualización de los planes de ordenación del recurso hídrico se analizaron diferentes factores ambientales de la cuenca del río Alto Suarez, encontrando que hay incidencia en la calidad del agua, por lo cual es considerada dentro de los procesos del PORH.

Se elaboró el diagnóstico de los residuos sólidos generados por los municipios que conforman la cuenca del río Negro, con el fin de evidenciar el estado actual de la situación y, de esta forma, buscar soluciones por medio de estrategias que conlleven al mejoramiento de la calidad del recurso hídrico, garantizando su disponibilidad.

Se hicieron las gestiones y actividades pertinentes en cuanto a la recolección de la información necesaria para la actualización de los planes de ordenación del recurso hídrico siguiendo las Guías Técnicas expedidas por la CAR y el MADS.

El desarrollo de la pasantía fue de gran importancia ya que permitió medir los conocimientos adquiridos en el transcurso de cada período académico y, de igual forma, se adquirieron otros nuevos gracias a las inducciones y asesoramiento por parte de los profesionales de la CAR que hicieron parte del proceso de formación durante la pasantía.

6. RECOMENDACIONES

Teniendo en cuenta que las comunidades aledañas a los ríos Negro y Alto Suarez son los principales actores en el proceso de recuperación de estas fuentes hídricas, se recomienda que la autoridad ambiental regional organice e implemente estrategias que contribuyan con el cuidado y la conservación del recurso hídrico. Por ejemplo, ofertando cursos regionales de capacitación a la población en temas relacionados con el buen uso y el tratamiento de aguas, utilizando recursos humanos regionales y metodologías apropiadas con el fin de crear más sensibilización y cultura de educación ambiental. De esta forma, la CAR tendrá más apoyo de la comunidad en cada uno de los proyectos de recuperación del medio ambiente.

Por otro lado, es de gran importancia promover más medidas de ahorro y uso eficiente del agua, tales como: instalación de tecnologías ahorradoras de fácil instalación y bajo costo, reemplazar las unidades sanitarias de mayor uso por tecnologías ahorradoras, utilizar aguas lluvia para el riego de cultivos y espacios verdes. Esto debe hacerse promoviendo la participación de toda comunidad.

7. REFERENCIAS BIBLIOGRÁFICAS

- Bello Z, G. C. (2013). *Actualizacion Pomca*. Bogotá D.C: Ministerio De Ambiente Y Desarrollo Sostenible.
- CAR, & Plan de Ordenamiento de la Cuenca de los Ríos Ubat. (2006). *Cuenca Río Alto Suárez* 2401-10. Bogotá D.C.: Lagunas Oxidación Saboyá, Ambiotec. Recuperado de https://www.car.gov.co/uploads/files/5ac694dfa1c76.pdf
- CAR, Corporación Autónoma Regional de Cundinamarca (2018). Recuperado de http://www.car.gov.co/tools/marco.php?idcategoria=21705
- CAR,(2000) Mapa Localizacion Rio Negro. Recuperado de https://www.car.gov.co/uploads/files/5ac67a04544fd.pdf
- CAR,(2006) Mapa Localizacion Rio Alto Suarez. Recuperado de https://www.car.gov.co/uploads/files/5ac694dfa1c76.pdf
- CAR, Corporación Autónoma Regional de Cundinamarca. Plantilla Laboratorio (2016) (Formato en PDF)
- Carlos E. Castro M. (2000). Análisis De Las Cuencas Hidrográficas. Bogotá D.C. Recuperado de ftp://ftp.ciat.cgiar.org/DAPA/users/apantoja/london/Colombia/Suelos/00_shape_suelos/D EPARTAMENTALES_2011_Brayan_Silvia/CUNDINAMARCA/Memoria%20Tecnica/TOMO3CAP7.pdf
- El Diarío Boyacá. (9 de marzo de 2017). EL DIARÍO. POMCA: herramienta clave para la planificación ambiental del territorío boyacense, pág. 1. Recuperado de https://www.periodicoeldiario.com/2017/03/09/pomca-herramienta-clave-para-la-planificacion-ambiental-del-territorio-boyacense/
- LEY 99 DE 1993 (Diciembre 22). Ley general ambiental de Colombia. Recuperado de http://www.oas.org/dsd/fida/laws/legislation/colombia/colombia_99-93.pdf
- MINAMBIENTE, & Vallejo L. Gabriel. (8/11/2015). Mercurio en fuentes de agua, un problema "complejo" en Colombia. *SEMANA*, 1. Recuperado de

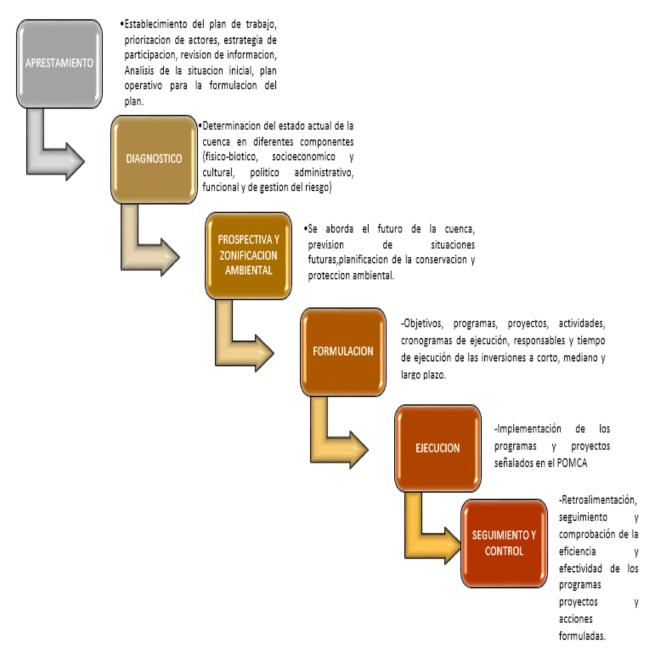
- https://www.semana.com/nacion/articulo/mercurio-en-fuentes-de-agua-un-problema-complejo-en-colombia/438218-3
- MINIAMBIENTE, & Vallejo L Gabriel. (2014). Guía Técnica Para La Formulación De Los Planes

 De Ordenamiento Del Recurso Hidrico PORH. Bogotá D,C.: MINAMBIENTE.

 Recuperado de http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Plan-de-ordenamiento-del-Recurso-Hidrico/GUIA_TECNICA_PORH.pdf
- MINAMBIENTE (2014) Guía técnica para la formulación del plan de ordenación y Manejo de la Cuenca Hidrográfica POMCAS. Recuperado de http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Gu%C3%ADa_POMCAs/1._Gu%C3%ADa_T%C3%A9cnica_pomcas.pdf
- MINAMBIENTE (2014) Esquema fases para la formulación del PORH. Recuperado de http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Plan-de-ordenamiento-del-Recurso-Hidrico/GUIA_TECNICA_PORH.pdf
- Revista Ingeniería Universidad De Medellín. (2011) Una Metodología Para La Formulación De Planes De Ordenamiento Del Recurso Hidrico. Recuperado de http://revistas.udem.edu.co/index.php/ingenierias/article/viewFile/442/400
- Reyes, M.C.- Cubillos, R. Carantón, G.E. Celis. (Agosto 2016.). *Estudios Técnicos, Para La Evaluación Y Príorización De Los Cuerpos De Agua Objeto A Ordenación Del Recurso Hídrico Porh.* Corporación Autónoma regional de Cundinamarca CAR,.
- Santos C, J. M. (2012 Agosto 2). *DECRETO 1640 DE 2012*. Bogotá, D. C: El Ministro de Ambiente y Desarrollo Sostenible,. Recuperado de http://www.ideam.gov.co/documents/24189/389196/34.+DECRETO+1640+DE+2012.pd f/16c0bbbb-644a-4a96-9c9d-b0edcbce50aa?version=1.1
- Sarmiento Villamizar L, Veira S. Pablo, & Pineda G. Claudia P. (2014). *Guía Técnica Para La Formulación De Los Planes De Ordenación Y Manejo De Cuencas Hidrográficas POMCAS*. Bogotá D,C.: Ministerio De Ambiente y Desarrollo Sostenible. Recuperado de

 $http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Gu\%C3\% ADa_POMCAs/1._Gu\%C3\% ADa_T\%C3\% A9cnica_pomcas.pdf$

UNAD. Carreño Gamboa F. (2017) Repositorío institucional. Recuperado de http://repository.unad.edu.co/handle/10596/13660


Urcuqui B. (2011). Conservación Y Conflictos Sociambientales En La Cuenca Media- Alta Del Río Cali Valle Del Cauca, Colombia. Bogotá D.C: Universidad Pontificia Bolivariana. Recuperado de https://repository.javeriana.edu.co/bitstream/handle/10554/1102/UrcuquiBustamanteAndr

esMauricio2010.pdf?sequence=1

8. ANEXOS

 Revisión de las guías técnicas para la actualización del POMCA del río Negro y PORH del río Alto Suarez.

Figura No. 7, Esquema Plan de Ordenamiento de Cuencas Hidrográficas (POMCA)

Fuente: Elaboración propia, 2018

Fases para la El ordenamiento del recurso hídrico es un proceso de planificación que formulación del PORH realiza la AAC, con el que se contribuye al control de la contaminación y al uso eficiente del recurso hídrico en el país. Declarar en ordenamiento el cuerpo de agua Declaratoria Diagnóstico Implementación de la Estrategia de Participación Caracterización inicial Diseño de la Estrategia de Construcción linea base Análisis de información Censo de usuarios Caracterización de actores | Actividades informativas Espacios de consulta y Ubicación del cuerpo de agua Definición de Tramos retroalimentación Delimitar el área del trabajo Estructura conceptual modelación Revisión del estado de la red de monitoreo identificación y revisión de Linea base Calidad instrumentos de planificación Lines base Oferta Clasificación de información RURH Usos actuales Identificación de usos existentes Análisis de Conflictos Revisión y análisis de quejas Determinación de Riesgos Análisis de la distribución y tamaños de predios Proyección de demanda Identificación de usos Usos potenciales del recurso hidrico potenciales Modelación de calidad Escenarios de simulación Programa de seguimiento y Clasificación de las aguas nonitoreo al recurso hidrico Formulación del Plan Información de usuarios Componente programático Elaboración del Asignación de usos Plan de Definición o ajuste de objetivos de calidad Criterios de calidad por uso Ordenamiento Definición o ajuste de metas quinquenales de carga contaminante Aprobación del PORH Articulación con POMCA

Figura No. 8, Esquema Plan de Ordenamiento del Recurso Hídrico (PORH)

Fuente: Guía Técnica para la formulación de planes de Ordenamiento del Recurso Hídrico PORH (2014), MADS

- 2. Diagnóstico de los residuos sólidos generados en la cuenca del río Negro.
- 3. Estimación del Índice de Calidad del Agua (ICA)
- 4. Documento Final calidad de agua POMCA del río Negro.
- 5. Actualización de la base de datos actualizada de los acueductos asociados a la cuenca del río alto Suarez. (Municipio de Chiquinquirá y Ubaté)

Figura No. 9, Matriz empleada en la recolección de información para el diagnóstico de residuos sólidos cuenca Río Negro

# DE HABITA	NTES POBLA	CIÓN URBANA		I	# DE HABITA	NTES POBLAC	CIÓN RURAL			
COBERTURA SERVICIO DE RECOLECCIÓN Y DISPOCISIÓN FINAL DE RESIDUOS SOLIDOS										
URB	URBANA RURAL			No DE USUARIOS			PROD	UCCIÓN MENSUAL,	/USUARIO	
	#¡DIV/0!									
RESIDUOS SOLIDOS (ZONA URBANA) MUNICIPALES										
CAN	TIDAD RS TON	I/MES	ORGANICOS	INORGANICOS	VIDRIO	METAL	PLASTICO	PAPEL	OTROS	
									-	
RESIDUOS SOLIDOS (ZONA RURAL) MUNICIPALES										
CANTIDAD RS TON/MES		ORGANICOS	INORGANICOS	VIDRIO	METAL	PLASTICO	PAPEL	OTROS		
APROVECHAMIENTO DE RESIDUOS SOLIDOS (Describir las actividades de aprovechamiento emprendidas en el municipio haciendo enfasis en la cantidad										
RECICLAJE					COMPOSTAJE					
									-	
								AUTODIZACIÓN AMBIENTAL		
LIPO SISTER	ISTEMIA DE DISPOSICION FINAL VIDA UTIL UBICACION CANTIL				CANTIDAD DE	INTIDAD DE RESIDUOS SOLIDOS DISPUESTOS TON/MES AUTORIZACIÓN AMBIENTAL				
									-	
	CAN' CAN' APROV	CANTIDAD RS TON CANTIDAD RS TON APROVECHAMIENTO RECICLAIE	CANTIDAD RS TON/MES CANTIDAD RS TON/MES APROVECHAMIENTO DE RESIDUOS	CANTIDAD RS TON/MES ORGANICOS CANTIDAD RS TON/MES ORGANICOS APROVECHAMIENTO DE RESIDUOS SOLIDOS (Desi	COBERTURA SERVICIO DE RECOLI URBANA RURAL NO DE US RESIDUOS SOLII CANTIDAD RS TON/MES ORGANICOS INORGANICOS RESIDUOS SOL CANTIDAD RS TON/MES ORGANICOS INORGANICOS APROVECHAMIENTO DE RESIDUOS SOLIDOS (Describir las actividad RECICLAIE	CANTIDAD RS TON/MES ORGANICOS INORGANICOS VIDRIO RESIDUOS SOLIDOS (ZONA URBA CANTIDAD RS TON/MES ORGANICOS INORGANICOS VIDRIO RESIDUOS SOLIDOS (ZONA RUR CANTIDAD RS TON/MES ORGANICOS INORGANICOS VIDRIO APROVECHAMIENTO DE RESIDUOS SOLIDOS (Describir las actividades de aprovecha RECICLAJE SISTEMA DE DISPOSICIO	COBERTURA SERVICIO DE RECOLECCIÓN Y DISPOCISIÓN FINAL I URBANA RURAL NO DE USUARIOS RESIDUOS SOLIDOS (ZONA URBANA) MUNICIE CANTIDAD RS TON/MES ORGANICOS INORGANICOS VIDRIO METAL RESIDUOS SOLIDOS (ZONA RURAL) MUNICIPI CANTIDAD RS TON/MES ORGANICOS INORGANICOS VIDRIO METAL APROVECHAMIENTO DE RESIDUOS SOLIDOS (Describir las actividades de aprovechamiento empi RECICLAJE COMPOSTAJE SISTEMA DE DISPOSICIÓN FINAL	URBANA RURAL NO DE USUARIOS PROD RESIDUOS SOLIDOS (ZONA URBANA) MUNICIPALES CANTIDAD RS TON/MES ORGANICOS INORGANICOS VIDRIO METAL PLASTICO RESIDUOS SOLIDOS (ZONA RURAL) MUNICIPALES CANTIDAD RS TON/MES ORGANICOS INORGANICOS VIDRIO METAL PLASTICO APROVECHAMIENTO DE RESIDUOS SOLIDOS (Describir las actividades de aprovechamiento emprendidas en el RECICLAJE COMPOSTAJE SISTEMA DE DISPOSICIÓN FINAL	URBANA RURAL NO DE USUARIOS PRODUCCIÓN MENSUAL #¡DIV/O! RESIDUOS SOLIDOS (ZONA URBANA) MUNICIPALES CANTIDAD RS TON/MES ORGANICOS INORGANICOS VIDRIO METAL PLASTICO PAPEL RESIDUOS SOLIDOS (ZONA RURAL) MUNICIPALES CANTIDAD RS TON/MES ORGANICOS INORGANICOS VIDRIO METAL PLASTICO PAPEL APROVECHAMIENTO DE RESIDUOS SOLIDOS (Describir las actividades de aprovechamiento emprendidas en el municipio hacieno RECICLAJE SISTEMA DE DISPOSICIÓN FINAL	

Fuente: Elaboración propia, 2018

Figura No. 10, Plantilla Laboratorio CAR

CORPORACIÓN AUTÓNOMA REGIONAL DE CUNDINAMARCA - CAR DMMLA - LABORATORIO AMBIENTAL

REPORTE DE RESULTADOS

									INFO	RME N":		546	
CLIENTE: PROGRAMA: Municipio de muestreo: Pecha Muestreo: Racapción: Raporte: IDENTIFICACIÓN DE LAB		DIRECCION DE MONITOREO, MODELAMIENTO Y LABORATORIO AMBIENTAL CUENCA RIO NEGRO		Teléfono Dirección			3299000 CRA 7 N° 36-45			Solicitud:		DMMLA	
		PACHO 2016-05-31 2016-05-31 2016-06-31 2016-07-11	Comis	omisión de muestreo:			LABORATORIO AMBENTAL MIGUEL MANRIQUE LIMANDO ESPETA			N° de muestras: Plan de muestreo No.		3 DE 6	
il mu	Muestra N° 1333-16 RXD RI		de muestras GANA-POS 37 del Laboratorio Anticero		7		117	11	Massia N°	1335-16	RIO NEGRO AS	SUAS ABAJO RIO	BATON.
_				SULTADO			AGUA	-	_				
N°	PARÁMETRO	UNIDADES	Método Analítico	Fecha	LCT	/LCM	NORMATIVIDAD			_	TRAS Nº.		
				Analisis			23 00	13	33-16	13	34-16	133	5-16
1	Aceites y Grassas	mg AyG / L	Extracción Soxhiet (SM 5520 D)	2016-06-20	LCT	10,0	0,0	*LCT		<lct< td=""><td></td><td>-LCT</td><td></td></lct<>		-LCT	
2	Acidez	mg CaCO3 / L	Titulación Potenciométrica (SM 2310 B)	2016-06-01	-LOM.	1,6,0	47000	*LCM) E	*LCM		*LCM	
5	Clanuros Kit campo	mg CN/L	kit de campo - Colorimetrico Acido Barbiturico - Piridina(Microquant - 1.14798,001)	2016-05-31	LCT	0,030	0,2	-LCT	J0	<lct< td=""><td></td><td><lct< td=""><td></td></lct<></td></lct<>		<lct< td=""><td></td></lct<>	
8	Cloro Libre Residual(Kit	mg Cl como Ctt/L	Colorimétrico DPD(Microquant 1.14978.0001)	2016-05-31	LOT	0,10		<lct< td=""><td></td><td><lct< td=""><td></td><td>-LCT</td><td></td></lct<></td></lct<>		<lct< td=""><td></td><td>-LCT</td><td></td></lct<>		-LCT	
10	Cloruros*	mg CI-/L	Argentometrica Titulación Potenciometrica (SM 4500 CI - D)	2016-06-01	LOM	3,0	250	<lcm< td=""><td></td><td><lcm< td=""><td></td><td>4,9</td><td>+/- 0,09</td></lcm<></td></lcm<>		<lcm< td=""><td></td><td>4,9</td><td>+/- 0,09</td></lcm<>		4,9	+/- 0,09
11	Color	Unidades Co/Pt	Comparación visual (SM 2120 B)	2016-06-01	LOM	3,0	75	3,0	+/- 0,03	*LCM		15,0	#F 0,15
13	Conductividad de campo*	µS/on	Electrométrico, SM 2510 B	2016-05-31	LOM			210	+/- 1,1	179	+/- 0,9	168	4/- 0,9
16	080*	ng O₂/L	Incubación a 5 días y Electrodo de Membrana, SM 5210 B, 4500-O G	2016-06-01	LOM	2,0		*LCM		8,1	+/- 0,6	2,7	+/- 0,2
18	000 *	mg O ₂ / L	Reflujo Abierto (SM 5220 B) Modificado- menor cantidad Reactivos	2016-06-02	LCM	10,0		*LCM		27,7	4/- 1,9	21,9	4/- 1,5
23	Dureza Total	mg CaCO _b / L	Cálculo (SM 2340 B)	2016-06-09	LCT			97,05		72,46		61,73	
25	Fendes	mg Fenol /L	Colorimétrico directo (SM 5530 D) 4- aminoanficirina	2016-06-14	LCT	0,10	0,002	<lct< td=""><td></td><td><lct< td=""><td></td><td>-LCT</td><td></td></lct<></td></lct<>		<lct< td=""><td></td><td>-LCT</td><td></td></lct<>		-LCT	
26	Fásforo Orto*	mg-P/L	Ácido Ascárbico (SM 4500-P E)	2016-06-01	LOM	0,010		0,038	+/- 0,003	0,097	+/- 0,009	0,030	+/- 0,003
27	Fósforo Total*	mg-P/ L	Digestión Ácida - Acido Ascórbico, SM 4500	2016-06-02	LOM	0.060		0.071	+/- 0.006	0.108	+/- 0.009	0.101	+/- 0,008
28	N- Amoniscal	mg N-NH ₂ /L	P B, E colorimetrico-Nessler (SM 417 B - Ed. 16)	2016-06-01	LOM	0,70	1,0	<lcm< td=""><td></td><td>*LCM</td><td></td><td><lcm< td=""><td></td></lcm<></td></lcm<>		*LCM		<lcm< td=""><td></td></lcm<>	
29	N-Total <u>Kieldahl</u> *	mg N-N _{eq} / L	Macro-Kjeldahl, Destlación y Volumetria, SM 4500-NOrg B y SM 4500-NH3 B, C	2016-06-02	LOM	1,0		1,3	+/- 0,2	2,2	+/- 0,3	1,1	+/- 0,15
35	N- Nitrato	mgN-NO ₃ /L	Colorimetrico Ácido Cromotrópico (SM 411 D - Ed 16)	2010-00-01	LCT	0,10	10	<lct< td=""><td></td><td>0,183</td><td></td><td>0,206</td><td></td></lct<>		0,183		0,206	
36	N- Nitrito*	mg N-NO ₃ /L	Colorimétrico-NED(SM 4500-NO ₂ B)	2016-06-02	LCM	0,004	1,0	*LCM		0,033	+/- 0,006	0,055	*/- 0,01
36	Oxigeno Disuelto en campo*	mg O ₂ /L	Electrodo de membrana (4500-O G)	2016-05-31	LOM			6,38	+/- 0,04	7,8	+/- 0,05	8,0	*/- 0,06
40	pH en campo*	Unidades	Electrométrico (SM 4500 H ⁷⁻⁸)	2016-05-31	LOM		5,0-9,0	7,9	e/- 0,02	7,8	+/- 0,02	7,9	+/- 0,02
43	Sólidos Suspendidos *	mg-SST/L	Gravimitrico – Secado a 103-105°C, SM 2540 D	2016-06-04	LOM	4,0		7,5	+/- 0,2	4,5	+/- 0,1	40,0	4/- 1,3
45	Sólidos Totales*	mg-ST/L	Gravimétrico – Secado a 103-105°C, SM 2540 D	2016-06-07	LOM	5,0		155		152		157	
47	Sulfatos*	mg-SO _L /L	Turbidimétrico, SM 4500-SO42-E	2016-06-03	LOM	5,0	400	38,4	+/- 2,7	46,7	4/- 3,2	35,9	4/- 2,5
51	Turbidez *	NTU	Nefelométrico, SM 2130 B	2016-06-01	LOM	1,0		4,98	+/- 0,7	17,0	4/- 2,4	17,9	4/- 2,5
52	Coliformes Totales *	NMP / 100 M	Ensayo de sustrato enzimático, SM 9223 B	2510 50 51	LOM	-11	20000	1,7E+04		3,3E+06		+2,4E+05	
53	E. coli *	NMP / 100 mL	Ensayo de sustrato enzimático, SM 9223 B	2016-06-01	LCM	-81	2000	3.1E+01	**	1.15+05	**	2.0E+05	**

Fuente: Laboratorio Corporación autónoma Regional de Cundinamarca, CAR (2016)

Figura No. 11 Base de datos de los acueductos asociados a la cuenca del río Alto Suarez (Chiquinquirá)

FID	Shape '	FID_	Shape_	NOMBRE	VEREDA	MUNICIPIO	KPEDIENT	COORD_X	CORREGIO	COORD_	CORREGIO	CLASE	AUDAL_!	OBSERVACIONES
(Point		0 Point	CAÑON FORERO JOSE RUBEN	LAJITA	SABOYA	42169	1034523	1035597	1126076	1126550	S	0.02	Las coordenadas no coinciden con EL SIRH
	Point		1 Point	ASOC SUSCRIPTORES DEL ACUEDUCTO DE LA YDA	ARBOLEDAS	CHQUINQUIRA	40329	1038238		1109474		S	0.28	coinciden las coordenadas, vereda y município con el SIRH
7	Point Point		2 Point	LAITON CASTELLANOS JOSE URIEL Y OTRO	MERCHAN	SABOYA	42095	1043141		1115403		S	0.02	El expediente no esta en el SIRH
(Point		3 Point	CASTELLANOS CASTELLANOS JOSE LEONARDO	MERCHAN	SABOYA	41594	1042734		1116270		Ş	0.02	Las coordenadas vereda y município coinciden con el SIRH
- 1	Point		4 Point	CASTELLANOS CLAUDIA CRISTINA Y OTRO	LAJITA	SABOYA	42091	1038553		1128125		Ş	0.01	Cinciden coordenadas con SIPH pero esta en el municipio de chiquinquira
	Point		5 Point	SUAREZ RONCANCIO CLARA MARIA Y OTRO	LAJITA	SABOYA	42094	1036813		1126098		S	0.02	Coinciden coordenadas con SIRH pero se encuentra en el municipio de chiquir
(Point		6 Point	PAEZ PAEZ JESUS FLORIBERTO Y OTRO	LAJITA	SABOYA	42096	1037084		1129303		S	0.01	El expediente no esta en el SIRH
i	Point		7 Point	AVILA SAZA LUIS ENRIQUE	RESGUARDO	SABOYA	42474	1033515		1123040		S	0.02	Coinciden coordenadas, município y vereda con el SIR
(Point		8 Point	TORRESLUIS ADOLFO Y OTRO	MERCHAN	SABOYA	41858	1038197		1122289		S	0.02	El expediente no esta en el SIRH
(Point		9 Point	CASTELLANOS POVEDA BERNARDO	LAJITA	SABOYA	42093	1036310		1126241		S	0.02	Coinciden coordenadas, município y vereda con el SIPH
10	Point	1	0 Point	VARGAS MARTINEZ NUBIA ESPERANZA Y OTROS	CORDOBA	CHQUINQUIRA	40818	1030140	1030340	1111714	1111502	8	0.02	Las coordenadas no coinciden con el SIRH
1	Point		11 Point	ROJAS RODRIGUEZ ELSA MARIA	MOYAVITA	CHQUINQUIRA	41344	1041757		1113700		8	0.02	Coinciden coordenadas, vereda y município con el SIPH
1/	Point	- 1	2 Point	SANCHEZ VILLAMIL JOSE HELI	MERCHAN	SABOYA	41347	1042490	1042477	1121484	1121490	S	0.02	Las coordenadas no coinciden con el SIPH
10	Point	1	3 Point	CELIS DURAN JOSUE DE JESUS	MOYAVITA	CHIQUINQUIRA	41511	1042409		1113509		S	0.01	Coinciden coordenadas, vereda y município con el SIRH
1	Point	1	4 Point	RODRIGUEZ ZAMERAND ALVARO Y OTRO	MOYAVITA	CHIQUINQUIRA	41524	1039196		1112285		S	0.02	El expediente no esta en el SIRH
	Point		5 Point	PAEZ GONZALEZ ANTONIO GERMAN	MERCHAN	SABOYA	41597	1042658		1115971		S	0.02	Coinciden coordenadas, vereda y município con el SIPH
	Point		6 Point	LAITON PAEZ SEGUNDO TOMAS	MERCHAN	SABOYA	41598	1043042		1116210		S	0.02	Coinciden coordenadas, vereda y município con el SIPH
	Point		7 Point	GONZALEZ GONZALEZ PEDRO MIGUEL	MERCHAN	SABOYA	41608	1042033		1116204		8	0.02	Coinciden coordenadas, vereda y município con el SIPIH
	Point		8 Point	RODRIGUEZ SANCHEZ MARCO ANTONIO	MERCHAN	SABOYA	41610	1043391		1116087		S	0.0197	Coinciden coordenadas, vereda y município con el SIPH
	Point		9 Point	CASTELLANOS CASTELLANOS FREDY ALEXANDER	MERCHAN	SABOYA	41611	1043240		1116126		S	0.02	Coinciden coordenadas, vereda y município con el SIPIH
	Point		0 Point	GONZALEZ DE GONZALEZ DORA ALICIA	MOYAVITA	CHQUINQUIRA	41699	1042464	1042338	1113710	1113655	S	0.01	No coinciden coordenadas con el SIRH
	Point		21 Point	ABRIL DE JIMENEZ EMELINA	VINCULO	SABOYA	32576	1037975		116580.3		ŝ	0.01	Coinciden coordenadas, vereda y município con el SIRH
	Point		2 Point		ULOLLANOGRA	SABOYA	31808	1038080		1116877		ŝ	0.01	Coinciden coordenadas, vereda y município con el SIRH
	Point		3 Point	ABRIL MARIA DEL CARMEN	VINCULO	SABOYA	29034	1036089		1116805		ŝ	0.02	Coinciden coordenadas, vereda y município con el SIRH
	Point		4 Point	ALARCON MATEUS DIANA CAROLINA	LALAUTA	SABOYA	26532	1037861	1037881	1129010	1128844	ŝ	0.71	No coinciden coordenadas con el SIRH
	Point		5 Point	MUNICIPIO DE SAN MIGUEL DE SEMA	CHARCO	SAN MIGUEL DE SEMA	31566	1038429		1108218		S	0.4	Coinciden coordenadas, vereda y município con el SIRH
	Point		8 Point	MUNICIPIO DE SAN MIGUEL DE SEMA	SABANECA	SAN MIGUEL DE SEMA	32310	1036728		1106165		S	0.14	Coinciden coordenadas, vereda y município con el SIPH
	Point		7 Point	MUNICIPIO DE SAN MIGUEL DE SEMA		SAN MIGUEL DE SEMA	15734			1106568		S		El expediente no esta en el SIRH
	Point		8 Point		JENTE DE TIERF	SABOYA	28660	1028277	1028259	1118250	1118267	S	0.02	No coinciden coordenadas con el SIR
	Point		9 Point		JENTE DE TIERF	SABOYA	37384	1029027	IVEVEV	1118372		8	0.13	Coinciden coordenadas, vereda y município en el SIFIH
	Point		0 Point	LUGO OSORIO PEDRO JOSE Y OTRO	MOYAVITA	CHQUINQUIRA	32116	1040244	1040387	1111686	1111791	S	0.01	No coinciden coordenadas con el SIRH
	Point		Point		JENTE DE TIERF	SABOYA	22192	1031903	IVIVVI	1117380	IIIIVI	S		El expediente no esta en el SIRH
	Point		2 Point	MOYA RUEDA CLARA ELIZABETHY OTROS	HATO VIEJO	SAN MIGUEL DE SEMA	35558	1036350		1101400		S	0.01	Coinciden coordenadas con el SIPH
	Point		3 Point	MURCIA ABRIL JULIO HOMERO	MOYAVITA	CHQUINQUIRA	30843	1041219	1041136	1112590	112417	S	0.01	No coinciden coordenadas con el SIRH
	Point		4 Point	MURCIA PINILLA BLANCA CECILIA	SASA	CHQUINQUIRA	24209	1037335	1037272	1114079	1112927	S	0.008	No coinciden coordenadas con el SIRH
	Point		5 Point	NIÑO DE PUENTES MARIA DEL CARMEN Y OTROS		SABOYA	30344	1036214	1036282	1129498	1129932	S	0.01	No coinciden las coordenadas con el SIRH
	Point		8 Point	NIÑO SANCHEZ GLORIA ISABEL	MERCHAN	SABOYA	35763	1037906	IVVVEVE	1120751	HEOVOE	g	0.01	Coinciden coordenadas, vereda y município con el SIPH
	Point		7 Point	ORANDO LOPEZ ISMAEL	1 & L & JIT &	QARNYA	27222	1007300	3003001	100001	1100000	0	0.01	No coincides contresades, vereus y municipio con et anno

Fuente: Elaboración propia, 2018

Figura No. 12 Base de datos de los acueductos asociados a la cuenca del Río Alto Suarez (Ubaté)

DIRECCION REGIONAL _y y	NOMBRE O RAZON Social	VEREDA D PD	VEREDA CORREGID	CLASE SUBT - T SUPERF - S	MUNICIPIO D PD _{\rightarrow}	EXPEDIENTF	COORDENADA X	COORDENADA X CORREGIE	COORDENADA Y	COORDENADA Y Corregida 🚽	CAUDAL Concedido (II)	USO Domestico (Vs)	USO AGRICOLA (I/s)
UBATÉ	ASOCIACION DE USUARIOS DEL SERVICIO DE ACUEDUCTO DELA VOA DONLOPE SECTOR CHATA DEL MUNICIPIO DE SMIJACA	DONLOPE SECTOR CHATA		CONCESION DE AGUAS SUPERFICIALES	SIMIJACA	1802	1095593	1020082	1023082	1095593	0.50		
UBATÉ	OSPINA BERMUDEZ MARIA BEATRIZ Y OTRA	TAQUIRA		CONCESION DE AGUAS SUBTERRANEAS	SIMIJACA	3640	1100830	1100832	1027770	1027737	0.45		
UBATÉ	ACUEDUCTO QDA. COLORADA PAUNTA APOSENTOS	COLORADA	APOSENTOS	CONCESION DE AGUAS SUPERFICIALES	SUSA	5512	1087852	1027882	1027882	1087852	0.38		
UBATÉ	JUNTA DE ACCION COMUNAL DE LA VEREDA	APOSENTOS		CONCESION DE AGUAS	SIMIJACA	10933	1096188	1023327	1023297	1096165	0.29		

Fuente: Elaboración propia, 2018

<u>DIAGNOSTICO MANEJO DE LOS RESIDUOS SOLIDOS MUNICIPALES DE LA</u> CUENCA RIO NEGRO

Factores contaminantes de la cuenca rio Negro asociados al manejo y disposición final de residuos sólidos.

Análisis de los sistemas de disposición final de residuos sólidos

El manejo de residuos sólidos hace parte desde la presentación de los mismos, lo cual es de gran importancia que los residuos no se mezclen con los aprovechables y los no aprovechables, los sistemas de tratamiento o aprovechamiento que se empleen para estos teniendo en cuenta su composición, el sitio de disposición final con los que se pueda contar dependiendo de la clasificación del residuo, y por último, el manejo de lixiviados y gases que se pueden llevar a cabo en los rellenos sanitarios destinados para tal fin.

Teniendo en cuenta que el tema de la clasificación y adecuada disposición de los residuos sólidos es pertinente que se implementen rutas que puedan ser utilizadas de manera responsable y eficiente por la comunidad para lo cual se requieren jornadas de capacitación en temas de separación en la fuente puesto que el porcentaje de población que realiza este proceso es muy bajo comparado con la cantidad de habitantes que un municipio puede tener.

Ahora para la realización del análisis de los factores de contaminación en la cuenca del rio negro asociados al manejo y disposición de residuos sólidos, se dispondrá de la información que se encuentra recopilada en los Planes de Gestión Integral de Residuos Sólidos (PGIRS) de cada uno de los municipios que hacen parte de la cuenca del rio negro, para de esta forma contar con la información necesaria y relevante en cuanto al manejo, aprovechamiento y disposición final de los residuos sólidos que actualmente se generan en cada uno de los municipios y los programas que ejecutan para el buen manejo de los mismos o si por el contrario no hacen aprovechamiento de estos residuos.

Para finalizar este capítulo, es importante especificar que el objetivo principal es establecer la relación entre el manejo, aprovechamiento y disposición final de los residuos sólidos de los municipios con la contaminación de la cuenca del rio negro, es decir que tanto está perjudicando este factor la calidad del recurso hídrico y de esta manera complementar y justificar con información verídica y experimental la información sobre el estado de la calidad del agua de la cuenca del rio negro.

Tipos de residuos generados

Los municipios que hacen parte de la cuenca del Rio Negro cuenta con su respectivo Plan de Gestión Integral de residuos sólidos (PGIRS),los cuales fueron los documentos base para la recopilación de esta información la cual es primordial para determinar el tipo de residuos, la cantidad, caracterización, el aprovechamiento y disposición final de cada uno de estos, para de esta manera poder hacer una síntesis o conclusión del estado en el que se encuentra el sistema de manejo de los residuos generados por cada uno de los municipios de la cuenca del rio Negro.

Estos documentos fueron la fuente de información para determinar los tipos de residuos sólidos que se generan en estos municipios. También se encontró que no todos los municipios reportan la cantidad y el tipo de residuos generados y de igual forma no todos cuentan con la implementación de un programa de manejo y aprovechamiento o una

disposición final adecuada, por lo cual se hizo necesario complementar la información reportada por estos, utilizando para ello fuentes de estimaciones típicas presuntivas.

Cuenca rio negro

La cuenca del Rio Negro está conformada por los siguientes municipios: Yacopi, La palma, Topaipi, Villagómez, El peñón, Pacho, La peña, Utica, Nimaima, Vergara, Quebrada Negra, Nocaima, Supata, Villeta, La vega, Albán, Caparrapi, guaduas, Puerto Salgar, Bituima, Viani, Guayabal de siguima y el Rosal.

Tabla cantidad de residuos sólidos Urbanos y Rurales municipios de la cuenca del Rio Negro

MUNICIPIO	RESIDUOS GENE	RADOS (TON/MES)
	URBANO	RURAL
Yacopi	6,89	
La palma	6,89	
Topaipi	7,68	
Villagómez	8.28	
El peñón	13,38	
Pacho	164,08	
La peña	21,39	NR
Utica	62,98	- INIX
Nimaima	28,028	
Vergara	19,3	160
Quebrada Negra	45,73	
Nocaima	59,91	
Supata	32,79	NR
Villeta	834,28	
La vega	248	
Albán	48,87	
Caparrapi	79,3	
Guaduas	427,39	
Puerto Salgar	126,23	
Bituima	11,12	
Viani	11,12	
Guayabal de Siquima	11,58	
El rosal	>30,000 ton/mes	

Los datos suministrados en la tabla anterior fueron extraídos del PGIRS de cada uno de los municipios que conforman la cuenca del rio Bogotá y como se puede observar no se reporta información sobre la cantidad de residuos generados para la parte rural de los municipios de la cuenca del Rio Negro únicamente se registra el del municipio de Vergara con 160 ton/mes, por esto estas casillas aparecen marcadas con el NR y según información del PGIRS en la zona rural de estos municipios no se hace recolección de los residuos sólidos, por lo que estos son arrojados acampo abierto, quemados o en su defecto enterrados. Por otro lado se puede ver que el municipio que genero mayor cantidad de residuos sólidos en la parte urbana fue Villeta con 834,28 ton/mes y los de menor cantidad fueron Yacopí y la palma con 6,89 ton /mes.

Clasificación de los residuos sólidos:

La clasificación de los residuos sólidos para la cuenca del rio negro se dividió en la zona urbana y rural para de esta forma determinar la cantidad de residuos generados y tener más clara la situación actual de las mismas.

Área urbana cuenca rio Negro

Con la información obtenida en los PGIRS de cada uno de los municipios analizados sé pudo evidenciar que no se reportó la cantidad de residuos generada tanto de residuos orgánicos como inorgánicos, de igual forma se evidencio que no todos los municipios tienen implementados programas de manejo o aprovechamiento de los residuos sólidos que generan.

En la siguiente tabla se muestra la caracterización de los residuos generados por cada municipio que conforman la cuenca del rio negro.

Caracterización de residuos sólidos generados por los municipios de la cuenca del rio Negro

MUNICIPIOS		G	eneració	n de residu	uos ton/me	S	
	Orgánico	Papel	Cartó	Plástico	Metales	Vidrio	Otros
	S		n				
Yacopí	35,9	NR	NR	NR	NR	NR	NR
La palma	10,14	NR	NR	NR	NR	NR	NR
Topaipi	8,19	NR	NR	NR	NR	NR	NR
Villagomez	0,05	0,04	0,05	0.02	0,06	0,06	0,02
El peñón	12,15	NR	NR	NR	NR	NR	NR
Pacho	85	0,08	NR	0,012	0,014	0,01	0,05
La peña	21,39	0.042	0,044	0,065	0,08	0,06	0,09
Utica	6,65	0,25	0,01	0,02	0,30	0,02	0,30
Nimaima	6,42	NR	NR	NR	NR	NR	NR
Vergara	7,16	NR	NR	NR	NR	NR	NR
Quebrada	0,24	1,2	0,02	1,5	0,09	0,03	0,06
Negra							
Nocaima	28,5	0,3	0,05	0,02	1,0	0,5	1,0
Supatá	24	NR	NR	NR	NR	NR	NR
Villeta	23,62	NR	NR	NR	NR	NR	NR
La vega	23	1,45	1,44	0,91	1,67	0,01	2,8
Albán	6,8	0,19	0,41	2,01	0,87	0,4	0,35
Caparrapi	15,53	NR	NR	NR	NR	NR	NR
Guaduas	36,92	0,58	0,32	0.89	1,200	0,35	0,87
Puerto Salgar	15,2	6,8	4,2	7,2	7,6	1,36	11,85
Bituima	0,12	0,10	0,3	0,15	0,5	0,2	NR
Viani	3,91	NR	NR	NR	NR	NR	NR
Guayabal de	0,025	0,063	NR	0,034	0,05	0,062	NR
Siquima							
El rosal	14,67	1,98	NR	0,23	0,4	1,5	NR

En la tabla anterior se puede evidenciar que los municipios Yacopí, La palma, Topaipi, el peñón la peña, Nimaima, Supatá, Villeta, Caparrapi y viani no reportaron ninguna información clasificada por tipo de residuo referente a los residuos sólidos inorgánicos generados. Por lo cual no se puede establecer la cantidad que se está generando de cada uno de estos, para los demás municipios en donde se marca con NR es porque de igual forma no se reportó información, sin embargo como para algunos municipios se registra información generalizada tanto de la cantidad total de residuos orgánicos e inorgánicos se calculo un estimativo para cada tipo de residuos teniendo en cuenta la población y las actividades económicas de la región, para de esta forma poder generar las graficas y hacer una mejor descripción del estado actual del manejo y disposición de los residuos sólidos generados por cada municipio y así el diagnostico sea más detallado.

Teniendo en cuenta lo anterior a continuación se muestra la cantidad de residuos inorgánicos de forma generalizada para los municipios que no reportaron la información clasificada por cada tipo de residuo debido a que no tienen un control del manejo de residuos sólidos y así mismo no han implementado programas de aprovechamiento.

La peña: 391 kg- Pacho: 0,062 - Quebrada negra: 117 kg - Nocaima: 6949 kg - La vega: 11479 kg-Albán: 2500 kg - Guaduas: 4010 kg - Bituima: 0,35 kg.

En la siguiente tabla se realizo un promedio de la cantidad en peso de cada los residuos generados por los municipios que conforman la cuenca del rio Negro, esto se realizo con la información de la tabla anterior (caracterización).

Tabla (Promedio) cantidad de residuos sólidos generados por los municipios de la cuenca del Rio Negro

Cuenca Rio Negro	Ton/mes
Orgánicos	16,7645652
Papel	1,08608333
Cartón	0,6844
Plástico	1,10463636
Metales	1,06384615
Vidrio	0,35092308
Otros	1,739

Con el fin de mostrar de una forma más detallada y con una mejor perspectiva se realizo la siguiente grafica

Grafica caracterización de residuos sólidos de la cuenca del rio negro

De la grafica anterior se puede observar que el mayor tipo de residuos sólidos generados por los municipios de la cuenca del rio negro son los de tipo orgánico, seguido por los llamados otros, después plástico, metales, papel, cartón y por último el vidrio en menor cantidad.


Con los datos anteriores se puede determinar que los usuarios que mayor cantidad de residuos generan son los de tipo residencial, sobre todo con base a la información impuesta en los PGIRS de cada municipio.

En la siguiente tabla se muestra el porcentaje de cada uno de los residuos, teniendo en cuenta que el 100 % de base manejada fueron las 22,7934541 ton/mes de residuos sólidos que se generaron en los municipios de la cuenca rio negro, se debe tener en cuenta que hubieron municipios que no registran algunos datos.

Tabla porcentaje de composición de los residuos encontrados en la cuenca del rio negro

Tipo de residuo	(%)
Orgánicos	73,54
Papel	4,76
Cartón	3
Plástico	4,84
Metales	4,66
Vidrio	1,54
Otros	7,63

Grafica Porcentaje de composición por cada uno de los residuos sólidos generados en la cuenca rio negro

En la grafica anterior se puede evidenciar que mediante el análisis porcentual se logra comprobar que el mayor componente de los residuos sólidos son los orgánicos con un 73%, seguido por los denominados otros con un 8%, después esta el plástico, papel, metal con un 5%, cartón con 3 % y finalmente el vidrio con un 1%. La composición de estos residuos pueden ser resultados de la demografía de la cuenca del rio negro y de las actividades económicas que allí se presentan, asimismo predomina la mala disposición de los residuos domiciliarios lo que estaría provocando la generación en exceso de este tipo de residuos.

Área Rural cuenca rio negro

Para la parte rural fue un poco más difícil conseguir la información, puesto que en el PGIRS no se registraba información suficiente ya que los municipios no reportaron información al respecto para esta zona, lo cual indica que no tienen un control adecuado de estos residuos y tampoco tienen programas de manejo o aprovechamiento de los mismos.

Para la generación de estos datos se tuvieron que hacer cálculos aproximados teniendo en cuenta la población y los datos típicos de la generación de residuos por habitante, también se baso en fuentes de estimaciones típicas presuntivas.

En la siguiente tabla se puede evidenciar la caracterización de los residuos generados por cada municipio que conforman la cuenca del rio negro para la parte rural.

Caracterización residuos sólidos rurales generados por los municipios de la cuenca del rio Negro

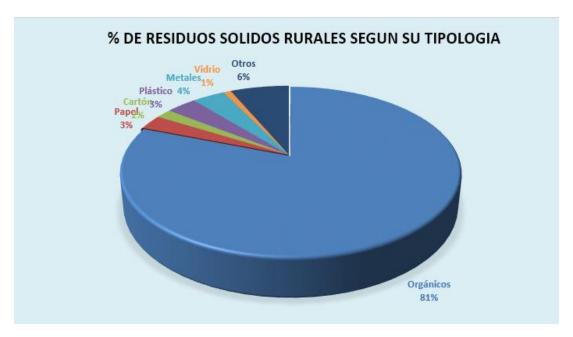

MUNICIPIOS	Generación de residuos ton/mes						
	Orgánico	Papel	Cartó	Plástico	Metales	Vidrio	Otros
	S		n				
Yacopí	28,7	0,02	0,01	0,08	0,06	0,01	1,5
La palma	12,15	0,08	NR	0,05	0,01	0,4	NR
Topaipi	9,18	0,010	0,03	NR	0,09	NR	1,0
Villagomez	0,05	0,04	0,05	0.02	0,06	0,06	0,02
El peñón	8,5	0,06	NR	0,01	0,04	0,02	NR
Pacho	95	0,08	0,01	0,010	NR	0,02	0,06
La peña	33,12	0.04	0,07	0,09	0,07	0,05	0,10
Utica	5,75	0,32	0,01	0,02	0,28	0,02	0,30
Nimaima	5,32	NR	NR	1,05	0,87	NR	1,8
Vergara	0,16	0,03	0,02	NR	NR	0,01	NR
Quebrada	0,32	0,5	0,02	1,2	0,06	0,02	0,07
Negra							
Nocaima	18,7	0,2	0,04	0,06	1,5	0,02	1,0
Supatá	22	NR	NR	0,03	NR	NR	NR
Villeta	21,87	0,04	0,01	0,01	7,06	NR	NR
La vega	17	1,38	1,22	NR	NR	0,01	2,6
Albán	6,5	0,10	NR	1,5	0,56	0,3	0,42
Caparrapi	14,67	NR	0,03	NR	NR	NR	0,62
Guaduas	35,75	0,55	0,07	0,72	1	0,28	0,46
Puerto Salgar	12,24	5,6	3,8	6,5	0,02	0,04	8,43
Bituima	0,15	0,8	0,2	0,12	0,3	0,5	NR
Viani	2,50	NR	NR	NR	NR	NR	1,5
Guayabal de	0,032	0,06	NR	0,03	0,09	0,056	NR
Siquima							
El rosal	16,98	0,08	0,03	0,2	0,6	1,2	NR

Tabla (promedio) Cantidad de residuos sólidos rurales de la cuenca del río negro

Cuenca Rio Negro	Ton/mes
Orgánicos	15,9409565
Papel	0,55277778
Cartón	0,35125
Plástico	0,68705882
Metales	0,74529412
Vidrio	0,17741176
Otros	1,32533333

En la tabla anterior se puede evidenciar que la mayor proporción de residuos sólidos son de compuestos orgánicos. Para obtener una mejor perspectiva, se realizó la siguiente grafica.

Gráfica Caracterización de residuos sólidos rurales de la cuenca del rio negro


En la grafica se puede observar que los residuos con mayor presencia son los orgánicos, luego le siguen los denominados otros, luego están los metales, plásticos, papel, cartón y últimamente el vidrio.

Un factor importante de este evento es la falta de conciencia por parte de los usuarios de la zona, así mismo el descuido por parte de las entidades ambientales en cuanto a la buena presentación de los residuos, o la proporción de centros de acopio adecuados para su aprovechamiento.

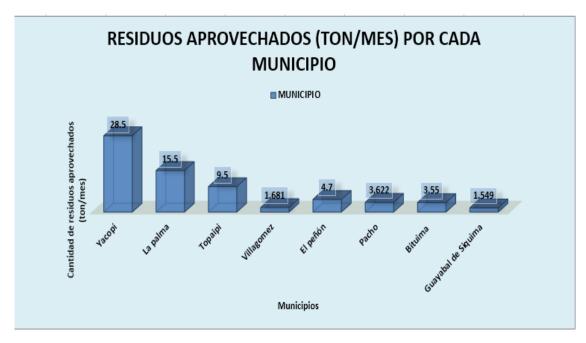
En la siguiente tabla se pueden ver los porcentajes de cada uno de los residuos teniendo en cuenta que el 100% de base manejada, se tratan de las **19,7800823** Ton/mes de residuos sólidos generados en la zona rural de la cuenca del rio negro.

Tabla Porcentaje de composición de los residuos sólidos presentes en la zona rural de la cuenca del rio negro.

Tipo de residuo	(%)
Orgánicos	80,5
Papel	2,78
Cartón	1,76
Plástico	3,43
Metales	3,74
Vidrio	0,85
Otros	6,67

Como se puede observar en la grafica anterior el mayor porcentaje se ve reflejado en los residuos orgánicos con un 81%, seguido por los denominados otros 6%, metales con un 4% plástico y papel con 3%, cartón 2% y por último, vidrio con 1%. Es importante resaltar que, aunque esto es un panorama parcial por la insuficiencia de datos de los municipios se puede evidenciar que los usuarios residenciales son los que mayor cantidad de residuos generan en esta zona, ya que estos compuestos orgánicos son generalmente desechos de cocina o actividades domiciliarias, mientras que los demás residuos provienen de las diferentes actividades económicas que se desarrollan en cada uno de los municipios que conforman la cuenca del rio negro.

Para la parte de caracterización de los residuos en la tabla anterior se pudo analizar y comparar entre los porcentajes obtenidos evidenciándose que el área urbana presenta menor cantidad de residuos orgánicos que la rural, esto es debido a que la población que vive en esta zona es mayor a la de la zona urbana en algunos municipios, de igual forma también conlleva a concluir que se están llevando malas o insuficientes campañas de sensibilización a la comunidad, para que contribuyan con el buen manejo de los residuos sólidos y el cuidado del medio ambiente.


Aprovechamiento de los residuos sólidos en la cuenca del rio negro

Para determinar qué tipo de aprovechamiento se realiza en cada uno de los municipios de la cuenca del rio negro se recolecto información del PGIRS haciendo una caracterización con cada uno de los municipios que la componen (los que registran información) y así determinar la forma en que los aprovechan, aunque el PGIRS no cuenta con información suficiente ya que los municipios no han reportado información debido a que no tienen un programa de aprovechamiento determinado.

A continuación se hace la caracterización con los municipios que reportaron información de su aprovechamiento.

MUNICIPIO	RESIDUOS APROVECHADOS (TON/MES)
Yacopi	28,5
La palma	15,5
Topaipi	9,5
Villagomez	1,681
El peñón	4,7
Pacho	3,622
La peña	NR
Utica	NR
Nimaima	NR
Vergara	NR
Quebrada Negra	NR
Nocaima	NR
Supatá	NR
Villeta	NR
La vega	NR
Albán	NR
Caparrapi	NR
Guaduas	NR
Puerto Salgar	NR
Bituima	3,55
Viani	NR
Guayabal de Siquima	1,549
El rosal	NR

En la tabla anterior se puede evidenciar la cantidad de residuos que aprovechan algunos municipios de la cuenca del rio negro, se observa que el municipio que tiene mayor aprovechamiento es Yacopi con 28,5 ton/mes y el que menos aprovecha es Guayabal de siquima con 1,549 ton/mes. También se observa que los municipios La peña, Utica, Nimaima, Vergara, Quebrada Negra, Nocaima, Supata, Villeta, La vega, Albán, Caparrapi, guaduas, Puerto Salgar y viani no reportan información respecto al aprovechamiento y esto es debido a que aun no tienen implementando un programa de aprovechamiento y en algunos casos se encuentran en proceso de implementación el programa piloto para tal fin.

En la grafica se puede apreciar la cantidad de residuos aprovechados por cada municipio que reporto información en el PGIRS y que hace parte de la cuenca del rio negro. Se observa que el municipio que presenta mayor aprovechamiento es Yacopi, esto es debido a que tienen un programa de aprovechamiento implementado lo que hace que haya una mejor caracterización y separación de los residuos sólidos generados, para su posterior aprovechamiento y el de menor aprovechamiento es Guayabal de siquima debido a que el programa piloto de aprovechamiento apenas se está implementando.

En la siguiente tabla se muestran los porcentajes de los residuos aprovechados por cada municipio teniendo en cuenta que el 100% de base manejada se tratan de las 68,602 Ton/mes de residuos sólidos aprovechados por los municipios que conforman la cuenca

Municipio	% de Residuos aprovechados
Yacopi	41,54
La palma	22,59
Topaipi	13,84
Villagomez	2,45
El peñón	6,85
Pacho	5,27
Bituima	5,17
Guayabal de Siquima	2,25

En la grafica se muestra que el porcentaje más representativo en cuanto al aprovechamiento es el del municipio de Yacopi con un 42 % por otro lado le sigue la palma con 23 %, lo cual significa que son los municipios que tienen mayor aprovechamiento de los residuos antes de que estos sean llevados al relleno sanitario para su disposición final.

Disposición final de los residuos sólidos

La disposición final de los residuos sólidos generados por los municipios Topaipi, Villagómez, El peñón, Pacho, La peña, Utica, Nimaima, Vergara, Quebrada Negra, Nocaima, Supata, Villeta, La vega, Albán, Bituima, Viani, Guayabal de siquima y el Rosal los cuales hacen parte de la cuenca del rio negro se hace en el relleno sanitario nuevo Mondoñedo y para los municipios Yacopi, La palma, Caparrapi, guaduas, Puerto Salgar son dispuestos en el relleno sanitario la doradita.

Relleno sanitario Nuevo Mondoñedo

El relleno de nuevo Mondoñedo se encuentra ubicado en departamento de Cundinamarca, municipio de Boyacá en el predio cruz ver, recibe los residuos de 95 municipios, cuenta con 17 hectáreas para la disposición de residuos y un predio total de 76 Ha, el relleno entro en funcionamiento en el año 2007 y cuenta con 22 años de actividad útil ,a este llegan en promedio 1005 ton diarias de residuos, el relleno cuenta con las áreas de manejo pertinentes además de las licencias ambientales y un sistema de lixiviados de alta gama. El relleno sanitario se encuentra a una distancia promedio de 115 km de la cabecera municipal. El costo de tonelada dispuesta es de 18900 pesos.

De acuerdo a la información que se obtuvo del PGIRS de cada uno de los municipios que conforman la cuenca del rio negro y que disponen sus residuos en el relleno sanitario nuevo Mondoñedo ubicado en el municipio de Boyacá Cundinamarca aproximadamente 45,4 Km de distancia de Albán. Se puede analizar la importancia del manejo y disposición final de residuos, gases y lixiviados que allí se generan.

A continuación se relacionan los procesos básicos para la operación del relleno sanitario Nuevo Mondoñedo:

Control de ingreso y báscula; descargue de residuos; construcción de la celda diaria; compactación de los residuos; control de la densidad de los mismos; colocación de materiales voluminosos dentro de las celdas; conformación de las pendientes del frente de trabajo; colocación del material sintético de cobertura diaria (polietileno de baja densidad removible); cobertura final de las zonas donde se logren los niveles finales de diseño, mantenimiento y control de operaciones; facturación; cobranza y atención al cliente.

Las anteriores son las principales operaciones que se llevan a cabo en el relleno nuevo Mondoñedo.

Relleno sanitario La doradita

El relleno sanitario regional La Doradita, de La Dorada, está ubicado en el departamento de caldas municipio de la dorada vereda buena vista a 15,5 km del casco urbano en el kilómetro 14 de la vía san miguel - Buena Vista y brinda el servicio de disposición de residuos a municipios aledaños de los departamentos de Tolima, Cundinamarca y Boyacá.

El lote cuenta con 30 Ha de terreno y se encuentra en funcionamiento desde el año 2004, con un periodo de vida hasta el año 2024. El relleno cuenta con las áreas de manejo pertinentes además de las licencias ambientales para su funcionamiento y un sistema de lixiviados. Debido a que el relleno sanitario se encuentra realizando un correcto funcionamiento de acuerdo a la legislación vigente, podemos indicar que estudios referentes a la ejecución de la disposición ya fueron llevados a cabo y acreditan el óptimo funcionamiento del relleno y por lo tanto de la correcta disposición, estudios que demanden un costo en la actualidad no son necesarios a menos de que se estipulen acciones de expansión u optimización.

Residuos a disposición final

Los municipios que hacen parte de la cuenca del rio negro disponen sus residuos en dos rellenos sanitarios: Nuevo Mondoñedo y la doradita, debido a que no todos los municipios cuentan con un relleno sanitario, por lo que deben hacer convenios para tal fin.

En la tabla que se muestra a continuación se relaciona la información detallada para cada municipio.

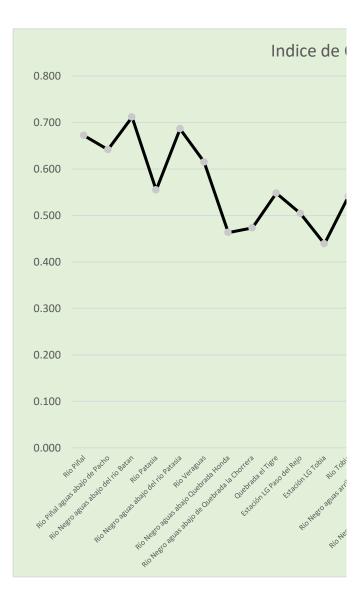
Tabla Dis	posición	Final	l municipios	cuenca	río l	Negro

Municipio	Lugar de disposición final	Ton/mes
Yacopi	R. S la doradita	6,89
La palma	R. S la doradita	6,89
Topaipi	R.S nuevo Mondoñedo	7,68
Villagomez	R.S nuevo mondoñedo	8.28
El peñón	R.S nuevo mondoñedo	13,38
Pacho	R.S nuevo mondoñedo	164,08
La peña	NR	21,39
Utica	R.S nuevo mondoñedo	62,98
Nimaima	R.S nuevo mondoñedo	28,028
Vergara	R.S nuevo mondoñedo	19,3

Quebrada Negra	R.S nuevo mondoñedo	45,73
Nocaima	R.S nuevo mondoñedo	59,91
Supata	R.S nuevo mondoñedo	32,79
Villeta	R.S nuevo mondoñedo	834,28
La vega	R.S nuevo mondoñedo	248
Albán	R.S nuevo mondoñedo	48,87
Caparrapi	R.S La doradita	79,3
Guaduas	R.S La doradita	427,39
Puerto salgar	R.S La doradita	126,23
Bituima	R.S nuevo mondoñedo	11,12
Viani	R.S nuevo mondoñedo	11,12
Guayabal de siquima	R.S nuevo mondoñedo	11,58
El rosal	R.S nuevo mondoñedo	>30,000 ton/mes

Tabla Porcentaje de residuos sólidos destinados a disposición final en la cuenca del rio negro

Municipio	% de residuos sólidos dispuestos
Yacopi	0,02
La palma	0,02
Topaipi	0,02
Villagomez	0,02
El peñón	0,04
Pacho	0,5
La peña	0,06
Utica	0,19
Nimaima	0,08
Vergara	0,05
Quebrada Negra	0,14
Nocaima	0,18
Supata	0,1
Villeta	2,5
La vega	0,7
Albán	0,15
Caparrapi	0,2
Guaduas	1,32
Puerto salgar	0,3
Bituima	0,03
Viani	0,03
Guayabal de siquima	0,03
El rosal	92,9


Relación contaminación del suelo y agua con el manejo y disposición de los residuos sólidos.

Los rellenos sanitarios causan problemas ambientales que afectan el suelo, el agua y el aire: la capa vegetal originaria de la zona desaparece, hay erosión del suelo, contamina la atmósfera con materiales inertes y microorganismos. Con el tiempo, alguna parte de ellos se irán descomponiendo y darán lugar a nuevos componentes químicos que provocarán la contaminación del medio y del suelo; además de ocasionar la pérdida de muchas de sus propiedades originales. En cuanto a la contaminación del suelo, la incorporación de materias como residuos, desechos tóxicos, productos químicos, desechos industriales y de construcción; producen desequilibrio físico, químico y biológico que afecta negativamente a las plantas, animales y humanos. Cuando se disponen los residuos en espacios libres y ésta contiene elementos tóxicos, ellos pueden producir contaminación de la capa vegetal de los suelos, impidiendo el desarrollo de actividades agrícolas. (Lima, 2012).

En cuanto a la composición química del agua, debido a la incorporación de elementos, como microorganismos, productos químicos, residuos industriales, aguas residuales y otros tipos.; la calidad de esta se puede deteriorar ocasionando inhabilidad para usarla con algún fin. La contaminación del agua puede darse en rellenos sanitarios no diseñados siguiendo normas técnicas. Así, puede haber contaminación de aguas subterráneas o de cuerpos de agua superficiales por agua de escorrentía. Para el caso específico de la quema de los residuos, existirá contaminación del agua si las partículas producidas llegan hasta cuerpos de agua. Puede haber contaminación por medio de la producción de lixiviados que son las sustancias procedentes de la basura descompuesta y que se filtra al suelo por medio del agua (Cadavid & Vélez, 2010). Esto puede ser representativo con base a la información obtenida en los PGIRS de los municipios que conforman la cuenca del rio negro, donde en el mayor de los casos sobre todo en la parte rural los residuos son dispuestos en campo abierto, quemados o enterrados provocando que se puedan generan algún tipo de alteración en el agua por escorrentías.

Punto_de_Muestreo	VALOR	DESCRIPCION	TEMPORADA
Río Piñal	0.672	REGULAR	HUMEDO
Río Piñal aguas abajo de Pacho	0.641	REGULAR	HUMEDO
Río Negro aguas abajo del río Batan	0.712	ACEPTABLE	HUMEDO
Río Patasia	0.555	REGULAR	HUMEDO
Río Negro aguas abajo del río Patasia	0.686	REGULAR	HUMEDO
Río Veraguas	0.615	REGULAR	HUMEDO
Río Negro aguas abajo Quebrada Hon	0.463	MALO	HUMEDO
Río Negro aguas abajo de Quebrada I	0.473	MALO	HUMEDO
Quebrada el Tigre	0.548	REGULAR	HUMEDO
Estación LG Paso del Rejo	0.504	REGULAR	HUMEDO
Estación LG Tobia	0.439	MALO	HUMEDO
Río Tobia	0.541	REGULAR	HUMEDO
Río Negro aguas arriba de Utica	0.378	MALO	HUMEDO
Quebrada Negra	0.417	MALO	HUMEDO
Río Negro aguas abajo Quebrada Neg	0.312	MALO	HUMEDO
Quebrada Terama	0.335	MALO	HUMEDO
Río Negro aguas abajo Quebrada Tera	0.336	MALO	HUMEDO
Río Pata	0.547	REGULAR	HUMEDO
Estación LG Guaduero	0.346	MALO	HUMEDO
Río Guaduero	0.522	REGULAR	HUMEDO
Quebrada Zusne	0.528	REGULAR	HUMEDO
Río Negro aguas abajo Quebrada Zusi	0.339	MALO	HUMEDO
Quebrada Guatachi	0.398	MALO	HUMEDO
Río Cambras	0.565	REGULAR	HUMEDO
Estación LG Colorados	0.390	MALO	HUMEDO
Río Negro aguas arriba río Macopay	0.391	MALO	HUMEDO
Río Negro aguas abajo de río Macopa	0.429	MALO	HUMEDO
Río Teran	0.570	REGULAR	HUMEDO
Río Guaguaqui	0.395	MALO	HUMEDO
Río Negro aguas abajo del río Guagua	0.408	MALO	HUMEDO
Estación L6 Puerto libre	0.431	MALO	HUMEDO
Río Negrito	0.572	REGULAR	HUMEDO
Desembocadura río Magdalena	0.374	MALO	HUMEDO

regular	14.000	42%
aceptable	1.000	3%
malo	18.000	55%
	33.000	100%

Punto_de_Muestreo	Fecha	TEMPERATUR A_DEL_AGUA	OXIGENO_DE _SATURACIO N
Río Piñal	feb-11	17.3	7.3
Río Piñal	jul-11	17.3	7.3
Río Piñal	ene-12	17.3	7.3
Río Piñal	jun-12	15.8	7.5
Río Piñal	abr-13	15.9	7.5
Río Piñal	dic-13	17.9	7.2
Río Piñal	abr-14	14.0	7.9
Río Piñal	jun-15	15.5	7.6
Río Piñal	may-16	14.4	7.8
Río Piñal	sep-16	15.8	7.6
Río Piñal	jun-17	15.1	7.7

Río Piñal aguas abajo de Pacho	ago-10	18.0	7.6
Río Piñal aguas abajo de Pacho	feb-11	20.5	7.4
Río Piñal aguas abajo de Pacho	jul-11	20.5	7.2
Río Piñal aguas abajo de Pacho	abr-13	21.6	7.2
Río Piñal aguas abajo de Pacho	dic-13	19.8	7.4
Río Piñal aguas abajo de Pacho	abr-14	19.3	7.4
Río Piñal aguas abajo de Pacho	jun-15	18.3	7.6
Río Piñal aguas abajo de Pacho	ago-15	17.2	7.7
Río Piñal aguas abajo de Pacho	may-16	18.7	7.5
Río Piñal aguas abajo de Pacho	sep-16	17.8	7.6
Río Piñal aguas abajo de Pacho	jun-17	17.2	7.7

Río Negro aguas abajo del río Batan	ago-10	19.4	7.6
Río Negro aguas abajo del río Batan	feb-11	21.2	7.3
Río Negro aguas abajo del río Batan	jul-11	21.2	7.3
Río Negro aguas abajo del río Batan	ene-12	21.2	7.3
Río Negro aguas abajo del río Batan	abr-13	21.8	7.2
Río Negro aguas abajo del río Batan	dic-13	19.5	7.5
Río Negro aguas abajo del río Batan	abr-14	19.6	7.5
Río Negro aguas abajo del río Batan	jun-15	20.8	7.5
Río Negro aguas abajo del río Batan	ago-15	19.9	7.6
Río Negro aguas abajo del río Batan	may-16	21.5	7.2

Río Negro aguas abajo del río Batan	sep-16	20.8	7.3
Río Negro aguas abajo del río Batan	jun-17	20.3	7.4

Río Patasia	ago-10	20.1	7.6
Río Patasia	feb-11	21.7	7.4
Río Patasia	jul-11	21.7	7.4
Río Patasia	ene-12	21.7	7.4
Río Patasia	abr-13	21.7	7.4
Río Patasia	dic-13	21.3	7.4
Río Patasia	abr-14	20.4	7.6
Río Patasia	jun-15	20.0	7.6
Río Patasia	ago-15	21.1	7.4
Río Patasia	may-16	21.1	7.4
Río Patasia	sep-16	22.2	7.3
Río Patasia	jun-17	19.6	7.7

Río Negro aguas abajo del río Patasia	ago-10	20.3	7.6
Río Negro aguas abajo del río Patasia	feb-11	21.5	7.4
Río Negro aguas abajo del río Patasia	jul-11	21.5	7.4
Río Negro aguas abajo del río Patasia	ene-12	21.5	7.4
Río Negro aguas abajo del río Patasia	abr-13	24.2	7.0
Río Negro aguas abajo del río Patasia	dic-13	20.8	7.5
Río Negro aguas abajo del río Patasia	abr-14	19.8	7.7
Río Negro aguas abajo del río Patasia	jun-15	21.6	7.4
Río Negro aguas abajo del río Patasia	ago-15	20.5	7.6
Río Negro aguas abajo del río Patasia	may-16	20.8	7.5
Río Negro aguas abajo del río Patasia	sep-16	22.9	7.2
Río Negro aguas abajo del río Patasia	jun-17	19.9	7.7

Río Veraguas	ago-10	21.6	7.5
Río Veraguas	feb-11	21.2	7.3
Río Veraguas	jul-11	21.2	7.3
Río Veraguas	abr-13	21.2	7.5
Río Veraguas	abr-14	19.9	7.5

Río Veraguas	jun-15	22.2	7.2
Río Veraguas	ago-15	20.2	7.5
Río Veraguas	sep-16	22.3	7.2
Río Veraguas	jun-17	18.8	7.7

Río Negro aguas abajo del río Veraguas	ago-10	21.2	7.6
Río Negro aguas abajo del río Veraguas	feb-11	22.6	7.4
Río Negro aguas abajo del río Veraguas	jul-11	22.6	7.4
Río Negro aguas abajo del río Veraguas	ene-12	22.6	7.4
Río Negro aguas abajo del río Veraguas	abr-13	22.6	7.4
Río Negro aguas abajo del río Veraguas	dic-13	23.6	7.2
Río Negro aguas abajo del río Veraguas	abr-14	19.9	7.8
Río Negro aguas abajo del río Veraguas	jun-15	22.4	7.4
Río Negro aguas abajo del río Veraguas	may-16	21.9	7.5
Río Negro aguas abajo del río Veraguas	sep-16	25.0	7.1

Quebrada Honda	ago-10	21.3	7.8
Quebrada Honda	feb-11	22.4	7.6
Quebrada Honda	jul-11	22.4	7.6
Quebrada Honda	abr-13	22.4	7.6
Quebrada Honda	dic-13	20.4	7.9
Quebrada Honda	abr-14	21.7	7.7
Quebrada Honda	jun-15	21.9	7.7
Quebrada Honda	ago-15	22.8	7.6
Quebrada Honda	may-16	22.7	7.6
Quebrada Honda	sep-16	23.3	7.5

Río Negro aguas abajo Quebrada Honda	ago-10	21.9	7.7
Río Negro aguas abajo Quebrada Honda	feb-11	22.4	7.6
Río Negro aguas abajo Quebrada Honda	jul-11	22.4	7.6
Río Negro aguas abajo Quebrada Honda	ene-12	22.4	7.6
Río Negro aguas abajo Quebrada Honda	abr-13	22.4	7.7

Río Negro aguas abajo Quebrada Honda	dic-13	20.1	8.0
Río Negro aguas abajo Quebrada Honda	abr-14	22.1	7.7
Río Negro aguas abajo Quebrada Honda	jun-15	24.1	7.4
Río Negro aguas abajo Quebrada Honda	may-16	23.2	7.5
Río Negro aguas abajo Quebrada Honda	sep-16	23.9	7.4
Río Negro aguas abajo Quebrada Honda	jun-17	22.8	7.6

Quebrada la Chorrera	ago-10	22.4	7.6
Quebrada la Chorrera	feb-11	22.2	7.7
Quebrada la Chorrera	jul-11	22.2	7.7
Quebrada la Chorrera	abr-13	22.2	7.7
Quebrada la Chorrera	dic-13	21.0	7.8
Quebrada la Chorrera	abr-14	21.7	7.8
Quebrada la Chorrera	jun-15	22.2	7.7
Quebrada la Chorrera	ago-15	22.0	7.7
Quebrada la Chorrera	may-16	22.0	7.7
Quebrada la Chorrera	sep-16	22.0	7.7

ago-10	21.9	7.7
feb-11	22.3	7.7
jul-11	22.3	7.7
ene-12	22.3	7.7
abr-13	22.3	7.7
dic-13	20.2	8.0
abr-14	22.6	7.6
jun-15	24.9	7.3
ago-15	24.1	7.4
may-16	23.1	7.5
sep-16	23.0	7.6
jun-17	22.4	7.6
	feb-11 jul-11 ene-12 abr-13 dic-13 abr-14 jun-15 ago-15 may-16 sep-16	feb-11 22.3 jul-11 22.3 ene-12 22.3 abr-13 22.3 dic-13 20.2 abr-14 22.6 jun-15 24.9 ago-15 24.1 may-16 23.1 sep-16 23.0

Río Negro aguas arriba del río Murca	feb-11	23.2	7.6

Río Murca	abr-14	22.0	7.7
Río Murca	jun-15	22.7	7.6
Río Murca	ago-15	22.3	7.7
Río Murca	sep-16	24.3	7.4

Estación LG Charco largo	ago-10	22.1	7.8
Estación LG Charco largo	feb-11	23.1	7.6
Estación LG Charco largo	jul-11	23.1	7.6
Estación LG Charco largo	ene-12	23.1	7.6
Estación LG Charco largo	abr-13	23.1	7.6
Estación LG Charco largo	dic-13	21.1	7.9
Estación LG Charco largo	abr-14	22.6	7.6
Estación LG Charco largo	jun-15	23.1	7.6
Estación LG Charco largo	ago-15	23.0	7.6
Estación LG Charco largo	may-16	24.5	7.4
Estación LG Charco largo	sep-16	24.3	7.4

Río Pinzaima	ago-10	22.2	8.0
Río Pinzaima	feb-11	23.8	7.5
Río Pinzaima	jul-11	23.8	7.5
Río Pinzaima	ene-12	23.8	7.5
Río Pinzaima	abr-13	24.9	7.4
Río Pinzaima	dic-13	21.4	7.9
Río Pinzaima	abr-14	23.2	7.7
Río Pinzaima	jun-15	23.2	7.8
Río Pinzaima	ago-15	20.2	8.3
Río Pinzaima	may-16	22.3	7.9

Río Negro aguas abajo del río Pinzaima	ago-10	22.9	7.9
Río Negro aguas abajo del río Pinzaima	feb-11	23.8	7.7
Río Negro aguas abajo del río Pinzaima	jul-11	23.8	7.7
Río Negro aguas abajo del río Pinzaima	abr-13	24.7	7.4

Río Negro aguas abajo del río Pinzaima	dic-13	22.2	7.8
Río Negro aguas abajo del río Pinzaima	abr-14	23.6	7.7
Río Negro aguas abajo del río Pinzaima	jun-15	23.6	7.7
Río Negro aguas abajo del río Pinzaima	ago-15	19.8	8.3
Río Negro aguas abajo del río Pinzaima	may-16	23.4	7.8
Río Negro aguas abajo del río Pinzaima	sep-16	23.2	7.8

ago-10	22.2	8.0
feb-11	23.3	7.8
jul-11	23.3	7.8
ene-12	23.3	7.8
abr-13	24.5	7.5
dic-13	21.3	7.9
abr-14	25.1	7.5
jun-15	24.6	7.6
ago-15	19.8	8.4
may-16	24.3	7.7
sep-16	22.8	7.9
jun-17	22.5	7.9
	feb-11 jul-11 ene-12 abr-13 dic-13 abr-14 jun-15 ago-15 may-16 sep-16	feb-11 23.3 jul-11 23.3 ene-12 23.3 abr-13 24.5 dic-13 21.3 abr-14 25.1 jun-15 24.6 ago-15 19.8 may-16 24.3 sep-16 22.8

Estación LG Paso del Rejo	ago-10	24.1	7.7
Estación LG Paso del Rejo	feb-11	23.2	7.7
Estación LG Paso del Rejo	jul-11	23.2	7.7
Estación LG Paso del Rejo	ene-12	23.2	7.7
Estación LG Paso del Rejo	abr-13	24.6	7.5
Estación LG Paso del Rejo	dic-13	21.0	8.0
Estación LG Paso del Rejo	abr-14	25.1	8.1
Estación LG Paso del Rejo	jun-15	24.2	7.7
Estación LG Paso del Rejo	ago-15	20.4	8.2
Estación LG Paso del Rejo	may-16	24.3	7.6
Estación LG Paso del Rejo	sep-16	23.2	7.8
Estación LG Paso del Rejo	jun-17	22.6	7.9

Estación LG Tobia	ago-10	24.0	7.8
Estación LG Tobia	feb-11	24.4	7.6
Estación LG Tobia	jul-11	24.4	7.6
Estación LG Tobia	ene-12	24.4	7.6
Estación LG Tobia	abr-13	24.6	7.6
Estación LG Tobia	dic-13	20.8	8.1
Estación LG Tobia	abr-14	24.2	8.3
Estación LG Tobia	jun-15	24.4	7.7
Estación LG Tobia	ago-15	26.6	7.3
Estación LG Tobia	may-16	24.3	7.6
Estación LG Tobia	sep-16	23.8	7.7
Estación LG Tobia	jun-17	23.4	7.7

Río Tobia	ago-10	27.3	7.3
Río Tobia	feb-11	25.0	7.6
Río Tobia	jul-11	25.0	7.6
Río Tobia	abr-13	27.3	7.2
Río Tobia	dic-13	21.0	8.2
Río Tobia	abr-14	25.3	8.1
Río Tobia	jun-15	25.5	7.5
Río Tobia	ago-15	26.8	7.3
Río Tobia	may-16	25.0	7.6
Río Tobia	sep-16	24.5	7.6
Río Tobia	jun-17	24.1	7.7

Río Negro aguas arriba del Utica	ago-10	22.2	8.2
Río Negro aguas arriba de Utica	feb-11	17.7	8.9
Río Negro aguas arriba de Utica	jul-11	22.4	8.1
Río Negro aguas arriba de Utica	abr-13	24.0	7.9
Río Negro aguas arriba de Utica	jun-15	24.3	7.8
Río Negro aguas arriba de Utica	ago-15	24.9	7.8
Río Negro aguas arriba de Utica	may-16	22.2	8.2
Río Negro aguas arriba de Utica	sep-16	25.6	7.7
Río Negro aguas arriba de Utica	jun-17	22.8	8.1

Quebrada Negra	feb-11	31.8	6.9
Quebrada Negra	jul-11	26.4	7.5
Quebrada Negra	abr-13	24.7	7.8
Quebrada Negra	dic-13	27.6	7.4
Quebrada Negra	jun-15	33.8	6.6
Quebrada Negra	ago-15	26.9	7.5
Quebrada Negra	may-16	27.1	7.5
Quebrada Negra	sep-16	33.1	6.7
Quebrada Negra	jun-17	22.6	8.1

Río Negro aguas abajo Quebrada Negra	ago-10	27.0	7.5
Río Negro aguas abajo Quebrada Negra	feb-11	28.7	7.3
Río Negro aguas abajo Quebrada Negra	jul-11	25.6	7.7
Río Negro aguas abajo Quebrada Negra	abr-13	27.7	7.4
Río Negro aguas abajo Quebrada Negra	dic-13	23.5	8.0
Río Negro aguas abajo Quebrada Negra	jun-15	32.0	6.8
Río Negro aguas abajo Quebrada Negra	ago-15	26.1	7.6
Río Negro aguas abajo Quebrada Negra	may-16	25.8	7.6
Río Negro aguas abajo Quebrada Negra	sep-16	28.4	7.3
Río Negro aguas abajo Quebrada Negra	jun-17	23.4	8.0

Quebrada Terama	feb-11	26.4	7.6
Quebrada Terama	jul-11	25.9	7.6
Quebrada Terama	abr-13	25.6	7.7
Quebrada Terama	dic-13	26.0	7.6
Quebrada Terama	jun-15	27.5	7.4
Quebrada Terama	ago-15	26.4	7.6
Quebrada Terama	may-16	26.6	7.5
Quebrada Terama	sep-16	23.6	8.0
Quebrada Terama	jun-17	26.3	7.6

Río Negro aguas abajo Quebrada Terama	ago-10	25.9	7.6
Río Negro aguas abajo Quebrada Terama	feb-11	24.4	7.9
Río Negro aguas abajo Quebrada Terama	jul-11	24.4	7.9
Río Negro aguas abajo Quebrada Terama	abr-13	24.9	7.8
Río Negro aguas abajo Quebrada Terama	dic-13	24.5	7.8
Río Negro aguas abajo Quebrada Terama	jun-15	25.4	7.7
Río Negro aguas abajo Quebrada Terama	ago-15	24.4	7.9
Río Negro aguas abajo Quebrada Terama	may-16	22.9	8.1
Río Negro aguas abajo Quebrada Terama	sep-16	23.5	8.0
Río Negro aguas abajo Quebrada Terama	jun-17	24.3	7.9

Río Pata	ago-10	28.9	7.2
Río Pata	feb-11	30.1	7.1
Río Pata	jul-11	25.6	7.7
Río Pata	abr-13	24.7	7.8
Río Pata	dic-13	26.7	7.5
Río Pata	jun-15	28.0	7.3
Río Pata	ago-15	15.8	9.3
Río Pata	may-16	27.1	7.5
Río Pata	sep-16	27.5	7.4
Río Pata	jun-17	29.4	7.1

Río Negro aguas abajo río Pata	ago-10	25.9	7.7
Río Negro aguas abajo río Pata	jul-11	24.5	7.9
Río Negro aguas abajo río Pata	abr-13	24.8	7.8
Río Negro aguas abajo río Pata	dic-13	23.7	8.0
Río Negro aguas abajo río Pata	jun-15	28.0	7.4
Río Negro aguas abajo río Pata	ago-15	21.2	8.4
Río Negro aguas abajo río Pata	may-16	26.7	7.5
Río Negro aguas abajo río Pata	sep-16	24.5	7.9

Estación LG Guaduero	ago-10	23.0	8.1
Estación LG Guaduero	feb-11	20.9	8.5
Estación LG Guaduero	jul-11	25.0	7.8
Estación LG Guaduero	ene-12	25.0	7.8
Estación LG Guaduero	abr-13	25.2	7.8
Estación LG Guaduero	dic-13	22.7	8.2
Estación LG Guaduero	abr-14	27.2	7.5
Estación LG Guaduero	jun-15	22.0	8.3
Estación LG Guaduero	ago-15	27.2	7.7
Estación LG Guaduero	may-16	23.8	8.0
Estación LG Guaduero	sep-16	25.3	7.8
Estación LG Guaduero	jun-17	23.0	8.1

Río Guaduero	ago-10	28.4	7.4
Río Guaduero	feb-11	21.6	8.4
Río Guaduero	jul-11	23.9	8.0
Río Guaduero	ene-12	23.9	8.0
Río Guaduero	abr-13	26.4	7.6
Río Guaduero	dic-13	23.5	8.1
Río Guaduero	abr-14	29.0	7.3
Río Guaduero	jun-15	21.1	8.4
Río Guaduero	ago-15	26.0	7.7
Río Guaduero	may-16	24.1	7.9
Río Guaduero	sep-16	25.8	7.7
Río Guaduero	jun-17	24.4	7.9

Quebrada Zusne	feb-11	23.3	8.1
Quebrada Zusne	jul-11	25.0	7.9
Quebrada Zusne	abr-13	27.3	7.5
Quebrada Zusne	dic-13	24.3	8.0
Quebrada Zusne	abr-14	28.5	7.4
Quebrada Zusne	jun-15	24.2	8.0
Quebrada Zusne	ago-15	0.0	7.8
Quebrada Zusne	may-16	27.5	7.5
Quebrada Zusne	sep-16	25.8	7.7

Quebrada Zusne	jun-17	24.4	7.9

Río Negro aguas abajo Quebrada Zusne	ago-10	27.0	7.6
Río Negro aguas abajo Quebrada Zusne	feb-11	21.5	8.4
Río Negro aguas abajo Quebrada Zusne	jul-11	25.0	7.9
Río Negro aguas abajo Quebrada Zusne	abr-13	26.6	7.7
Río Negro aguas abajo Quebrada Zusne	dic-13	25.0	7.9
Río Negro aguas abajo Quebrada Zusne	abr-14	27.0	7.5
Río Negro aguas abajo Quebrada Zusne	ago-15	0.0	7.9
Río Negro aguas abajo Quebrada Zusne	may-16	26.1	7.7
Río Negro aguas abajo Quebrada Zusne	sep-16	27.6	7.4
Río Negro aguas abajo Quebrada Zusne	jun-17	25.0	7.8

Quebrada Guatachi	ago-10	32.0	7.0
Quebrada Guatachi	feb-11	25.5	7.8
Quebrada Guatachi	jul-11	25.9	7.8
Quebrada Guatachi	abr-13	25.9	7.8
Quebrada Guatachi	dic-13	26.9	7.7
Quebrada Guatachi	abr-14	31.7	7.0
Quebrada Guatachi	jun-15	26.9	7.6
Quebrada Guatachi	ago-15	15.9	9.5
Quebrada Guatachi	may-16	31.8	7.0
Quebrada Guatachi	sep-16	28.5	7.4
Quebrada Guatachi	jun-17	26.0	7.8

Río Cambras	ago-10	30.5	7.2
Río Cambras	feb-11	26.6	7.7
Río Cambras	jul-11	26.8	7.7
Río Cambras	abr-13	26.8	7.7
Río Cambras	dic-13	27.2	7.6
Río Cambras	abr-14	30.5	7.2
Río Cambras	jun-15	22.1	8.4

Río Cambras	ago-15	21.5	8.5
Río Cambras	may-16	31.3	7.1
Río Cambras	sep-16	27.7	7.6
Río Cambras	jun-17	28.4	7.5

Estación LG Colorados	feb-11	24.4	8.1
Estación LG Colorados	jul-11	24.1	8.1
Estación LG Colorados	ene-12	24.1	8.1
Estación LG Colorados	jun-12	26.6	7.7
Estación LG Colorados	abr-13	24.1	8.1
Estación LG Colorados	dic-13	23.5	8.2
Estación LG Colorados	abr-14	25.1	7.9
Estación LG Colorados	jun-15	25.3	7.9
Estación LG Colorados	ago-15	21.6	8.5
Estación LG Colorados	may-16	25.4	7.9
Estación LG Colorados	sep-16	25.5	7.9
Estación LG Colorados	jun-17	23.9	8.1

Río Negro aguas arriba río Macopay	feb-11	25.3	8.0
Río Negro aguas arriba río Macopay	jul-11	25.3	7.9
Río Negro aguas arriba río Macopay	ene-12	25.3	7.9
Río Negro aguas arriba río Macopay	jun-12	26.8	7.7
Río Negro aguas arriba río Macopay	abr-13	25.3	7.9
Río Negro aguas arriba río Macopay	abr-14	26.5	7.7
Río Negro aguas arriba río Macopay	jun-15	25.7	7.9
Río Negro aguas arriba río Macopay	ago-15	21.8	8.5
Río Negro aguas arriba río Macopay	may-16	26.5	7.7
Río Negro aguas arriba río Macopay	sep-16	28.1	7.5
Río Negro aguas arriba río Macopay	jun-17	24.6	8.0

Río Negro aguas abajo de río Macopay	dic-11	27.9	7.6
Río Negro aguas abajo río Macopay	jul-11	26.7	7.8

Río Negro aguas abajo del río Macopay	ene-12	26.7	7.8
Río Negro aguas abajo de río Macopay	jun-12	27.2	7.7
Río Negro aguas abajo del río Macopay	dic-13	29.1	7.4
Río Negro aguas abajo de río Macopay	abr-14	29.0	7.5
Río Negro aguas abajo de río Macopay	jun-15	28.2	7.6
Río Negro aguas abajo del río Macopay	ago-15	21.7	8.5
Río Negro aguas abajo de río Macopay	may-16	28.7	7.5
Río Negro aguas abajo de río Macopay	sep-16	27.6	7.7
Río Negro aguas abajo de río Macopay	jun-17	24.5	8.1

Río Teran	ago-10	0.0	8.5
Río Teran	feb-11	31.2	7.6
Río Teran	jul-11	27.5	7.7
Río Teran	ene-12	27.5	7.7
Río Teran	jun-12	26.0	7.9
Río Teran	abr-13	27.5	7.7
Río Teran	dic-13	30.3	7.3
Río Teran	abr-14	30.0	7.4
Río Teran	jun-15	29.6	7.4
Río Teran	ago-15	24.2	8.2
Río Teran	may-16	29.1	7.5
Río Teran	jun-17	27.5	7.7

Río Guaguaqui	ago-10	26.1	7.9
Río Guaguaqui	feb-11	26.0	7.9
Río Guaguaqui	jul-11	25.8	7.9
Río Guaguaqui	ene-12	25.8	7.9
Río Guaguaqui	abr-13	25.8	7.9
Río Guaguaqui	dic-13	26.1	7.9
Río Guaguaqui	jun-15	26.6	7.8
Río Guaguaqui	ago-15	0.0	7.9
Río Guaguaqui	may-16	26.1	7.9
Río Guaguaqui	sep-16	26.0	7.9
Río Guaguaqui	jun-17	24.9	8.1

Río Negro aguas abajo del río Guaguaqui	feb-11	26.2	7.9
Río Negro aguas abajo del río Guaguaqui	jul-11	26.9	7.8
Río Negro aguas abajo del río Guaguaqui	ene-12	26.9	7.8
Río Negro aguas abajo del río Guaguaqui	abr-13	26.9	7.8
Río Negro aguas abajo del río Guaguaqui	dic-13	26.5	7.9
Río Negro aguas abajo del río Guaguaqui	jun-15	28.6	7.6
Río Negro aguas abajo del río Guaguaqui	ago-15	0.0	7.8
Río Negro aguas abajo del río Guaguaqui	may-16	27.8	7.7
Río Negro aguas abajo del río Guaguaqui	sep-16	28.0	7.6
Río Negro aguas abajo del río Guaguaqui	jun-17	25.9	7.9

Estación LG Puerto Libre	feb-11	27.0	7.8
Estación LG Puerto Libre	jul-11	27.5	7.7
Estación LG Puerto Libre	ene-12	27.5	7.7
Estación LG Puerto Libre	abr-13	27.5	7.7
Estación LG Puerto Libre	dic-13	26.9	7.8
Estación LG Puerto Libre	jun-15	29.6	7.4
Estación L6 Puerto libre	ago-15	0.0	7.7
Estación L6 Puerto libre	may-16	28.1	7.6
Estación L6 Puerto libre	jun-17	26.6	7.8

Río Negrito	ago-10	27.1	7.8
Río Negrito	feb-11	28.5	7.6
Río Negrito	jul-11	27.5	7.7
Río Negrito	ene-12	27.5	7.7
Río Negrito	abr-13	27.5	7.7
Río Negrito	dic-13	27.2	7.8
Río Negrito	jun-15	28.6	7.6
Río Negrito	ago-15	28.5	7.6
Río Negrito	may-16	28.2	7.6
Río Negrito	sep-16	27.0	7.8
Río Negrito	jun-17	26.9	7.8

Desembocadura río Magdalena	feb-11	28.0	7.7
Desembocadura río Magdalena	jul-11	28.2	7.6
Desembocadura río Magdalena	ene-12	28.2	7.6
Desembocadura río Magdalena	abr-13	28.2	7.6
Desembocadura río Magdalena	dic-13	27.1	7.8
Desembocadura río Magdalena	jun-15	31.0	7.3
Desembocadura río Magdalena	ago-15	31.2	7.2
Desembocadura río Magdalena	sep-16	29.6	7.4
Desembocadura río Magdalena	jun-17	26.8	7.8

CAUDAL_(Lp s)	LATITUD_(X)	LONGITUD_(Y)	ALTITUD_(m snm)	OXIGENO_DI SUELTO_(OD)	%_SATURAC ION
	1054710	990460	2178	7.10	97.04
			2206	8.30	113.84
			2206	8.10	111.10
			2206	7.70	102.28
	1054707	990450	2206	7.70	102.50
	1054707	990450	2184	7.40	102.51
	1055606	990606	2146	8.20	103.91
	990449	154708	2192	6.00	79.04
	1054702	990448	2193	6.38	82.05
	1055606	990606	2146	6.50	85.69
	1055606	990062	2146	7.10	92.19

1059402	991039	1754	7.40	97.33
1061199	990756	1616	6.90	93.82
		1745	7.60	105.03
1061060	990820	1653	7.00	97.80
1061068	990823	1652	7.30	98.37
1059407	991039	1745	7.80	105.27
1060068	991168	1724	6.00	79.12
1059436	991049	1783	6.80	88.27
106004	991162	1767	7.80	104.27
1059407	991039	1745	6.30	82.43
1059407	991039	1745	7.20	93.02

1062154	990659	1531	7.20	94.79
10611281	990674	1609	6.80	93.73
		1581	7.40	101.65
		1581	7.90	108.51
1061265	990731	1621	7.30	101.98
1061223	990745	1633	7.40	98.88
1062130	990062	1581	7.80	103.75
988168	1063854	1414	6.80	90.74
1063285	988596	1456	6.70	88.27
1062130	990062	1581	8.00	110.54

1062130	990062	1581	5.80	79.04
1062130	990062	1581	6.90	93.09

1063937	988317	1387	7.30	95.73
		1417	5.60	76.05
		1417	7.70	104.57
		1417	7.80	105.93
1063944	988377	1417	7.40	100.56
1063945	988365	1422	7.30	98.48
1063938	988373	1417	7.40	98.00
988364	1063939	1457	5.40	71.30
1063938	9883873	1455	5.90	79.61
1063938	988373	1417	6.52	87.56
1063938	988373	1417	5.70	78.22
1063438	988373	1370	6.40	82.91

1064336	987200	1335	7.90	103.34
		1370	6.70	90.15
		1370	7.70	103.61
		1370	7.80	104.95
1064290	987154	1389	7.30	103.74
1064342	987198	1363	7.30	96.79
1064338	987199	1370	8.40	109.26
987205	1064348	1370	5.40	72.80
1064310	987229	1360	6.90	90.91
1064338	987199	1370	7.60	100.86
1064338	987199	1370	5.90	81.59
1063938	988373	1370	7.10	92.54

1065947	986465	1261	7.10	94.42
		1539	6.20	84.76
		1539	6.90	94.33
1065891	986431	1342	7.80	104.03
1067777	987233	1539	7.80	103.84

987233	1067777	1539	5.20	72.46
1067858	987256	1549	6.30	84.48
1067777	987233	1539	5.90	82.38
1067777	987233	1539	7.00	91.12

1065226	986297	1247	7.30	96.15
		1229	6.20	83.74
		1229	7.80	105.35
		1229	7.30	98.59
1065926	985809	1229	7.40	99.94
1065903	986231	1279	7.20	99.76
1065926	985809	1229	7.00	89.63
986284	1065929	1258	4.80	64.81
1065926	985809	1229	6.24	83.14
1065926	985809	1229	7.00	98.96

1069825	978171	1019	5.40	69.25
1069807	978178	1021	6.90	90.34
		1025	7.40	96.94
1070174	977923	1025	7.40	96.94
1069828	978171	1061	5.80	73.45
1070179	977923	1025	8.00	103.48
1069824	978177	1042	6.90	89.79
1070179	977923	1025	7.30	95.63
-	-	1025	5.70	75.18
1070179	977923	1033	7.80	104.17

1070704	976824	1005	5.50	71.24
1070453	977366	1010	6.80	88.96
		1009	7.40	96.80
		1009	7.40	96.80
1070426	977444	1001	7.40	96.70

1070444	977366	1044	6.60	82.91
1070426	977444	1009	8.30	107.98
1070448	977368	1047	7.50	101.88
-	-	1009	6.60	87.71
1074426	977444	1025	7.30	98.51
1070448	977365	1030	8.70	115.04

1071086	975989	1004	5.40	70.62
1071084	975991	1007	7.20	93.83
		1005	8.00	104.23
1071330	976006	1005	7.10	92.51
1071088	975989	1030	5.90	75.32
1071330	976006	1005	7.10	91.61
1071096	975997	1027	6.60	86.23
1071330	976006	1005	6.90	89.90
-	-	1005	6.40	83.06
1071330	976006	1005	6.20	80.47

1070877	975682	1000	5.40	69.90
1070850	975662	1000	7.10	92.63
		999	7.50	97.83
		999	7.40	96.53
1071051	975489	991	7.10	92.52
1078868	975659	1026	6.20	77.86
1071051	975489	999	6.80	89.22
1070906	975670	1019	7.00	96.19
1071051	975489	999	8.80	118.82
-	-	999	8.00	105.98
1071051	975489	1005	7.60	100.56
1070935	975550	1016	8.20	107.40

1072695	970814	964	7.30	96.37

1072657	970786	990	8.90	115.29
1072824	970829	959	5.90	77.17
1072657	970786	990	6.30	82.09
1072657	970786	957	7.70	103.81

1072767	970516	930	5.60	72.14
1072737	970638	956	7.30	96.09
		984	7.30	96.43
		984	7.60	100.39
1042469	970485	984	7.20	95.11
1072849	970678	968	6.60	83.77
1072469	970485	984	7.90	103.46
1072798	970662	974	5.90	77.91
1072469	970485	984	6.30	83.14
-	-	984	5.90	80.11
1072469	970485	950	8.50	114.49

1060701	965117	715	8.10	101.76
		938	5.90	78.59
		938	7.20	95.90
		938	7.70	102.56
1060647	965128	938	7.40	100.65
1060641	965128	938	7.00	89.04
1060474	965143	776	7.10	91.63
1060691	965138	734	6.90	88.57
1060394	964937	719	5.80	70.09
1060474	965143	776	7.90	100.20

1060617	964904	706	8.00	101.75
		719	5.80	75.15
		719	4.40	57.01
1058494	963625	905	7.30	98.51

1060647	963625	905	6.70	86.20
1060394	964937	719	6.40	82.63
1060641	964933	731	7.30	94.39
1060394	964937	719	5.20	62.34
1060394	964937	719	8.00	102.89
-	-	719	6.80	87.13

1058031	963677	682	7.20	90.08
		708	5.10	65.38
		708	7.10	91.02
		708	7.90	101.27
1058183	963567	839	6.60	87.99
1058183	963567	875	6.80	85.64
1057801	963696	708	5.50	72.93
1058031	963693	708	6.90	90.65
158024	963681	709	5.30	63.46
1057801	963696	708	8.20	107.13
-	-	708	6.10	77.45
1057801	963696	708	5.90	74.48

1058149	963496	690	6.60	85.70
		839	5.70	74.12
		839	7.30	94.92
		839	7.60	98.82
1058133	963231	839	6.60	88.16
1058133	963231	839	7.10	88.49
1057950	963513	114	5.50	67.67
1058136	963500	708	7.00	91.28
1057950	963513	714	6.50	78.81
1057950	963513	714	8.10	105.90
-	-	714	6.80	87.07
1057950	963513	714	6.40	81.01

1058527	959017	646	7.80	100.54
		754	5.70	75.00
		754	6.90	90.79
		754	7.90	103.94
1058396	958853	754	7.00	92.50
1058396	958853	754	7.50	92.12
1058302	959034	71	5.20	62.58
1058538	959026	663	6.20	80.69
1058302	959034	754	7.40	101.47
1058302	959034	754	7.80	102.49
-	-	754	7.20	93.72
1058302	959034	754	6.60	85.26

1058264	95862	641	5.60	76.66
		708	5.80	76.77
		708	7.30	96.62
1058048	958611	708	6.80	93.88
1058048	958611	708	7.00	85.83
1058031	958630	114	6.10	75.33
1058240	958612	661	6.70	88.98
1058031	958630	708	6.90	94.40
1058031	958630	708	8.00	105.89
-	-	708	7.60	99.66
1058031	958630	708	6.40	83.30

1065614	955549	488	5.70	69.59
		508	7.50	83.91
		508	6.30	77.43
1065613	9955525	508	7.00	88.67
1066042	955323	519	6.40	81.64
1065615	955529	511	6.10	78.61
-	-	508	8.00	97.92
1065613	955545	515	3.80	49.63
1065618	955542	505	6.90	85.40

		508	6.30	91.76
		508	4.10	54.31
1065819	955096	516	7.00	89.93
1065832	955116	513	6.80	92.08
1066561	955158	509	4.80	72.34
1065807	955112	515	5.60	74.90
-	-	508	6.60	88.51
1065971	955243	511	3.40	50.65
1065810	955105	510	5.70	70.33

1066195	955410	490	5.20	69.46
		490	5.50	75.73
		490	6.00	78.08
1066789	854300	489	6.70	90.61
1066796	954335	495	7.70	96.46
1066683	955180	500	5.30	77.38
1066292	955405	506	6.60	86.90
-	-	505	6.80	89.03
1066346	955340	505	3.80	52.14
1079786	954318	493	7.00	87.51

		507	6.00	79.45
		507	6.60	86.66
1066590	955924	520	6.40	83.65
1066587	955948	506	7.20	94.63
1067024	955719	510	5.70	77.02
1066588	955923	515	7.00	92.61
-	-	507	6.80	90.37
-	-	507	3.40	42.74
1066588	955923	513	6.50	85.97

	1067168	953118	478	5.60	73.21
			488	6.30	80.20
			488	5.20	66.17
	1066779	953284	490	7.60	97.68
	1066841	953536	485	6.90	87.97
	1067356	953200	492	6.20	80.45
	1066639	955257	501	6.70	85.24
	-	-	488	8.10	100.23
	-	-	488	5.30	66.34
	1066928	953386	496	7.10	90.31
0					

1068810	952936	497	5.20	71.92
		497	5.00	70.62
		497	6.50	84.69
1070882	953064	540	7.40	95.36
1070872	952997	538	7.10	94.90
1068318	952527	497	7.10	96.64
1067890	952740	497	7.70	82.66
-	-	497	5.90	79.02
-	-	497	5.30	71.50
1070884	953062	550	6.70	94.12

1066718	951966	469	5.20	67.90
		480	6.30	80.23
1066684	952059	480	7.40	94.82
1066709	952004	485	7.60	95.45
1067078	951965	481	7.10	96.44
1066657	952144	486	8.20	98.16
-	-	480	7.60	100.84
-	-	480	5.20	66.22

1065954	944787	434	7.00	86.20
1066176	944572	419	7.00	82.61
		449	7.80	99.90
		449	7.10	90.94
1065252	944768	440	5.50	70.64
1065725	944789	431	7.90	96.69
1066381	944563	449	6.30	84.02
1065956	944781	451	7.40	89.58
1065962	944786	205	7.10	91.80
1066381	944563	449	6.50	81.42
1066381	954503	449	6.17	79.48
1066608	944563	449	7.50	92.53

1066139	943728	430	7.40	100.58
1066149	943948	387	5.90	70.31
		451	8.30	104.21
		451	7.70	96.68
1066151	943720	424	7.00	91.72
1065925	943744	417	7.50	93.04
1066560	943481	451	8.50	117.08
1066161	9473743	436	7.30	86.67
1066135	943703	436	7.30	95.10
1066560	943481	451	6.70	84.42
1066560	943481	491	5.49	71.75
1066560	943481	451	6.50	82.36

1079186	946495	375	5.40	66.38
		402	8.00	101.84
1079346	946531	395	5.20	69.00
1079105	946486	384	7.60	95.31
1079786	946329	402	6.40	86.83
1079358	946426	393	7.80	97.75
1079359	946427	382	6.90	88.88
1079786	946329	402	6.90	91.96
1079786	946329	402	6.47	83.62

		1079786	946329	402	6.60	83.12
--	--	---------	--------	-----	------	-------

1079328	946475	377	6.70	88.22
1088118	947946	356	7.00	82.93
		371	7.30	92.67
1080643	946056	371	6.30	82.29
1080413	946067	365	7.70	97.60
1081880	946020	518	6.90	92.49
1080754	945988	355	7.00	88.68
1081421	946208	367	7.00	90.56
1071860	946020	472	7.10	95.65
1081880	946020	472	6.90	88.65

1088788	947940	322	6.10	87.05
1088660	948054	345	5.00	63.80
		334	7.60	97.61
1083756	947920	350	6.90	88.80
1084593	947949	333	7.10	92.80
1089187	947707	334	5.70	81.05
1088805	947944	347	7.20	94.27
1088801	947952	339	7.70	81.22
1089187	947707	334	5.60	79.77
1089187	947707	334	8.70	117.02
1089187	947707	334	6.20	79.73

1090914	942249	302	5.80	80.46
1090665	942083	333	5.30	68.90
		321	7.70	100.22
1090880	942225	338	9.90	129.13
1090608	942227	320	6.10	80.03
1091302	942013	321	6.40	89.00
1089469	941342	339	7.50	89.70

1090875	942214	310	7.40	87.16
1091302	942013	321	8.00	112.80
1091302	942013	321	6.40	84.73
1091302	942013	321	6.40	85.79

1096594	942833	290	6.50	80.71
		308	7.40	91.56
		308	7.00	86.61
		308	7.40	95.89
1096587	942850	320	7.20	89.22
1096595	942819	317	7.20	88.20
1096590	942834	308	9.80	123.56
1096607	942742	319	7.00	88.70
1097041	942578	306	7.00	82.57
-	-	308	7.60	96.35
1096590	942834	321	8.60	109.41
1096590	942834	308	8.60	106.03

1105599	948664	247	6.30	79.11
		295	7.40	93.47
		295	7.20	90.95
		295	6.90	89.59
1105574	948790	267	7.00	88.11
1101285	946375	295	8.00	103.31
1101285	946375	295	7.30	92.91
1106062	948616	260	7.30	85.95
-	-	295	8.10	104.60
1101285	946375	295	9.50	126.25
1101285	946375	295	7.60	94.78

1106063	948710	245	6.20	81.59
		225	6.80	87.28

		225	7.00	89.84
		225	7.10	92.03
1106107	948548	264	6.00	80.84
1125080	956482	225	7.50	100.37
1125080	956482	225	7.10	93.69
1106416	948526	266	7.40	87.02
-	-	225	8.30	110.50
1125080	956482	225	8.00	104.45
1125080	956482	225	7.10	87.60

1127076	956993	192	7.50	87.89
1127099	956956	183	5.60	73.24
		212	6.40	83.28
		212	6.70	87.19
		212	7.30	92.44
		212	6.10	79.38
1127073	956984	216	8.50	116.23
1127082	956989	212	6.70	91.10
1127082	956989	212	6.70	90.46
1127534	956796	219	7.30	89.50
-	-	212	7.60	101.72
1127082	956989	212	4.40	57.25

1130573	956359	180	5.20	65.70
1130488	956291	179	6.30	79.45
		194	6.70	84.33
		194	6.90	86.85
		194	6.10	76.78
1130366	956443	202	7.70	97.56
1130344	956323	195	5.50	70.26
		194	7.80	98.55
1130359	956414	194	7.30	92.40
1130359	956414	194	5.20	65.70
1130385	956482	200	7.50	92.94

1132210	951272	171	6.10	77.13
		171	7.20	92.13
		187	6.50	83.34
		187	3.70	47.44
1131985	95094	186	7.40	94.25
1132024	950911	186	5.40	71.41
		187	7.40	95.12
1132009	950921	187	6.90	89.97
1130009	950921	187	4.10	53.65
1132038	950920	181	5.30	66.73

1128760	938543	150	5.00	63.97
		175	6.70	86.70
		175	5.60	72.47
		175	6.30	81.53
1128726	938558	182	7.30	93.61
1128765	938515	175	5.10	68.54
		175	7.40	96.00
1128707	938564	175	5.40	70.68
1128732	938556	187	6.30	80.40

1125528	939507	152	3.10	39.74
1125527	939502	153	2.20	28.92
		170	3.10	40.15
		170	1.90	24.61
		170	5.50	71.23
1125560	939498	183	3.00	38.68
1125553	939501	171	2.50	33.00
		170	2.10	27.66
1125560	939498	183	1.90	24.94
1125560	939498	183	0.50	6.42
1125560	939495	170	2.40	30.73

1128607	938321	148	5.00	65.11
		163	6.80	89.03
		163	5.70	74.63
		163	5.60	73.32
1128510	936412	172	7.10	91.25
1128503	936415	170	5.50	75.67
		163	6.60	91.04
1128503	936411	168	3.90	52.36
1128503	936411	172	5.70	72.87

ISOD	COLIFORMES _FECALES_EC OLI	ICF	SST	ISST	DBO
0.970	9200	0.1000	170.00	0.51	2
0.862	260	0.7957	8.00	0.996	2
0.889	450	0.6591	21.00	0.957	2
0.977	5800	0.1000	9.00	0.993	2
0.975	1700	0.1000	15.00	0.975	2
0.975	980	0.3896	21.50	0.9555	2
0.961	410	0.6858	7.00	0.999	0
0.790	6500	0.1000	4.00	1	2
0.821	17000	0.1000	7.50	0.9975	2
0.857	2800	0.1000	7.00	0.999	2
0.922	3100	0.1000	3.00	1	2

0.973	240000	0.1000	37.00	0.909	2
0.938	13000	0.1000	345.00	0	2.6
0.950	1600000	0.1000	76.50	0.7905	4.2
0.978	24000	0.1000	42.00	0.894	4.2
0.984	240000	0.1000	226.00	0.342	2.1
0.947	24000	0.1000	59.90	0.8403	0
0.791	20000	0.1000	19.00	0.963	15.5
0.883	24000	0.1000	8.00	0.996	5.6
0.957	3300000	0.1000	4.50	1	8.1
0.824	390000	0.1000	19.00	0.963	5.6
0.930	1700000	0.1000	17.50	0.9675	8.2

0.948	820000	0.1000	51.00	0.867	2.5
0.937	17000	0.1000	455.00	0	2.3
0.984	980000	0.1000	59.00	0.843	3.1
0.915	240000	0.1000	127.00	0.639	4.1
0.980	24000	0.1000	46.00	0.882	2.6
0.989	160000	0.1000	178.00	0.486	2
0.962	24000	0.1000	46.00	0.882	0
0.907	13000	0.1000	4.00	1	2.1
0.883	17000	0.1000	4.00	1	2.4
0.895	240000	0.1000	40.00	0.9	2.7

0.790	730000	0.1000	7.00	0.999	5
0.931	330000	0.1000	11.00	0.987	2.5

0.957	7400	0.1000	89.00	0.753	2
0.761	17000	0.1000	1010.00	0	3.2
0.954	8700	0.1000	29.00	0.933	2
0.941	6100	0.1000	57.00	0.849	2
0.994	17000	0.1000	34.00	0.918	2
0.985	7300	0.1000	165.00	0.525	2
0.980	65000	0.1000	32.90	0.9213	0
0.713	11000	0.1000	8.00	0.996	2
0.796	13000	0.1000	8.50	0.9945	2
0.876	110000	0.1000	132.00	0.624	2
0.782	2400	0.1000	4.00	1	2
0.829	12000	0.1000	22.50	0.9525	2

0.967 190000 0.1000 55.00 0.855 2.6 0.902 24000 0.1000 780.00 0 2.9 0.964 440000 0.1000 46.00 0.882 2.7 0.950 240000 0.1000 112.00 0.684 3.6 0.963 24000 0.1000 44.00 0.888 2.4 0.968 58000 0.1000 178.00 0.486 2.6 0.907 24000 0.1000 35.30 0.9141 0 0.728 16000 0.1000 8.50 0.9945 2 0.909 7700 0.1000 4.00 1 2 0.991 240000 0.1000 88.00 0.756 2.8 0.816 2400 0.1000 4.00 1 2 0.925 160000 0.1000 10.50 0.9885 2						
0.964 440000 0.1000 46.00 0.882 2.7 0.950 240000 0.1000 112.00 0.684 3.6 0.963 24000 0.1000 44.00 0.888 2.4 0.968 58000 0.1000 178.00 0.486 2.6 0.907 24000 0.1000 35.30 0.9141 0 0.728 16000 0.1000 8.50 0.9945 2 0.909 7700 0.1000 4.00 1 2 0.991 240000 0.1000 88.00 0.756 2.8 0.816 2400 0.1000 4.00 1 2	0.967	190000	0.1000	55.00	0.855	2.6
0.950 240000 0.1000 112.00 0.684 3.6 0.963 24000 0.1000 44.00 0.888 2.4 0.968 58000 0.1000 178.00 0.486 2.6 0.907 24000 0.1000 35.30 0.9141 0 0.728 16000 0.1000 8.50 0.9945 2 0.909 7700 0.1000 4.00 1 2 0.991 240000 0.1000 88.00 0.756 2.8 0.816 2400 0.1000 4.00 1 2	0.902	24000	0.1000	780.00	0	2.9
0.963 24000 0.1000 44.00 0.888 2.4 0.968 58000 0.1000 178.00 0.486 2.6 0.907 24000 0.1000 35.30 0.9141 0 0.728 16000 0.1000 8.50 0.9945 2 0.909 7700 0.1000 4.00 1 2 0.991 240000 0.1000 88.00 0.756 2.8 0.816 2400 0.1000 4.00 1 2	0.964	440000	0.1000	46.00	0.882	2.7
0.968 58000 0.1000 178.00 0.486 2.6 0.907 24000 0.1000 35.30 0.9141 0 0.728 16000 0.1000 8.50 0.9945 2 0.909 7700 0.1000 4.00 1 2 0.991 240000 0.1000 88.00 0.756 2.8 0.816 2400 0.1000 4.00 1 2	0.950	240000	0.1000	112.00	0.684	3.6
0.907 24000 0.1000 35.30 0.9141 0 0.728 16000 0.1000 8.50 0.9945 2 0.909 7700 0.1000 4.00 1 2 0.991 240000 0.1000 88.00 0.756 2.8 0.816 2400 0.1000 4.00 1 2	0.963	24000	0.1000	44.00	0.888	2.4
0.728 16000 0.1000 8.50 0.9945 2 0.909 7700 0.1000 4.00 1 2 0.991 240000 0.1000 88.00 0.756 2.8 0.816 2400 0.1000 4.00 1 2	0.968	58000	0.1000	178.00	0.486	2.6
0.909 7700 0.1000 4.00 1 2 0.991 240000 0.1000 88.00 0.756 2.8 0.816 2400 0.1000 4.00 1 2	0.907	24000	0.1000	35.30	0.9141	0
0.991 240000 0.1000 88.00 0.756 2.8 0.816 2400 0.1000 4.00 1 2	0.728	16000	0.1000	8.50	0.9945	2
0.816 2400 0.1000 4.00 1 2	0.909	7700	0.1000	4.00	1	2
	0.991	240000	0.1000	88.00	0.756	2.8
0.925 160000 0.1000 10.50 0.9885 2	0.816	2400	0.1000	4.00	1	2
<u> </u>	0.925	160000	0.1000	10.50	0.9885	2

0.944	13000	0.1000	88.00	0.756	2.7
0.848	12000	0.1000	590.00	0	2
0.943	500000	0.1000	59.50	0.8415	2.6
0.960	10000	0.1000	68.00	0.816	2
0.962	5200	0.1000	62.10	0.8337	0

0.725	5800	0.1000	9.50	0.9915	2
0.845	4900	0.1000	4.00	1	2
0.824	2000	0.1000	4.50	1	2
0.911	17000	0.1000	18.50	0.9645	2

0.961	110000	0.1000	127.00	0.639	3.2
0.837	20000	0.1000	2070.00	0	2
0.947	150000	0.1000	70.50	0.8085	2.1
0.986	240000	0.1000	255.00	0.255	3.2
0.999	24000	0.1000	113.00	0.681	2
0.998	52000	0.1000	1092.00	0	2
0.896	240000	0.1000	86.30	0.7611	0
0.648	4900	0.1000	10.50	0.9885	2
0.831	240000	0.1000	236.00	0.312	2.5
0.990	24000	0.1000	4.50	1	2

0.693	24000	0.1000	10.50	0.9885	2.2
0.903	17000	0.1000	820.00	0	2
0.969	14000	0.1000	25.50	0.9435	2
0.969	11000	0.1000	39.00	0.903	2
0.735	12000	0.1000	248.00	0.276	2
0.965	13000	0.1000	37.00	0.909	0
0.898	17000	0.1000	5.00	1.005	2
0.956	110000	0.1000	163.00	0.531	2.6
0.752	24000	0.1000	6.50	1.0005	2
0.958	24000	0.1000	4.00	1	2

0.712	24000	0.1000	165.00	0.525	2.6
0.890	24000	0.1000	1740.00	0	2.1
0.968	9100	0.1000	49.50	0.8715	2
0.968	79000	0.1000	806.00	0	2.4
0.967	24000	0.1000	130.00	0.63	2

0.829	11000	0.1000	969.00	0	2
0.920	39000	0.1000	66.00	0.822	0
0.981	10000	0.1000	7.50	0.9975	2
0.877	240000	0.1000	152.00	0.564	2
0.985	20000	0.1000	4.00	1	2
0.850	24000	0.1000	31.00	0.927	2

0.706	2400	0.1000	7.50	0.9975	2
0.938	20000	0.1000	140.00	0.6	2.4
0.958	12000	0.1000	6.00	1.002	2
0.925	16000	0.1000	13.00	0.981	2
0.753	170000	0.1000	32.00	0.924	2
0.916	28000	0.1000	18.00	0.966	0
0.862	20000	0.1000	4.00	1	2
0.899	520000	0.1000	6311.00	0	6.5
0.831	24000	0.1000	9.50	0.9915	2
0.805	17000	0.1000	4.00	1	2

0.699	39000	0.1000	168.00	0.516	2.9
0.926	24000	0.1000	1340.00	0	4.3
0.978	20000	0.1000	43.00	0.891	2
0.965	98000	0.1000	719.00	0	2
0.925	24000	0.1000	102.00	0.714	2
0.779	10000	0.1000	1030.00	0	2
0.892	46000	0.1000	80.00	0.78	0
0.962	8700	0.1000	6.50	1.0005	2
0.812	14000	0.1000	4.00	1	2
0.940	77000	0.1000	104.00	0.708	2
0.994	24000	0.1000	4.00	1	2
0.926	24000	0.1000	37.00	0.909	2

0.964	24000	0.1000	669.00	0	3.1

0.847	36000	0.1000	5042.00	0	0
0.772	24000	0.1000	24.50	0.9465	2
0.821	20000	0.1000	4.00	1	2
0.962	20000	0.1000	24.70	0.9459	2

0.721	57000	0.1000	314.00	0.078	2.4
0.961	24000	0.1000	1130.00	0	2
0.964	17000	0.1000	28.00	0.936	2
0.996	58000	0.1000	731.00	0	2
0.951	24000	0.1000	71.00	0.807	2
0.838	19000	0.1000	910.00	0	2
0.965	27000	0.1000	60.60	0.8382	0
0.779	16000	0.1000	23.00	0.951	2
0.831	11000	0.1000	4.00	1	2
0.801	160000	0.1000	108.00	0.696	2
0.855	24000	0.1000	15.50	0.9735	2

0.982	77000	0.1000	182.00	0.474	2
0.786	87000	0.1000	4560.00	0	3.4
0.959	58000	0.1000	124.00	0.648	2
0.974	34000	0.1000	528.00	0	2
0.994	24000	0.1000	356.00	0	2
0.890	49000	0.1000	252.00	0.264	2
0.916	21000	0.1000	64.00	0.828	2
0.886	24000	0.1000	8.50	0.9945	2
0.701	24000	0.1000	30.00	0.93	13.8
0.998	24000	0.1000	43.00	0.891	2

0.983	120000	0.1000	232.00	0.324	2
0.752	43000	0.1000	3960.00	0	3.8
0.570	45000	0.1000	80.00	0.78	2
0.985	24000	0.1000	272.00	0.204	2

0.862	69000	0.1000	254.00	0.258	2
0.826	82000	0.1000	36.00	0.912	2
0.944	20000	0.1000	8.50	0.9945	2
0.623	17000	0.1000	21.00	0.957	3.8
0.971	20000	0.1000	30.00	0.93	2
0.871	200000	0.1000	198.00	0.426	2.1

0.901	63000	0.1000	43.00	0.891	2
0.654	240000	0.1000	5040.00	0	4.3
0.910	92000	0.1000	26.50	0.9405	2
0.987	240000	0.1000	92.30	0.7431	2
0.880	20000	0.1000	78.00	0.786	2
0.856	41000	0.1000	89.00	0.753	2
0.729	34000	0.1000	90.00	0.75	4.5
0.907	24000	0.1000	18.00	0.966	2
0.635	24000	0.1000	20.50	0.9585	4
0.929	24000	0.1000	25.30	0.9441	3.5
0.775	24000	0.1000	5.00	1.005	2
0.745	24000	0.1000	22.50	0.9525	2

0.857	41000	0.1000	456.00	0	2
0.741	140000	0.1000	3570.00	0	3.9
0.949	240000	0.1000	2163.00	0	3.3
0.988	240000	0.1000	1256.00	0	2.2
0.882	24000	0.1000	1020.00	0	2.6
0.885	16000	0.1000	1090.00	0	2
0.677	37000	0.1000	59.00	0.843	2
0.913	13000	0.1000	11.00	0.987	2
0.788	16000	0.1000	21.00	0.957	3.1
0.941	24000	0.1000	40.00	0.9	2
0.871	170000	0.1000	180.00	0.48	3
0.810	170000	0.1000	251.00	0.267	409

0.995	230000	0.1000	410.00	0	2.4
0.750	520000	0.1000	2560.00	0	4
0.908	240000	0.1000	3207.00	0	3.7
0.961	200000	0.1000	1226.00	0	3.2
0.925	24000	0.1000	1150.00	0	2.2
0.921	120000	0.1000	1467.00	0	2
0.626	41000	0.1000	62.70	0.8319	2
0.807	14000	0.1000	12.50	0.9825	2
0.985	49000	0.1000	146.00	0.582	2.7
0.975	24000	0.1000	86.00	0.762	2
0.937	140000	0.1000	125.00	0.645	2.5
0.853	160000	0.1000	532.00	0	415

0.767	550000	0.1000	42.00	0.894	2.6
0.768	240000	0.1000	2030.00	0	4.3
0.966	170000	0.1000	185.00	0.465	2
0.939	870000	0.1000	433.00	0	6.1
0.858	82000	0.1000	472.00	0	2
0.753	240000	0.1000	192.00	0.444	2
0.890	20000	0.1000	4.50	1	2
0.944	16000	0.1000	126.00	0.642	3
0.941	820000	0.1000	227.00	0.339	4
0.997	2000000	0.1000	21.30	0.9561	9.3
0.833	2400000	0.1000	72.50	0.8025	541

0.696	270000	0.1000	338.00	0	2
0.839	32000	0.1000	1490.00	0	3.2
0.774	240000	0.1000	7381.00	0	4.1
0.887	100000	0.1000	475.00	0	2.8
0.816	20000	0.1000	9.00	0.993	2
0.786	24000	0.1000	6.50	1.0005	2
0.979	240000	0.1000	616.00	0	2
0.496	20000	0.1000	27.60	0.9372	2
0.854	240000	0.1000	1600.00	0	2

0.918	34000	0.1000	570.00	0	3.2
0.543	170000	0.1000	1152.00	0	4.3
0.899	87000	0.1000	872.00	0	2
0.921	12000	0.1000	707.00	0	2
0.723	16000	0.1000	7.00	0.999	2
0.749	24000	0.1000	7.00	0.999	3.1
0.885	240000	0.1000	540.00	0	2
0.506	24000	0.1000	49.20	0.8724	2
0.703	170000	0.1000	236.00	0.312	0

0.695	85000	0.1000	208.00	0.396	2.1
0.757	92000	0.1000	945.00	0	3
0.781	91000	0.1000	8657.00	0	6.3
0.906	200000	0.1000	640.00	0	2
0.965	40000	0.1000	356.00	0	2
0.774	24000	0.1000	12.00	0.984	3.5
0.869	24000	0.1000	5.50	1.0035	2
0.890	200000	0.1000	492.00	0	2
0.521	24000	0.1000	107.00	0.699	2
0.875	240000	0.1000	2020.00	0	2

0.794	98000	0.1000	315.00	0.075	2.7
0.867	170000	0.1000	134.00	0.618	2.2
0.836	69000	0.1000	1812.00	0	2
0.946	28000	0.1000	404.00	0	2
0.770	8200	0.1000	4.00	1	2
0.926	420000	0.1000	4335.00	0	2.9
0.904	69000	0.1000	45.00	0.885	2
0.427	24000	0.1000	6.50	1.0005	2
0.860	240000	0.1000	1584.00	0	2

0.732	170000	0.1000	294.00	0.138	2.2
0.802	57000	0.1000	1140.00	0	2.9
0.662	240000	0.1000	6036.00	0	5.1
0.977	98000	0.1000	816.00	0	2
0.880	41000	0.1000	217.00	0.369	2
0.804	17000	0.1000	9.50	0.9915	2
0.852	250000	0.1000	634.00	0	2.1
0.998	240000	0.1000	536.00	0	2.3
0.663	1400000	0.1000	588.00	0	2.1
0.903	24000	0.1000	428.00	0	2

0.719	41000	0.1000	518.00	0	2
0.706	17000	0.1000	64.70	0.8259	2.4
0.847	170000	0.1000	158.00	0.546	2
0.954	33000	0.1000	324.00	0	2
0.949	39000	0.1000	955.00	0	2
0.966	8200	0.1000	5.50	1.0035	2
0.827	5800	0.1000	9.00	0.993	2
0.790	55000	0.1000	55.00	0.855	2
0.715	240000	0.1000	7650.00	0	4.1
0.941	240000	0.1000	8.50	0.9945	2

0.679	35000	0.1000	240.00	0.3	2
0.802	160000	0.1000	6560.00	0	5.1
0.948	100000	0.1000	740.00	0	2
0.955	52000	0.1000	380.00	0	2
0.964	8200	0.1000	5.50	1.0035	0
0.982	24000	0.1000	16.50	0.9705	2
0.992	240000	0.1000	368.00	0	2
0.662	24000	0.1000	973.00	0	2.7

0.862	24000	0.1000	74.00	0.798	7.9
0.826	63000	0.1000	6030.00	0	2.7
0.999	24000	0.1000	78.50	0.7845	2
0.909	520000	0.1000	5895.00	0	2.4
0.706	24000	0.1000	7.96	0.99612	2
0.967	46000	0.1000	628.00	0	2.8
0.840	240000	0.1000	216.00	0.372	2
0.896	690000	0.1000	1936.00	0	7.3
0.918	82000	0.1000	831.00	0	3.1
0.814	24000	0.1000	106.00	0.702	2
0.795	65000	0.1000	89.00	0.753	2
0.925	720000	0.1000	1447.00	0	2

0.994	5800	0.1000	5.50	1.0035	2
0.703	240000	0.1000	190.00	0.45	2.7
0.958	13000	0.1000	10.50	0.9885	2
0.967	1200000	0.1000	1940.00	0	9
0.917	24000	0.1000	59.00	0.843	2
0.930	55000	0.1000	72.90	0.8013	2
0.829	5400	0.1000	4.50	1	2
0.867	1100000	0.1000	833.00	0	15.1
0.951	58000	0.1000	92.20	0.7434	2
0.844	24000	0.1000	52.00	0.864	2
0.718	24000	0.1000	4.00	1	2
0.824	980000	0.1000	440.00	0	3.3

0.664	2400	0.1000	5.00	1.005	2
0.982	24000	0.1000	9.00	0.993	2
0.690	24000	0.1000	4.50	1	2
0.953	17000	0.1000	101.00	0.717	2
0.868	140000	0.1000	4.00	1	2
0.977	17000	0.1000	8.00	0.996	2
0.889	13000	0.1000	4.00	1	2
0.920	2400	0.1000	1.50	1	2
0.836	20000	0.1000	4.00	1	2

0.831 240000 0.1000 44.00 0.888 2

0.882	240000	0.1000	43.50	0.8895	2.1
0.829	91000	0.1000	4340.00	0	3.6
0.927	24000	0.1000	92.50	0.7425	2
0.823	24000	0.1000	1164.00	0	4.5
0.976	82000	0.1000	836.00	0	2
0.925	240000	0.1000	280.00	0.18	2
0.887	24000	0.1000	6.00	1.002	2
0.906	24000	0.1000	132.00	0.624	2
0.956	98000	0.1000	574.00	0	2
0.886	770000	0.1000	1584.00	0	2.1

0.871	1100	0.3459	14.00	0.978	2
0.638	2400	0.1000	9.00	0.993	2
0.976	24000	0.1000	5.00	1.005	2
0.888	200000	0.1000	58.30	0.8451	2.3
0.928	52000	0.1000	154.00	0.558	2
0.811	26000	0.1000	5.50	1.0035	2
0.943	24000	0.1000	343.00	0	2
0.812	1700	0.1000	15.00	0.975	2
0.798	24000	0.1000	8.00	0.996	2
0.830	14000	0.1000	4.00	1	2
0.797	440000	0.1000	428.00	0	2

0.805	6600	0.1000	5.00	1.005	3
0.689	24000	0.1000	29.30	0.9321	2
0.998	24000	0.1000	6.50	1.0005	2
0.709	24000	0.1000	34.00	0.918	2.8
0.800	46000	0.1000	61.00	0.837	2
0.890	130000	0.1000	10.00	0.99	2
0.897	13000	0.1000	10.00	0.99	2

0.872	1200	0.3133	13.00	0.981	2
0.872	8700	0.1000	4.00	1	2
0.847	24000	0.1000	61.20	0.8364	3.6
0.858	140000	0.1000	8.50	0.9945	2

0.807	98000	0.1000	470.00	0	2
0.916	65000	0.1000	126.00	0.642	2
0.866	360000	0.1000	7253.00	0	5.5
0.959	49000	0.1000	146.00	0.582	2.7
0.892	240000	0.1000	2010.00	0	3
0.882	92000	0.1000	4.43	1	2
0.764	55000	0.1000	158.00	0.546	2.1
0.887	550000	0.1000	2456.00	0	2
0.826	24000	0.1000	42.00	0.894	4.2
0.964	24000	0.1000	66.00	0.822	2
0.906	37000	0.1000	107.00	0.699	2
0.940	1000000	0.1000	1687.00	0	2

0.791	53000	0.1000	593.00	0	3.7
0.935	24000	0.1000	88.50	0.7545	2
0.909	730000	0.1000	9376.00	0	5.2
0.896	16000	0.1000	126.00	0.642	3
0.881	240000	0.1000	940.00	0	4.4
0.967	160000	0.1000	136.00	0.612	5.2
0.929	24000	0.1000	915.00	0	2.1
0.859	24000	0.1000	46.00	0.882	2.6
0.954	24000	0.1000	74.00	0.798	2.1
0.737	33000	0.1000	151.00	0.567	2
0.948	1400000	0.1000	1652.00	0	2

0.816	52000	0.1000	563.00	0	2
0.873	240000	0.1000	661.00	0	2

0.898	420000	0.1000	4335.00	0	2.9
0.920	82000	0.1000	831.00	0	3.1
0.808	240000	0.1000	676.00	0	2
0.996	200000	0.1000	784.00	0	11.7
0.937	24000	0.1000	1392.00	0	2
0.870	17000	0.1000	34.00	0.918	2
0.895	24000	0.1000	93.00	0.741	2
0.956	24000	0.1000	3060.00	0	2
0.876	770000	0.1000	2006.00	0	2.1

0.879	10000	0.1000	14.00	0.978	3.4
0.732	24000	0.1000	124.00	0.648	2
0.833	12000	0.1000	19.00	0.963	2
0.872	250000	0.1000	634.00	0	2.1
0.924	58000	0.1000	92.20	0.7434	2
0.794	98000	0.1000	252.00	0.264	2.4
0.838	240000	0.1000	27.30	0.9381	2
0.911	17000	0.1000	23.10	0.9507	2.9
0.905	20000	0.1000	42.70	0.8919	2.4
0.895	24000	0.1000	44.00	0.888	2.4
0.983	24000	0.1000	8.50	0.9945	2
0.572	790000	0.1000	168.00	0.516	2.6

0.657	300000	0.1000	470.00	0	2
0.794	170000	0.1000	310.00	0.09	2
0.843	82000	0.1000	1732.00	0	2.1
0.868	520000	0.1000	6311.00	0	6.5
0.768	240000	0.1000	1700.00	0	2.9
0.976	140000	0.1000	1440.00	0	2
0.703	24000	0.1000	484.00	0	2
0.985	10000	0.1000	68.00	0.816	2
0.924	120000	0.1000	428.00	0	2
0.657	24000	0.1000	172.00	0.504	2
0.929	12000	0.1000	4427.00	0	2

0.771	200000	0.1000	390.00	0	2.5
0.921	87000	0.1000	1900.00	0	2.2
0.833	1000000	0.1000	9428.00	0	6.2
0.474	240000	0.1000	3417.00	0	4.7
0.943	200000	0.1000	1293.00	0	2
0.714	110000	0.1000	422.00	0	2
0.951	24000	0.1000	113.00	0.681	2
0.900	160000	0.1000	148.00	0.576	2
0.537	24000	0.1000	158.00	0.546	2
0.667	14000	0.1000	1008.00	0	2.9

0.640	100000	0.1000	363.00	0	2
0.867	98000	0.1000	1210.00	0	2
0.725	360000	0.1000	7472.00	0	6.5
0.815	200000	0.1000	2433.00	0	3.7
0.936	240000	0.1000	1670.00	0	2.6
0.685	240000	0.1000	791.00	0	2
0.960	11000	0.1000	39.00	0.903	2
0.707	110000	0.1000	233.00	0.321	2
0.804	3100	0.1000	2608.00	0	2

0.397	240000	0.1000	38.60	0.9042	2.2
0.289	16000	0.1000	140.00	0.6	3.4
0.401	11000	0.1000	34.90	0.9153	2
0.246	2000000	0.1000	31.00	0.927	2
0.712	170000	0.1000	128.00	0.636	3.2
0.387	13000	0.1000	25.00	0.945	2
0.330	240000	0.1000	11.80	0.9846	2.9
0.277	240000	0.1000	42.20	0.8934	10.4
0.249	24000	0.1000	8.00	0.996	2
0.064	24000	0.1000	35.70	0.9129	3
0.307	120000	0.1000	64.00	0.828	3.4

0.651	240000	0.1000	435.00	0	2
0.890	92000	0.1000	884.00	0	2
0.746	41000	0.1000	10365.00	0	6.3
0.733	160000	0.1000	3560.00	0	3.8
0.913	98000	0.1000	1569.00	0	4.2
0.757	69000	0.1000	762.00	0	2
0.910	1800	0.1000	20.00	0.96	2
0.524	24000	0.1000	171.00	0.507	2
0.729	520000	0.1000	230.00	0.33	2

IDBO	DQO	IDQO	CONDUCTIVID AD	Variable_deci sión	ICON
1.00	13.7	0.91	165.00	0.4854	0.4854
1.00	10	0.91	214.00	0.2710	0.2710
1.00	15.8	0.91	160.00	0.5062	0.5062
1.00	10	0.91	169.00	0.4687	0.4687
1.00	10	0.91	171.00	0.4602	0.4602
1.00	10	0.91	141.00	0.5832	0.5832
1.00	10	0.91	119.00	0.6679	0.6679
1.00	10	0.91	206.00	0.3072	0.3072
1.00	10	0.91	210.00	0.2892	0.2892
1.00	10	0.91	165.00	0.4854	0.4854
1.00	14.9	0.91	140.00	0.5871	0.5871

1.00	17	0.91	133.00	0.6146	0.6146
0.76	37.2	0.51	113.00	0.6902	0.6902
0.61	19	0.91	189.00	0.3828	0.3828
0.61	16.5	0.91	144.00	0.5712	0.5712
0.82	17.6	0.91	107.00	0.7120	0.7120
1.00	10	0.91	137.00	0.5989	0.5989
0.22	44.5	0.26	229.00	0.2017	0.2017
0.53	17.8	0.91	239.00	0.1546	0.1546
0.41	27.7	0.51	179.00	0.4261	0.4261
0.53	12.5	0.91	259.00	0.0585	0.0585
0.41	20.9	0.71	187.00	0.3915	0.3915

0.77	27.5	0.51	130.00	0.6262	0.6262
0.80	30.3	0.51	111.00	0.6975	0.6975
0.71	20.2	0.71	185.00	0.4002	0.4002
0.62	25	0.71	138.00	0.5950	0.5950
0.76	13.7	0.91	133.00	0.6146	0.6146
1.00	19.2	0.91	105.00	0.7192	0.7192
1.00	11.4	0.91	137.00	0.5989	0.5989
0.82	10	0.91	220.00	0.2434	0.2434
0.78	13.9	0.91	265.00	0.0292	0.0292
0.75	21.9	0.71	168.00	0.4729	0.4729

0.56	10.9	0.91	289.00	-0.0904	0.0000
0.77	10	0.91	180.00	0.4218	0.4218

1.00	16.6	0.91	269.00	0.0095	0.0095
0.70	130	0.125	232.00	0.1876	0.1876
1.00	10	0.91	358.00	-0.4528	0.0000
1.00	10	0.91	314.00	-0.2187	0.0000
1.00	10	0.91	268.00	0.0144	0.0144
1.00	22	0.71	249.00	0.1069	0.1069
1.00	10	0.91	286.00	-0.0753	0.0000
1.00	10	0.91	413.00	-0.7594	0.0000
1.00	12.9	0.91	276.00	-0.0252	0.0000
1.00	21.1	0.71	299.00	-0.1413	0.0000
1.00	10	0.91	787.00	-3.1745	0.0000
1.00	10	0.91	348.00	-0.3987	0.0000

0.76	11.5	0.91	183.00	0.4089	0.4089
0.73	66.1	0.26	172.00	0.4560	0.4560
0.75	10	0.91	267.00	0.0193	0.0193
0.66	15.6	0.91	204.00	0.3162	0.3162
0.78	10	0.91	188.00	0.3871	0.3871
0.76	18.6	0.91	160.00	0.5062	0.5062
1.00	10	0.91	197.00	0.3475	0.3475
1.00	10	0.91	298.00	-0.1362	0.0000
1.00	23.1	0.71	395.00	-0.6574	0.0000
0.74	27.7	0.51	233.00	0.1829	0.1829
1.00	10	0.91	421.00	-0.8053	0.0000
1.00	10	0.91	251.00	0.0973	0.0973

0.75	10	0.91	173.00	0.4517	0.4517
1.00	164	0.125	140.00	0.5871	0.5871
0.76	10	0.91	255.00	0.0779	0.0779
1.00	10	0.91	171.00	0.4602	0.4602
1.00	10	0.91	195.00	0.3564	0.3564

1.00	10	0.91	247.00	0.1165	0.1165
1.00	10	0.91	83.90	0.7921	0.7921
1.00	10	0.91	356.00	-0.4419	0.0000
1.00	10.2	0.91	245.00	0.1261	0.1261

0.70	25.4	0.51	170.00	0.4644	0.4644
1.00	86.1	0.125	151.00	0.5431	0.5431
0.82	17.3	0.91	253.00	0.0876	0.0876
0.70	16.9	0.91	193.00	0.3652	0.3652
1.00	10	0.91	189.00	0.3828	0.3828
1.00	277	0.125	148.00	0.5552	0.5552
1.00	10	0.91	199.00	0.3386	0.3386
1.00	10	0.91	268.00	0.0144	0.0144
0.77	31.1	0.51	214.00	0.2710	0.2710
1.00	10	0.91	392.00	-0.6406	0.0000

0.81	10	0.91	238.00	0.1594	0.1594
1.00	126	0.125	194.00	0.3608	0.3608
1.00	10	0.91	301.00	-0.1515	0.0000
1.00	10	0.91	206.00	0.3072	0.3072
1.00	87.6	0.125	192.00	0.3696	0.3696
1.00	10	0.91	289.00	-0.0904	0.0000
1.00	10	0.91	274.00	-0.0153	0.0000
0.76	13.4	0.91	1089.00	-5.4509	0.0000
1.00	10	0.91	270.00	0.0045	0.0045
1.00	10	0.91	324.00	-0.2710	0.0000

0.76	10	0.91	220.00	0.2434	0.2434
0.82	78.8	0.26	200.00	0.3341	0.3341
1.00	10	0.91	323.00	-0.2657	0.0000
0.78	33.1	0.51	221.00	0.2388	0.2388
1.00	10	0.91	227.00	0.2110	0.2110

1.0	00	73.5	0.26	200.00	0.3341	0.3341
1.0	00	10	0.91	319.00	-0.2447	0.0000
1.0	00	10	0.91	323.00	-0.2657	0.0000
1.0	00	17.2	0.91	943.00	-4.3192	0.0000
1.0	00	10	0.91	420.00	-0.7995	0.0000
1.0	00	74.8	0.26	298.00	-0.1362	0.0000

1.00	10	0.91	470.00	-1.0922	0.0000
0.78	17.8	0.91	345.00	-0.3825	0.0000
1.00	10	0.91	514.00	-1.3588	0.0000
1.00	10	0.91	460.00	-1.0328	0.0000
1.00	14.1	0.91	431.00	-0.8629	0.0000
1.00	10	0.91	490.00	-1.2124	0.0000
1.00	10	0.91	507.00	-1.3159	0.0000
0.48	329	0.125	370.00	-0.5184	0.0000
1.00	10	0.91	584.00	-1.7989	0.0000
1.00	10	0.91	732.00	-2.7883	0.0000

0.73	15.2	0.91	233.00	0.1829	0.1829
0.61	96.2	0.125	212.00	0.2801	0.2801
1.00	10	0.91	338.00	-0.3451	0.0000
1.00	40	0.51	226.00	0.2157	0.2157
1.00	14.5	0.91	244.00	0.1308	0.1308
1.00	83	0.125	220.00	0.2434	0.2434
1.00	20.9	0.71	337.00	-0.3398	0.0000
1.00	10	0.91	339.00	-0.3504	0.0000
1.00	10	0.91	449.00	-0.9679	0.0000
1.00	14.2	0.91	307.00	-0.1824	0.0000
1.00	10	0.91	440.00	-0.9153	0.0000
1.00	47.6	0.26	317.00	-0.2343	0.0000

0.71	72.3	0.26	214.00	0.2710	0.2710

1.00	10	0.91	405.00	-0.7139	0.0000
1.00	10	0.91	353.00	-0.4257	0.0000
1.00	10	0.91	507.00	-1.3159	0.0000
1.00	10	0.91	481.00	-1.1581	0.0000

0.78	36.1	0.51	277.00	-0.0302	0.0000
1.00	101	0.125	216.00	0.2618	0.2618
1.00	10	0.91	371.00	-0.5239	0.0000
1.00	37.3	0.51	244.00	0.1308	0.1308
1.00	10	0.91	274.00	-0.0153	0.0000
1.00	84.1	0.125	247.00	0.1165	0.1165
1.00	10	0.91	390.00	-0.6294	0.0000
1.00	10.2	0.91	342.00	-0.3665	0.0000
1.00	10	0.91	480.00	-1.1521	0.0000
1.00	20.4	0.71	336.00	-0.3344	0.0000
1.00	10	0.91	461.00	-1.0387	0.0000

1.00	132	0.125	311.00	-0.2031	0.0000
0.68	260	0.125	273.00	-0.0103	0.0000
1.00	13.1	0.91	633.00	-2.1180	0.0000
1.00	19.9	0.91	406.00	-0.7196	0.0000
1.00	35.1	0.51	319.00	-0.2447	0.0000
1.00	80.7	0.125	305.00	-0.1721	0.0000
1.00	10	0.91	395.00	-0.6574	0.0000
1.00	10	0.91	503.00	-1.2914	0.0000
0.25	47	0.26	193.00	0.3652	0.3652
1.00	10	0.91	387.00	-0.6126	0.0000

1.00	130	0.125	333.00	-0.3185	0.0000
0.64	297	0.125	248.00	0.1117	0.1117
1.00	10	0.91	685.00	-2.4660	0.0000
1.00	30.3	0.51	546.00	-1.5576	0.0000

1.00	77.3	0.26	361.00	-0.4691	0.0000
1.00	10	0.91	479.00	-1.1461	0.0000
1.00	10	0.91	714.00	-2.6640	0.0000
0.64	10.9	0.91	355.00	-0.4365	0.0000
1.00	10	0.91	565.00	-1.6776	0.0000
0.82	186	0.125	593.00	-1.8569	0.0000

1.00	337	0.125	696.00	-2.5408	0.0000
0.61	310	0.125	478.00	-1.1401	0.0000
1.00	10	0.91	1050.00	-5.1432	0.0000
1.00	15	0.91	379.00	-0.5681	0.0000
1.00	17.9	0.91	520.00	-1.3958	0.0000
1.00	12.7	0.91	589.00	-1.8311	0.0000
0.59	10	0.91	805.00	-3.3030	0.0000
1.00	10	0.91	907.00	-4.0489	0.0000
0.63	15.9	0.91	266.00	0.0242	0.0242
0.67	10	0.91	739.00	-2.8369	0.0000
1.00	10	0.91	951.00	-4.3797	0.0000
1.00	10	0.91	785.00	-3.1603	0.0000

_					
1.00	14.9	0.91	338.00	-0.3451	0.0000
0.64	223	0.125	258.00	0.0634	0.0634
0.69	163	0.125	344.00	-0.3772	0.0000
0.81	60.7	0.26	291.00	-0.1006	0.0000
0.76	54.4	0.26	294.00	-0.1158	0.0000
1.00	567	0.125	247.00	0.1165	0.1165
1.00	10	0.91	382.00	-0.5848	0.0000
1.00	10	0.91	485.00	-1.1822	0.0000
0.71	18.8	0.91	254.00	0.0828	0.0828
1.00	10	0.91	395.00	-0.6574	0.0000
0.72	17.6	0.91	613.00	-1.9867	0.0000
0.00	33	0.51	409.00	-0.7366	0.0000

0.78	25	0.71	346.00	-0.3879	0.0000
0.63	170	0.125	261.00	0.0487	0.0487
0.65	156	0.125	333.00	-0.3185	0.0000
0.70	62.9	0.26	295.00	-0.1209	0.0000
0.81	60.9	0.26	302.00	-0.1567	0.0000
1.00	483	0.125	248.00	0.1117	0.1117
1.00	10	0.91	411.00	-0.7480	0.0000
1.00	10	0.91	505.00	-1.3036	0.0000
0.75	17.6	0.91	569.00	-1.7030	0.0000
1.00	10	0.91	407.00	-0.7253	0.0000
0.77	12.9	0.91	578.00	-1.7605	0.0000
0.00	10	0.91	415.00	-0.7709	0.0000

0.76	10.5	0.91	299.00	-0.1413	0.0000
0.61	138	0.125	271.00	-0.0004	0.0000
1.00	23	0.71	633.00	-2.1180	0.0000
0.50	44.2	0.26	364.00	-0.4855	0.0000
1.00	128	0.125	365.00	-0.4910	0.0000
1.00	15.3	0.91	489.00	-1.2063	0.0000
1.00	10	0.91	457.00	-1.0151	0.0000
0.72	17.8	0.91	270.00	0.0045	0.0045
0.63	22.5	0.71	458.00	-1.0210	0.0000
0.37	24.4	0.71	683.00	-2.4524	0.0000
0.00	18.7	0.91	541.00	-1.5263	0.0000

1.00	17.6	0.91	359.00	-0.4582	0.0000
0.70	67	0.26	275.00	-0.0202	0.0000
0.62	670	0.125	413.00	-0.7594	0.0000
0.74	28.4	0.51	307.00	-0.1824	0.0000
1.00	10	0.91	510.00	-1.3342	0.0000
1.00	334	0.125	640.00	-2.1643	0.0000
1.00	31.2	0.51	346.00	-0.3879	0.0000
1.00	10	0.91	617.00	-2.0129	0.0000
1.00	117.7	0.125	337.00	-0.3398	0.0000

0.70	98.7	0.125	1380.00	-7.8601	0.0000
0.61	195	0.125	1760.00	-11.2740	0.0000
1.00	39.8	0.51	284.00	-0.0652	0.0000
1.00	149	0.125	1589.00	-9.7030	0.0000
1.00	10	0.91	1436.00	-8.3452	0.0000
0.71	686	0.125	1671.00	-10.4496	0.0000
1.00	47.8	0.26	1534.00	-9.2095	0.0000
1.00	10	0.91	1812.00	-11.7624	0.0000
1.00	37.7	0.51	1290.00	-7.0945	0.0000

0.82	14.3	0.91	595.00	-1.8698	0.0000
0.72	87.5	0.125	1012.00	-4.8471	0.0000
0.49	272	0.125	444.00	-0.9386	0.0000
1.00	32.5	0.51	364.00	-0.4855	0.0000
1.00	88.7	0.125	502.00	-1.2853	0.0000
0.67	14.4	0.91	1187.00	-6.2404	0.0000
1.00	477	0.125	636.00	-2.1379	0.0000
1.00	30.2	0.51	1267.00	-6.9017	0.0000
1.00	12	0.91	636.00	-2.1379	0.0000
1.00	176	0.125	337.00	-0.3398	0.0000

0.75	42.6	0.26	1414.00	-8.1538	0.0000
0.81	11.5	0.91	1975.00	-13.3239	0.0000
1.00	145	0.125	1428.00	-8.2755	0.0000
1.00	95.9	0.125	344.00	-0.3772	0.0000
1.00	10	0.91	2130.00	-14.8500	0.0000
0.73	321	0.125	248.00	0.1117	0.1117
1.00	10.1	0.91	1596.00	-9.7662	0.0000
1.00	10.6	0.91	2850.00	-22.4149	0.0000
1.00	49	0.26	1582.00	-9.6399	0.0000

0.81	12.1	0.91	383.00	-0.5903	0.0000
0.73	83.8	0.125	292.00	-0.1056	0.0000
0.55	790	0.125	444.00	-0.9386	0.0000
1.00	44.1	0.26	286.00	-0.0753	0.0000
1.00	133	0.125	1503.00	-8.9340	0.0000
1.00	10.5	0.91	557.00	-1.6269	0.0000
0.82	283	0.125	208.00	0.2982	0.2982
0.80	38.1	0.51	376.00	-0.5515	0.0000
0.82	14.7	0.91	642.00	-2.1776	0.0000
1.00	78.4	0.26	385.00	-0.6015	0.0000

1.00	13.7	0.91	584.00	-1.7989	0.0000
0.78	10	0.91	669.00	-2.3579	0.0000
1.00	13.8	0.91	701.00	-2.5749	0.0000
1.00	25.3	0.51	556.00	-1.6206	0.0000
1.00	279	0.125	640.00	-2.1643	0.0000
1.00	12.5	0.91	717.00	-2.6846	0.0000
1.00	10	0.91	169.00	0.4687	0.4687
1.00	13.4	0.91	620.00	-2.0325	0.0000
0.62	325	0.125	1163.00	-6.0449	0.0000
1.00	125	0.125	737.00	-2.8230	0.0000

1.00	11.7	0.91	473.00	-1.1102	0.0000
0.55	696	0.125	471.00	-1.0982	0.0000
1.00	33.9	0.51	295.00	-0.1209	0.0000
1.00	98.1	0.125	593.00	-1.8569	0.0000
1.00	12.5	0.91	573.00	-1.7285	0.0000
1.00	15.2	0.91	141.00	0.5832	0.5832
1.00	32.4	0.51	384.00	-0.5959	0.0000
0.75	164	0.125	680.00	-2.4321	0.0000

0.42	10	0.91	464.00	-1.0565	0.0000
0.75	296	0.125	304.00	-0.1669	0.0000
1.00	10.8	0.91	653.00	-2.2508	0.0000
0.78	414	0.125	421.00	-0.8053	0.0000
1.00	36.5	0.51	347.00	-0.3933	0.0000
0.74	155	0.125	383.00	-0.5903	0.0000
1.00	21.2	0.71	460.00	-1.0328	0.0000
0.45	125	0.125	692.00	-2.5135	0.0000
0.71	52.4	0.26	516.00	-1.3711	0.0000
1.00	12.5	0.91	454.00	-0.9974	0.0000
1.00	10	0.91	650.00	-2.2308	0.0000
1.00	76.4	0.26	508.00	-1.3220	0.0000

1.00	10	0.91	284.00	-0.0652	0.0000
0.75	252	0.125	164.00	0.4896	0.4896
1.00	11.1	0.91	291.00	-0.1006	0.0000
0.38	150	0.125	103.00	0.7263	0.7263
1.00	14.1	0.91	249.00	0.1069	0.1069
1.00	17.6	0.91	164.00	0.4896	0.4896
1.00	20.3	0.71	237.00	0.1641	0.1641
0.22	92.2	0.125	152.00	0.5390	0.5390
1.00	12.8	0.91	346.00	-0.3879	0.0000
1.00	29.6	0.51	188.00	0.3871	0.3871
1.00	10	0.91	495.00	-1.2427	0.0000
0.69	10	0.91	167.00	0.4771	0.4771

1.00	10	0.91	563.00	-1.6649	0.0000
1.00	10	0.91	605.00	-1.9346	0.0000
1.00	10	0.91	242.00	0.1404	0.1404
1.00	14	0.91	473.00	-1.1102	0.0000
1.00	10	0.91	459.00	-1.0269	0.0000
1.00	12.1	0.91	550.00	-1.5828	0.0000
1.00	10	0.91	32.80	0.9409	0.9409
1.00	16.2	0.91	519.00	-1.3896	0.0000
1.00	10	0.91	561.00	-1.6522	0.0000

1.00 10	0.91	456.00	-1.0092	0.0000
---------	------	--------	---------	--------

0.82	10.7	0.91	463.00	-1.0506	0.0000
0.66	739	0.125	306.00	-0.1772	0.0000
1.00	10	0.91	639.00	-2.1577	0.0000
0.59	54.1	0.26	343.00	-0.3718	0.0000
1.00	165	0.125	415.00	-0.7709	0.0000
1.00	15.5	0.91	456.00	-1.0092	0.0000
1.00	10	0.91	69.50	0.8385	0.8385
1.00	12.1	0.91	446.00	-0.9503	0.0000
1.00	113	0.125	683.00	-2.4524	0.0000
0.82	55.4	0.26	510.00	-1.3342	0.0000

1.00	10.1	0.91	788.00	-3.1816	0.0000
1.00	10	0.91	803.00	-3.2886	0.0000
1.00	12.3	0.91	827.00	-3.4613	0.0000
0.80	19	0.91	706.00	-2.6091	0.0000
1.00	14.6	0.91	654.00	-2.2574	0.0000
1.00	10	0.91	693.00	-2.5203	0.0000
1.00	109	0.125	652.00	-2.2441	0.0000
1.00	10	0.91	171.00	0.4602	0.4602
1.00	10	0.91	530.00	-1.4577	0.0000
1.00	10	0.91	581.00	-1.7797	0.0000
1.00	10	0.91	604.00	-1.9281	0.0000

0.72	10.7	0.91	891.00	-3.9299	0.0000
1.00	10	0.91	938.00	-4.2814	0.0000
1.00	14	0.91	1016.00	-4.8781	0.0000
0.74	17.6	0.91	843.00	-3.5773	0.0000
1.00	19.6	0.91	890.00	-3.9225	0.0000
1.00	1.5	0.91	1088.00	-5.4429	0.0000
1.00	10	0.91	1086.00	-5.4271	0.0000

1.00	10	0.91	121.00	0.6604	0.6604
1.00	10	0.91	1003.00	-4.7775	0.0000
0.66	35.9	0.51	744.00	-2.8718	0.0000
1.00	10	0.91	1012.00	-4.8471	0.0000

1.00	25	0.71	330.00	-0.3026	0.0000
1.00	17.2	0.91	632.00	-2.1114	0.0000
0.53	686	0.125	334.00	-0.3238	0.0000
0.75	17.6	0.91	569.00	-1.7030	0.0000
0.72	38.5	0.51	380.00	-0.5737	0.0000
1.00	253	0.125	410.00	-0.7423	0.0000
0.82	11	0.91	434.00	-0.8803	0.0000
1.00	411	0.125	524.00	-1.4205	0.0000
0.61	16.5	0.91	144.00	0.5712	0.5712
1.00	10	0.91	494.00	-1.2366	0.0000
1.00	14.7	0.91	675.00	-2.3983	0.0000
1.00	36.2	0.51	421.00	-0.8053	0.0000

0.65	41.3	0.26	321.00	-0.2552	0.0000
1.00	10.3	0.91	633.00	-2.1180	0.0000
0.55	477	0.125	322.00	-0.2605	0.0000
0.72	17.8	0.91	270.00	0.0045	0.0045
0.60	48	0.26	382.00	-0.5848	0.0000
0.55	11.8	0.91	442.00	-0.9269	0.0000
0.82	171	0.125	572.00	-1.7221	0.0000
0.76	13.7	0.91	133.00	0.6146	0.6146
0.82	11.9	0.91	491.00	-1.2184	0.0000
1.00	17.2	0.91	975.00	-4.5625	0.0000
1.00	34.8	0.51	419.00	-0.7938	0.0000

1.00	55.8	0.26	334.00	-0.3238	0.0000
1.00	33.6	0.51	546.00	-1.5576	0.0000

0.73	259	0.125	248.00	0.1117	0.1117
0.71	52.4	0.26	516.00	-1.3711	0.0000
1.00	190	0.125	427.00	-0.8398	0.0000
0.30	43.4	0.26	306.00	-0.1772	0.0000
1.00	215	0.125	447.00	-0.9562	0.0000
1.00	10	0.91	268.00	0.0144	0.0144
1.00	11.3	0.91	489.00	-1.2063	0.0000
1.00	219	0.125	312.00	-0.2083	0.0000
0.82	19.6	0.91	423.00	-0.8168	0.0000

0.68	12.4	0.91	307.00	-0.1824	0.0000
1.00	10	0.91	286.00	-0.0753	0.0000
1.00	10	0.91	304.00	-0.1669	0.0000
0.82	283	0.125	208.00	0.2982	0.2982
1.00	12.8	0.91	346.00	-0.3879	0.0000
0.78	26.7	0.51	171.00	0.4602	0.4602
1.00	10	0.91	317.00	-0.2343	0.0000
0.73	15.9	0.91	450.00	-0.9738	0.0000
0.78	92	0.125	271.00	-0.0004	0.0000
0.78	10	0.91	188.00	0.3871	0.3871
1.00	10	0.91	359.00	-0.4582	0.0000
0.76	42.6	0.26	69.10	0.8397	0.8397

1.00	38.4	0.51	490.00	-1.2124	0.0000
1.00	33.5	0.51	455.00	-1.0033	0.0000
0.82	157	0.125	527.00	-1.4391	0.0000
0.48	329	0.125	370.00	-0.5184	0.0000
0.73	32.7	0.51	315.00	-0.2239	0.0000
1.00	463	0.125	442.00	-0.9269	0.0000
1.00	194	0.125	545.00	-1.5514	0.0000
1.00	10	0.91	171.00	0.4602	0.4602
1.00	37.5	0.51	525.00	-1.4267	0.0000
1.00	85	0.125	519.00	-1.3896	0.0000
1.00	38.1	0.51	352.00	-0.4203	0.0000

0.77	35.8	0.51	372.00	-0.5294	0.0000
0.81	71	0.26	531.00	-1.4639	0.0000
0.50	702	0.125	384.00	-0.5959	0.0000
0.58	137	0.125	320.00	-0.2500	0.0000
1.00	369	0.125	428.00	-0.8456	0.0000
1.00	148	0.125	632.00	-2.1114	0.0000
1.00	10	0.91	189.00	0.3828	0.3828
1.00	14.3	0.91	521.00	-1.4019	0.0000
1.00	39.8	0.51	511.00	-1.3404	0.0000
0.73	36.2	0.51	187.00	0.3915	0.3915
_					

1.00	30.8	0.51	373.00	-0.5349	0.0000
1.00	76.2	0.26	532.00	-1.4701	0.0000
0.48	658	0.125	405.00	-0.7139	0.0000
0.65	60.8	0.26	240.00	0.1499	0.1499
0.76	646	0.125	426.00	-0.8340	0.0000
1.00	201	0.125	525.00	-1.4267	0.0000
1.00	10	0.91	206.00	0.3072	0.3072
1.00	23	0.71	494.00	-1.2366	0.0000
1.00	17.5	0.91	493.00	-1.2306	0.0000

0.81	42.9	0.26	114.00	0.6865	0.6865
0.68	79.8	0.26	114.00	0.6865	0.6865
1.00	48.8	0.26	146.00	0.5633	0.5633
1.00	29	0.51	230.00	0.1970	0.1970
0.70	63.6	0.26	99.70	0.7380	0.7380
1.00	36.5	0.51	70.10	0.8366	0.8366
0.73	43.3	0.26	152.00	0.5390	0.5390
0.34	31.2	0.51	275.00	-0.0202	0.0000
1.00	57.7	0.26	148.00	0.5552	0.5552
0.72	98	0.125	84.00	0.7918	0.7918
0.68	34.3	0.51	70.00	0.8369	0.8369

1.00	31	0.51	372.00	-0.5294	0.0000
1.00	19.2	0.91	528.00	-1.4453	0.0000
0.49	334	0.125	407.00	-0.7253	0.0000
0.64	41.3	0.26	354.00	-0.4311	0.0000
0.61	607	0.125	433.00	-0.8745	0.0000
1.00	159	0.125	544.00	-1.5451	0.0000
1.00	10	0.91	565.00	-1.6776	0.0000
1.00	107	0.125	447.00	-0.9562	0.0000
1.00	54.1	0.26	473.00	-1.1102	0.0000

рН	IpH	N	P	N/P	I N/P
8.00	1.000	1.00	0.642	1.558	0.15
7.70	1.000	1.00	0.060	16.667	0.8
7.60	1.000	1.00	0.081	12.346	0.6
7.70	1.000	1.00	0.061	16.393	0.8
7.70	1.000	1.00	0.080	12.500	0.6
7.60	1.000	1.00	0.108	9.259	0.35
7.60	1.000	1.00	0.069	14.493	0.6
8.30	0.856	1.00	0.189	5.291	0.35
7.90	1.000	1.30	0.071	18.310	0.8
8.00	1.000	2.20	0.063	34.921	0.15
8.00	1.000	0.30	0.060	4.983	0.15

8.00	1.000	1.00	0.088	11.364	0.6
7.40	1.000	1.00	0.244	4.098	0.15
7.70	1.000	1.10	0.320	3.438	0.15
7.60	1.000	1.00	1.124	0.890	0.15
7.40	1.000	1.00	0.193	5.181	0.35
7.60	1.000	1.00	0.124	8.065	0.35
8.10	0.949	2.70	0.815	3.313	0.15
8.10	0.949	2.00	0.401	4.988	0.15
7.80	1.000	2.20	0.108	20.370	0.15
8.10	0.949	3.70	0.284	13.028	0.6
8.00	1.000	2.22	0.245	9.073	0.35

7.70	1.000	1.00	0.138	7.246	0.35
7.40	1.000	1.00	0.372	2.688	0.15
7.70	1.000	1.00	0.184	5.435	0.35
7.60	1.000	1.30	0.127	10.236	0.6
7.60	1.000	1.00	0.116	8.621	0.35
7.50	1.000	1.00	0.322	3.106	0.15
7.70	1.000	1.00	0.141	7.092	0.35
8.30	0.856	1.00	0.613	1.631	0.15
8.40	0.813	1.00	0.209	4.785	0.15
7.90	1.000	1.10	0.101	10.891	0.6

8.20	0.901	4.00	0.357	11.204	0.6
8.00	1.000	2.12	0.194	10.928	0.6

8.40	0.813	0.10	0.060	1.733	0.15
7.90	1.000	2.00	0.095	21.053	0.15
7.80	1.000	1.00	0.130	7.692	0.35
7.70	1.000	1.00	0.060	16.667	0.8
7.80	1.000	1.00	0.060	16.667	0.8
7.50	1.000	1.00	0.166	6.024	0.35
7.90	1.000	1.00	0.060	16.667	0.8
8.30	0.856	1.00	0.476	2.101	0.15
8.60	0.733	1.00	0.194	5.155	0.35
8.10	0.949	1.70	0.238	7.143	0.35
8.50	0.772	1.00	0.060	16.667	0.8
8.20	0.901	0.19	0.060	3.167	0.15

7.00	1.001	0.11	0.060	1.767	0.15
7.50	1.000	1.50	0.215	6.977	0.35
7.80	1.000	1.00	0.156	6.410	0.35
7.80	1.000	1.00	0.081	12.346	0.6
7.80	1.000	1.00	0.098	10.204	0.6
7.50	1.000	1.00	0.250	4.000	0.15
7.80	1.000	1.00	0.102	9.804	0.35
8.40	0.813	1.00	0.533	1.876	0.15
8.60	0.733	1.00	0.115	8.696	0.35
8.00	1.000	1.60	0.071	22.535	0.15
8.80	0.660	1.00	0.163	6.135	0.35
8.10	0.949	1.79	0.115	15.522	0.8

7.60	1.000	0.08	0.061	1.230	0.15
7.50	1.000	1.50	0.194	7.732	0.35
7.90	1.000	1.00	0.123	8.130	0.35
7.60	1.000	1.00	0.060	16.667	0.8
7.90	1.000	1.00	0.060	16.667	0.8

8.20	0.901	1.00	0.453	2.208	0.15
7.70	1.000	1.00	0.060	16.667	0.8
8.40	0.813	1.70	0.060	28.333	0.15
8.20	0.901	0.32	0.060	5.333	0.35

7.80	1.000	1.00	0.109	9.174	0.35
7.20	1.000	2.70	0.722	3.740	0.15
7.80	1.000	1.00	0.082	12.195	0.6
7.80	1.000	1.00	0.093	10.753	0.6
7.80	1.000	1.00	0.110	9.091	0.35
7.50	1.000	1.30	0.664	1.958	0.15
7.80	1.000	1.00	0.097	10.309	0.6
8.30	0.856	1.00	0.502	1.992	0.15
7.90	1.000	1.70	0.155	10.968	0.6
9.20	0.537	1.00	0.128	7.813	0.35

7.00	1.001	1.00	0.060	16.667	0.8
7.60	1.000	2.80	0.532	5.263	0.35
7.80	1.000	1.00	0.060	16.667	0.8
7.50	1.000	1.00	0.060	16.667	0.8
7.30	1.000	1.00	0.410	2.439	0.15
7.80	1.000	1.00	0.060	16.667	0.8
7.80	1.000	1.00	0.060	16.667	0.8
8.30	0.856	1.00	0.060	16.667	0.8
8.00	1.000	1.20	0.060	20.000	0.8
7.90	1.000	1.00	0.060	16.667	0.8

8.10	0.949	1.00	0.124	8.065	0.35
7.50	1.000	4.60	0.060	76.667	0.15
7.90	1.000	1.00	0.060	16.667	0.8
7.50	1.000	2.10	0.227	9.251	0.35
7.70	1.000	1.00	0.073	13.699	0.6

7.60	1.000	1.20	0.788	1.523	0.15
7.80	1.000	1.00	0.085	11.765	0.6
8.40	0.813	1.00	0.060	16.667	0.8
7.90	1.000	1.20	0.081	14.815	0.6
8.20	0.901	1.00	0.060	16.667	0.8
8.20	0.901	0.01	0.060	0.200	0.15

8.30	0.856	1.00	0.060	16.667	0.8
7.80	1.000	1.10	0.338	3.254	0.15
7.90	1.000	1.00	0.060	16.667	0.8
8.10	0.949	1.00	0.060	16.667	0.8
7.90	1.000	1.00	0.106	9.434	0.35
8.10	0.949	1.00	0.060	16.667	0.8
8.20	0.901	1.00	0.060	16.667	0.8
7.80	1.000	10.10	0.217	46.544	0.15
8.40	0.813	1.60	0.060	26.667	0.15
8.00	1.000	1.00	0.060	16.667	0.8

8.30	0.856	1.00	0.170	5.882	0.35
7.40	1.000	5.20	0.312	16.667	0.8
7.90	1.000	1.00	0.060	16.667	0.8
7.90	1.000	1.80	0.183	9.836	0.35
7.70	1.000	1.00	0.066	15.152	0.8
7.80	1.000	1.40	0.770	1.818	0.15
7.90	1.000	1.00	0.126	7.937	0.35
8.60	0.733	1.00	0.060	16.667	0.8
8.60	0.733	1.00	0.060	16.667	0.8
6.20	0.661	1.20	0.074	16.216	0.8
8.50	0.772	1.00	0.060	16.667	0.8
8.20	0.901	0.01	0.060	0.183	0.15

7.30	1.000	4.30	0.277	15.523	0.8

8.00	1.000	1.00	0.060	16.667	0.8
8.20	0.901	1.00	0.073	13.699	0.6
8.40	0.813	1.00	0.060	16.667	0.8
8.30	0.856	1.00	0.060	16.667	0.8

7.90	1.000	1.50	0.222	6.757	0.35
7.50	1.000	1.00	0.847	1.181	0.15
8.00	1.000	1.00	0.060	16.667	0.8
7.90	1.000	1.40	0.127	11.024	0.6
7.80	1.000	1.00	0.073	13.699	0.6
7.70	1.000	1.70	0.821	2.071	0.15
8.00	1.000	1.00	0.066	15.152	0.8
8.40	0.813	1.00	0.060	16.667	0.8
8.50	0.772	1.00	0.060	16.667	0.8
8.00	1.000	1.10	0.060	18.333	0.8
8.50	0.772	1.00	0.060	16.667	0.8

8.10	0.949	1.00	0.128	7.813	0.35
6.90	0.951	18.10	0.060	301.667	0.15
7.70	1.000	1.00	0.060	16.667	0.8
7.70	1.000	1.20	0.060	20.000	0.8
7.80	1.000	1.00	0.236	4.237	0.15
7.70	1.000	1.00	0.291	3.436	0.15
7.90	1.000	1.00	0.067	14.925	0.6
8.20	0.901	1.00	0.060	16.667	0.8
7.80	1.000	2.10	0.343	6.122	0.35
8.00	1.000	1.00	0.114	8.772	0.35

8.30	0.856	1.00	0.165	6.061	0.35
7.70	1.000	6.70	0.084	79.762	0.15
7.70	1.000	1.00	0.060	16.667	0.8
7.30	1.000	1.00	0.188	5.319	0.35

7.80	1.000	1.00	0.385	2.597	0.15
7.80	1.000	1.00	0.091	10.989	0.6
8.20	0.901	1.00	0.060	16.667	0.8
8.20	0.901	1.00	0.060	16.667	0.8
8.00	1.000	1.40	0.060	23.333	0.15
8.10	0.949	1.70	0.060	28.333	0.15

8.40	0.813	1.00	0.060	16.667	0.8
7.40	1.000	18.90	0.115	164.348	0.15
7.90	1.000	1.00	0.060	16.667	0.8
7.70	1.000	1.00	0.060	16.667	0.8
8.00	1.000	1.00	0.060	16.667	0.8
8.00	1.000	1.00	1.503	0.665	0.15
8.10	0.949	1.00	0.092	10.870	0.6
8.20	0.901	1.00	0.060	16.667	0.8
8.20	0.901	1.00	0.144	6.944	0.35
8.20	0.901	1.00	0.060	16.667	0.8
8.10	0.949	1.00	0.060	16.667	0.8
8.10	0.949	0.14	0.060	2.333	0.15

8.30	0.856	1.00	0.227	4.405	0.15
7.60	1.000	8.70	0.599	14.524	0.6
7.90	1.000	1.00	0.862	1.160	0.15
7.70	1.000	2.90	0.086	33.721	0.15
8.00	1.000	1.00	0.545	1.835	0.15
7.90	1.000	3.60	1.815	1.983	0.15
7.90	1.000	1.00	0.090	11.111	0.6
8.40	0.813	1.00	0.060	16.667	0.8
8.20	0.901	1.00	0.092	10.870	0.6
8.20	0.901	1.60	0.066	24.242	0.15
8.20	0.901	1.00	0.060	16.667	0.8
7.90	1.000	1.50	0.086	17.488	0.8

8.40	0.813	1.00	0.168	5.952	0.35
7.70	1.000	7.00	0.933	7.503	0.35
7.80	1.000	1.00	4.590	0.218	0.15
7.70	1.000	3.40	0.101	33.663	0.15
8.00	1.000	1.60	0.288	5.556	0.35
7.90	1.000	3.60	3.056	1.178	0.15
8.00	1.000	1.00	0.083	12.048	0.6
8.40	0.813	1.00	0.060	16.667	0.8
8.40	0.813	1.00	0.118	8.475	0.35
8.30	0.856	1.20	0.098	12.245	0.6
8.20	0.901	1.20	0.060	20.000	0.8
7.80	1.000	1.86	0.060	30.933	0.15

8.40	0.813	4.60	0.062	74.194	0.15
8.10	0.949	5.40	0.109	49.541	0.15
7.90	1.000	1.00	0.120	8.333	0.35
7.90	1.000	1.40	0.533	2.627	0.15
7.90	1.000	1.30	4.451	0.292	0.15
8.00	1.000	1.00	0.279	3.584	0.15
8.60	0.733	1.00	0.061	16.393	0.8
8.40	0.813	1.00	0.068	14.706	0.6
8.20	0.901	4.00	0.281	14.235	0.6
8.30	0.856	2.60	0.060	43.333	0.15
8.10	0.949	0.27	0.074	3.649	0.15

7.80	1.000	1.00	0.277	3.610	0.15
8.00	1.000	4.00	0.472	8.475	0.35
7.20	1.000	12.80	3.987	3.210	0.15
7.80	1.000	1.80	0.075	24.000	0.15
8.40	0.813	1.00	0.060	16.667	0.8
8.10	0.949	1.00	13.300	0.075	0.15
7.00	1.001	1.70	0.142	11.972	0.6
8.40	0.813	1.70	0.060	28.333	0.15
8.20	0.901	4.10	0.330	12.433	0.6

7.90	1.000	1.00	0.060	16.667	0.8
7.50	1.000	3.10	1.205	2.573	0.15
7.80	1.000	2.10	0.213	9.859	0.35
7.90	1.000	1.50	5.185	0.289	0.15
8.10	0.949	1.00	0.060	16.667	0.8
7.90	1.000	1.00	10.900	0.092	0.15
8.00	1.000	2.60	0.060	43.333	0.15
8.10	0.949	1.20	0.060	20.000	0.8
8.20	0.901	1.35	0.240	5.621	0.35

8.10	0.949	1.00	0.175	5.714	0.35
8.00	1.000	2.90	0.646	4.489	0.15
7.60	1.000	21.60	4.071	5.306	0.35
7.80	1.000	1.40	0.060	23.333	0.15
8.10	0.949	1.00	0.468	2.137	0.15
8.20	0.901	1.00	0.060	16.667	0.8
8.50	0.772	1.00	10.000	0.100	0.15
8.00	1.000	4.30	0.060	71.667	0.15
8.50	0.772	1.60	0.060	26.667	0.15
8.30	0.856	4.86	0.060	81.000	0.15

7.80	1.000	2.10	0.291	7.216	0.35
7.50	1.000	1.00	0.074	13.514	0.6
7.70	1.000	6.10	0.060	101.667	0.15
8.10	0.949	1.10	0.314	3.503	0.15
8.00	1.000	1.00	0.060	16.667	0.8
7.90	1.000	5.10	0.614	8.306	0.35
8.10	0.949	1.00	0.060	16.667	0.8
7.90	1.000	11.90	0.060	198.333	0.15
8.20	0.901	2.64	0.067	39.328	0.15

8.50	0.772	1.00	0.200	5.000	0.15
7.70	1.000	2.60	0.118	22.034	0.15
7.50	1.000	13.40	3.709	3.613	0.15
8.10	0.949	2.50	0.156	16.026	0.8
8.10	0.949	1.00	0.394	2.538	0.15
8.50	0.772	1.00	0.600	1.667	0.15
7.90	1.000	1.50	0.519	2.890	0.15
8.10	0.949	1.00	0.060	16.667	0.8
8.60	0.733	2.90	0.060	48.333	0.15
8.30	0.856	3.68	0.060	61.400	0.15

8.50	0.772	1.00	0.826	1.211	0.15
8.30	0.856	1.00	0.096	10.417	0.6
8.10	0.949	1.10	0.311	3.537	0.15
8.30	0.856	1.90	0.211	9.005	0.35
8.30	0.856	1.00	0.991	1.009	0.15
8.40	0.813	1.00	0.600	1.667	0.15
7.70	1.000	1.00	0.061	16.393	0.8
8.20	0.901	1.00	0.060	16.667	0.8
7.90	1.000	3.60	0.060	60.000	0.15
8.40	0.813	2.54	0.160	15.875	0.8

8.20	0.901	1.00	0.170	5.882	0.35
7.90	1.000	17.60	6.288	2.799	0.15
8.20	0.901	3.00	0.129	23.256	0.15
8.20	0.901	1.10	0.388	2.835	0.15
8.40	0.813	1.00	0.060	16.667	0.8
7.10	1.000	1.00	0.088	11.364	0.6
8.10	0.949	1.80	0.116	15.517	0.8
8.20	0.901	37.00	0.060	616.667	0.15

8.00	1.000	10.30	0.076	135.526	0.15
7.50	1.000	11.50	0.088	130.682	0.15
8.00	1.000	1.00	0.102	9.804	0.35
7.90	1.000	3.50	0.063	55.556	0.15
7.80	1.000	2.40	0.428	5.607	0.35
7.60	1.000	1.60	0.468	3.419	0.15
8.00	1.000	1.00	0.193	5.181	0.35
8.60	0.733	3.00	0.060	50.000	0.15
8.30	0.856	2.30	0.261	8.812	0.35
8.10	0.949	1.00	0.060	16.667	0.8
8.17	0.916	1.80	0.060	30.000	0.15
8.20	0.901	5.70	0.090	63.289	0.15

8.40	0.813	3.90	0.162	24.074	0.15
7.40	1.000	2.20	0.360	6.111	0.35
8.10	0.949	1.00	0.068	14.706	0.6
7.80	1.000	3.20	0.779	4.108	0.15
8.20	0.901	1.00	0.224	4.464	0.15
7.90	1.000	1.00	0.248	4.032	0.15
9.40	0.484	1.00	0.211	4.739	0.15
7.80	1.000	2.80	0.200	14.000	0.6
8.20	0.901	1.00	0.173	5.780	0.35
8.10	0.949	1.00	0.140	7.143	0.35
8.03	0.985	1.70	8.400	0.202	0.15
8.10	0.949	1.99	0.240	8.292	0.35

8.30	0.856	1.00	0.171	5.848	0.35
8.10	0.949	1.00	0.060	16.667	0.8
8.30	0.856	1.00	0.140	7.143	0.35
8.50	0.772	1.00	0.354	2.825	0.15
8.40	0.813	1.00	0.135	7.407	0.35
8.40	0.813	1.00	0.060	16.667	0.8
7.10	1.000	1.00	0.060	16.667	0.8
8.50	0.772	1.00	0.083	12.048	0.6
8.33	0.843	1.20	0.060	20.000	0.8

8.50	0.772	0.47	0.190	2.474	0.15
	-	-			

8.20	0.901	1.00	0.085	11.765	0.6
7.70	1.000	7.10	0.466	15.236	0.8
8.10	0.949	1.00	0.186	5.376	0.35
8.00	1.000	3.70	0.318	11.635	0.6
8.20	0.901	1.50	0.696	2.155	0.15
8.20	0.901	1.00	0.164	6.098	0.35
6.90	0.951	1.00	0.106	9.434	0.35
8.10	0.949	1.00	0.095	10.526	0.6
8.38	0.821	4.70	0.062	75.806	0.15
8.20	0.901	7.22	0.060	120.350	0.15

8.00	1.000	1.00	0.060	16.667	0.8
7.80	1.000	1.00	0.060	16.667	0.8
8.10	0.949	1.00	0.060	16.667	0.8
8.20	0.901	1.00	0.060	16.667	0.8
8.50	0.772	1.00	0.220	4.545	0.15
8.20	0.901	1.00	0.087	11.494	0.6
8.50	0.772	1.40	0.060	23.333	0.15
7.70	1.000	1.00	0.080	12.500	0.6
8.40	0.813	1.00	0.060	16.667	0.8
8.59	0.736	1.90	0.060	31.667	0.15
8.50	0.772	1.94	0.397	4.892	0.15

8.00	1.000	1.00	0.060	16.667	0.8
8.10	0.949	1.00	0.060	16.667	0.8
8.00	1.000	1.00	0.060	16.667	0.8
8.10	0.949	1.00	0.060	16.667	0.8
8.40	0.813	1.00	0.219	4.566	0.15
8.00	1.000	1.00	0.060	16.667	0.8
8.20	0.901	1.00	0.079	12.658	0.6

7.70	1.000	1.00	0.060	16.667	0.8
8.30	0.856	1.00	0.060	16.667	0.8
8.10	0.949	2.50	0.067	37.313	0.15
8.20	0.901	0.21	0.060	3.500	0.15

8.10	0.949	1.20	0.459	2.614	0.15
7.80	1.000	1.00	0.145	6.897	0.35
7.70	1.000	11.30	0.364	31.044	0.15
8.40	0.813	1.00	0.118	8.475	0.35
8.00	1.000	1.50	0.260	5.769	0.35
7.90	1.000	1.10	0.088	12.500	0.6
8.20	0.901	1.00	0.204	4.902	0.15
7.90	1.000	2.90	2.867	1.012	0.15
7.60	1.000	1.00	0.124	8.065	0.35
7.30	1.000	1.00	0.086	11.628	0.6
8.20	0.901	1.40	0.060	23.333	0.15
8.10	0.949	3.10	0.800	3.875	0.15

7.90	1.000	1.50	0.639	2.347	0.15
7.90	1.000	1.00	0.115	8.696	0.35
7.70	1.000	8.30	0.196	42.347	0.15
8.40	0.813	1.00	0.068	14.706	0.6
7.50	1.000	2.70	0.060	45.000	0.15
8.20	0.901	1.00	0.160	6.250	0.35
8.20	0.901	2.70	1.267	2.131	0.15
7.60	1.000	1.00	0.116	8.621	0.35
8.20	0.901	1.00	0.060	16.667	0.8
8.30	0.856	2.50	0.144	17.361	0.8
8.10	0.949	4.10	0.200	20.500	0.15

8.00	1.000	1.10	0.873	1.260	0.15
8.00	1.000	1.00	1.513	0.661	0.15

7.90	1.000	5.10	0.614	8.306	0.35
8.30	0.856	2.30	0.261	8.812	0.35
8.00	1.000	1.40	0.935	1.497	0.15
8.20	0.901	2.80	0.923	3.034	0.15
8.20	0.901	3.00	2.258	1.329	0.15
7.80	1.000	1.00	0.060	16.667	0.8
8.00	1.000	1.00	0.104	9.615	0.35
7.90	1.000	5.80	0.198	29.293	0.15
8.20	0.901	3.50	0.100	35.000	0.15

7.90	1.000	1.00	0.073	13.699	0.6
8.10	0.949	1.00	0.200	5.000	0.15
8.00	1.000	1.00	0.082	12.195	0.6
7.90	1.000	1.50	0.519	2.890	0.15
8.20	0.901	1.00	0.173	5.780	0.35
7.70	1.000	1.00	0.235	4.255	0.15
8.00	1.000	1.00	0.124	8.065	0.35
8.20	0.901	1.00	0.093	10.753	0.6
8.10	0.949	1.00	0.126	7.937	0.35
7.80	1.000	1.00	0.098	10.204	0.6
8.00	1.000	1.00	0.060	16.667	0.8
6.80	0.902	1.90	0.100	19.000	0.8

8.00	1.000	1.80	0.331	5.438	0.35
8.00	1.000	1.40	0.525	2.667	0.15
8.00	1.000	3.00	1.853	1.619	0.15
7.80	1.000	10.10	0.217	46.544	0.15
7.60	1.000	3.10	1.086	2.855	0.15
8.10	0.949	3.60	1.891	1.904	0.15
8.20	0.901	1.50	1.300	1.154	0.15
7.60	1.000	1.00	0.060	16.667	0.8
8.00	1.000	1.00	0.128	7.813	0.35
8.10	0.949	1.90	0.080	23.750	0.15
8.00	1.000	7.27	0.091	79.901	0.15

7.80	1.000	1.30	0.709	1.834	0.15
8.00	1.000	1.60	1.374	1.164	0.15
7.80	1.000	12.40	0.297	41.751	0.15
7.70	1.000	5.80	1.057	5.487	0.35
8.10	0.949	3.50	2.527	1.385	0.15
7.70	1.000	1.50	1.942	0.772	0.15
7.80	1.000	1.00	0.110	9.091	0.35
7.70	1.000	1.00	0.101	9.901	0.35
8.00	1.000	3.80	0.067	56.716	0.15
7.70	1.000	5.18	0.220	23.550	0.15

7.80	1.000	1.50	0.767	1.956	0.15
7.90	1.000	2.00	1.127	1.775	0.15
7.80	1.000	8.70	0.392	22.194	0.15
7.70	1.000	4.50	1.508	2.984	0.15
8.20	0.901	4.20	2.756	1.524	0.15
8.10	0.949	2.70	1.603	1.684	0.15
7.50	1.000	1.00	0.060	16.667	0.8
7.90	1.000	1.00	0.066	15.152	0.8
7.90	1.000	2.90	0.088	32.955	0.15

7.90	1.000	1.60	0.227	7.048	0.35
6.50	0.772	1.60	0.576	2.778	0.15
7.40	1.000	1.00	0.222	4.505	0.15
7.60	1.000	1.20	0.326	3.681	0.15
7.10	1.000	1.50	0.394	3.807	0.15
7.10	1.000	1.00	0.282	3.546	0.15
7.30	1.000	1.20	0.328	3.659	0.15
7.40	1.000	1.00	0.589	1.698	0.15
8.50	0.772	1.10	0.323	3.406	0.15
6.80	0.902	3.70	0.404	9.158	0.35
6.70	0.857	2.09	0.160	13.069	0.6

6.90	0.951	1.80	0.664	2.711	0.15
7.60	1.000	1.00	1.652	0.605	0.15
7.70	1.000	10.20	0.488	20.902	0.15
7.50	1.000	17.90	1.513	11.831	0.6
8.00	1.000	5.50	2.399	2.293	0.15
8.20	0.901	3.00	1.222	2.455	0.15
8.00	1.000	1.00	0.090	11.111	0.6
7.80	1.000	2.00	0.095	21.053	0.15
7.80	1.000	2.61	0.060	43.467	0.15

VALOR	DESCRIPCIO N	TEMPORADA	MUY MALO	MALO	REGULAR	ACEPTABLE
0.597	REGULAR	SECO	0.25	0.5	0.7	0.9
0.806	ACEPTABLE	SECO	0.25	0.5	0.7	0.9
0.791	ACEPTABLE	SECO	0.25	0.5	0.7	0.9
0.754	ACEPTABLE	HUMEDO	0.25	0.5	0.7	0.9
0.722	ACEPTABLE	HUMEDO	0.25	0.5	0.7	0.9
0.742	ACEPTABLE	HUMEDO	0.25	0.5	0.7	0.9
0.835	ACEPTABLE	HUMEDO	0.25	0.5	0.7	0.9
0.620	REGULAR	HUMEDO	0.25	0.5	0.7	0.9
0.705	ACEPTABLE	HUMEDO	0.25	0.5	0.7	0.9
0.647	REGULAR	SECO	0.25	0.5	0.7	0.9
0.672	REGULAR	HUMEDO	0.25	0.5	0.7	0.9
			0.25	0.5	0.7	0.9

0.734	ACEPTABLE	SECO
0.493	MALO	SECO
0.619	REGULAR	SECO
0.664	REGULAR	HUMEDO
0.635	REGULAR	HUMEDO
0.683	REGULAR	HUMEDO
0.494	MALO	HUMEDO
0.598	REGULAR	SECO
0.599	REGULAR	HUMEDO
0.633	REGULAR	SECO
0.641	REGULAR	HUMEDO

0.635	REGULAR	SECO
0.494	MALO	SECO
0.634	REGULAR	SECO
0.657	REGULAR	SECO
0.697	REGULAR	HUMEDO
0.629	REGULAR	HUMEDO
0.692	REGULAR	HUMEDO
0.601	REGULAR	HUMEDO
0.561	REGULAR	SECO
0.673	REGULAR	HUMEDO

REGULAR	SECO
ACEPTABLE	HUMEDO

0.536	REGULAR	SECO
0.340	MALO	SECO
0.614	REGULAR	SECO
0.663	REGULAR	SECO
0.683	REGULAR	HUMEDO
0.548	REGULAR	HUMEDO
0.679	REGULAR	HUMEDO
0.536	REGULAR	HUMEDO
0.560	REGULAR	SECO
0.523	REGULAR	HUMEDO
0.627	REGULAR	SECO
0.555	REGULAR	HUMEDO

0.634	REGULAR	SECO
0.447	MALO	SECO
0.611	REGULAR	SECO
0.658	REGULAR	SECO
0.698	REGULAR	HUMEDO
0.596	REGULAR	HUMEDO
0.652	REGULAR	HUMEDO
0.532	REGULAR	HUMEDO
0.550	REGULAR	SECO
0.536	REGULAR	HUMEDO
0.553	REGULAR	SECO
0.686	REGULAR	HUMEDO

0.623	REGULAR	SECO
0.438	MALO	SECO
0.610	REGULAR	SECO
0.726	ACEPTABLE	HUMEDO
0.714	ACEPTABLE	HUMEDO

0.560	REGULAR	HUMEDO
0.779	ACEPTABLE	SECO
0.548	REGULAR	SECO
0.615	REGULAR	HUMEDO

0.583	REGULAR	SECO
0.403	MALO	SECO
0.642	REGULAR	SECO
0.610	REGULAR	SECO
0.639	REGULAR	HUMEDO
0.430	MALO	HUMEDO
0.663	REGULAR	HUMEDO
0.526	REGULAR	HUMEDO
0.524	REGULAR	HUMEDO
0.564	REGULAR	SECO

0.665	REGULAR	SECO
0.416	MALO	SECO
0.681	REGULAR	SECO
0.718	ACEPTABLE	HUMEDO
0.400	MALO	HUMEDO
0.675	REGULAR	HUMEDO
0.678	REGULAR	HUMEDO
0.601	REGULAR	SECO
0.654	REGULAR	HUMEDO
0.687	REGULAR	SECO

0.545	REGULAR	SECO
0.401	MALO	SECO
0.670	REGULAR	SECO
0.463	MALO	SECO
0.638	REGULAR	HUMEDO

0.391	MALO	HUMEDO
0.628	REGULAR	HUMEDO
0.664	REGULAR	HUMEDO
0.585	REGULAR	HUMEDO
0.677	REGULAR	SECO
0.463	MALO	HUMEDO

0.626	REGULAR	SECO
0.537	REGULAR	SECO
0.687	REGULAR	SECO
0.672	REGULAR	HUMEDO
0.580	REGULAR	HUMEDO
0.668	REGULAR	HUMEDO
0.658	REGULAR	HUMEDO
0.336	MALO	SECO
0.548	REGULAR	HUMEDO
0.662	REGULAR	SECO

0.520	REGULAR	SECO
0.471	MALO	SECO
0.675	REGULAR	SECO
0.459	MALO	SECO
0.660	REGULAR	HUMEDO
0.351	MALO	HUMEDO
0.554	REGULAR	HUMEDO
0.650	REGULAR	HUMEDO
0.626	REGULAR	SECO
0.595	REGULAR	HUMEDO
0.661	REGULAR	SECO
0.473	MALO	HUMEDO

0.495 MALO SECO

0.529	REGULAR	HUMEDO
0.608	REGULAR	HUMEDO
0.639	REGULAR	SECO
0.660	REGULAR	SECO

0.401	MALO	SECO
0.383	MALO	SECO
0.679	REGULAR	SECO
0.487	MALO	SECO
0.631	REGULAR	HUMEDO
0.343	MALO	HUMEDO
0.665	REGULAR	HUMEDO
0.625	REGULAR	HUMEDO
0.634	REGULAR	SECO
0.591	REGULAR	HUMEDO
0.635	REGULAR	SECO
		•

0.437	MALO	SECO
0.311	MALO	SECO
0.638	REGULAR	SECO
0.549	REGULAR	SECO
0.405	MALO	HUMEDO
0.372	MALO	HUMEDO
0.628	REGULAR	HUMEDO
0.661	REGULAR	HUMEDO
0.533	REGULAR	SECO
0.615	REGULAR	HUMEDO

0.403	MALO	SECO
0.328	MALO	SECO
0.594	REGULAR	SECO
0.461	MALO	HUMEDO

0.385	MALO	HUMEDO
0.625	REGULAR	HUMEDO
0.670	REGULAR	HUMEDO
0.613	REGULAR	SECO
0.588	REGULAR	HUMEDO
0.384	MALO	SECO

0.526	REGULAR	SECO
0.297	MALO	SECO
0.671	REGULAR	SECO
0.655	REGULAR	SECO
0.644	REGULAR	HUMEDO
0.545	REGULAR	HUMEDO
0.580	REGULAR	HUMEDO
0.660	REGULAR	HUMEDO
0.556	REGULAR	SECO
0.660	REGULAR	HUMEDO
0.651	REGULAR	SECO
0.548	REGULAR	HUMEDO

0.419	MALO	SECO
0.383	MALO	SECO
0.344	MALO	SECO
0.370	MALO	SECO
0.352	MALO	HUMEDO
0.350	MALO	HUMEDO
0.592	REGULAR	HUMEDO
0.651	REGULAR	HUMEDO
0.623	REGULAR	SECO
0.565	REGULAR	HUMEDO
0.586	REGULAR	SECO
0.504	REGULAR	HUMEDO

0.435	MALO	SECO
0.347	MALO	SECO
0.338	MALO	SECO
0.365	MALO	SECO
0.387	MALO	HUMEDO
0.356	MALO	HUMEDO
0.582	REGULAR	HUMEDO
0.634	REGULAR	HUMEDO
0.543	REGULAR	SECO
0.608	REGULAR	HUMEDO
0.620	REGULAR	SECO
0.439	MALO	HUMEDO

0.524	REGULAR	SECO
0.308	MALO	SECO
0.522	REGULAR	SECO
0.362	MALO	HUMEDO
0.330	MALO	HUMEDO
0.485	MALO	HUMEDO
0.638	REGULAR	HUMEDO
0.581	REGULAR	SECO
0.522	REGULAR	HUMEDO
0.548	REGULAR	SECO
0.541	REGULAR	HUMEDO
0.638 0.581 0.522 0.548	REGULAR REGULAR REGULAR REGULAR	HUMEDO SECO HUMEDO SECO

0.414	MALO	SECO
0.374	MALO	SECO
0.316	MALO	SECO
0.388	MALO	HUMEDO
0.637	REGULAR	HUMEDO
0.451	MALO	SECO
0.466	MALO	HUMEDO
0.487	MALO	SECO
0.378	MALO	HUMEDO

0.430	MALO	SECO
0.279	MALO	SECO
0.418	MALO	HUMEDO
0.340	MALO	HUMEDO
0.642	REGULAR	HUMEDO
0.452	MALO	SECO
0.353	MALO	HUMEDO
0.589	REGULAR	SECO
0.417	MALO	HUMEDO

MALO	SECO
MALO	SECO
MALO	SECO
MALO	HUMEDO
MALO	HUMEDO
REGULAR	HUMEDO
MALO	SECO
MALO	HUMEDO
MALO	SECO
MALO	HUMEDO
	MALO MALO MALO MALO REGULAR MALO MALO MALO MALO

0.377	MALO	SECO
0.591	REGULAR	SECO
0.326	MALO	HUMEDO
0.337	MALO	HUMEDO
0.657	REGULAR	HUMEDO
0.384	MALO	SECO
0.655	REGULAR	HUMEDO
0.511	REGULAR	SECO
0.335	MALO	HUMEDO

0.407	MALO	SECO
0.321	MALO	SECO
0.298	MALO	SECO
0.452	MALO	HUMEDO
0.378	MALO	HUMEDO
0.538	REGULAR	HUMEDO
0.538 0.371	REGULAR MALO	HUMEDO SECO
0.371	MALO	SECO
0.371 0.490	MALO MALO	SECO HUMEDO

0.385	MALO	SECO
0.574	REGULAR	SECO
0.507	REGULAR	SECO
0.407	MALO	HUMEDO
0.324	MALO	HUMEDO
0.571	REGULAR	HUMEDO
0.730	ACEPTABLE	SECO
0.626	REGULAR	HUMEDO
0.307	MALO	SECO
0.547	REGULAR	HUMEDO

0.467	MALO	SECO
0.321	MALO	SECO
0.384	MALO	HUMEDO
0.331	MALO	HUMEDO
0.662	REGULAR	HUMEDO
0.740	ACEPTABLE	SECO
0.489	MALO	HUMEDO
0.285	MALO	SECO

0.552	REGULAR	SECO
0.325	MALO	SECO
0.600	REGULAR	SECO
0.338	MALO	SECO
0.527	REGULAR	HUMEDO
0.347	MALO	HUMEDO
0.489	MALO	HUMEDO
0.298	MALO	HUMEDO
0.366	MALO	SECO
0.615	REGULAR	HUMEDO
0.523	REGULAR	SECO
0.346	MALO	HUMEDO
<u> </u>		

0.576	REGULAR	SECO
0.465	MALO	SECO
0.650	REGULAR	SECO
0.449	MALO	SECO
0.568	REGULAR	HUMEDO
0.632	REGULAR	HUMEDO
0.498	MALO	HUMEDO
0.470	MALO	HUMEDO
0.573	REGULAR	SECO
0.578	REGULAR	HUMEDO
0.555	REGULAR	SECO
0.522	REGULAR	HUMEDO
0.578 0.555	REGULAR REGULAR	HUMEDO SECO

0.557	REGULAR	HUMEDO
0.682	REGULAR	SECO
0.580	REGULAR	HUMEDO
0.523	REGULAR	HUMEDO
0.583	REGULAR	HUMEDO
0.663	REGULAR	HUMEDO
0.807	ACEPTABLE	SECO
0.621	REGULAR	HUMEDO
0.645	REGULAR	SECO

REGULAR	HUMEDO
	REGULAR

0.617	REGULAR	SECO
0.416	MALO	SECO
0.576	REGULAR	SECO
0.406	MALO	HUMEDO
0.335	MALO	HUMEDO
0.490	MALO	HUMEDO
0.723	ACEPTABLE	SECO
0.591	REGULAR	HUMEDO
0.320	MALO	SECO
0.339	MALO	HUMEDO

0.704	ACEPTABLE	SECO
0.635	REGULAR	SECO
0.683	REGULAR	SECO
0.640	REGULAR	HUMEDO
0.497	MALO	HUMEDO
0.622	REGULAR	HUMEDO
0.311	MALO	HUMEDO
0.696	REGULAR	SECO
0.634	REGULAR	HUMEDO
0.538	REGULAR	SECO
0.398	MALO	HUMEDO

0.663	REGULAR	SECO
0.627	REGULAR	SECO
0.693	REGULAR	SECO
0.628	REGULAR	HUMEDO
0.521	REGULAR	HUMEDO
0.674	REGULAR	HUMEDO
0.634	REGULAR	HUMEDO

0.793	ACEPTABLE	SECO
0.653	REGULAR	HUMEDO
0.492	MALO	SECO
0.565	REGULAR	HUMEDO

0.396	MALO	SECO
0.567	REGULAR	SECO
0.331	MALO	SECO
0.539	REGULAR	HUMEDO
0.417	MALO	HUMEDO
0.537	REGULAR	HUMEDO
0.487	MALO	HUMEDO
0.334	MALO	HUMEDO
0.668	REGULAR	SECO
0.635	REGULAR	HUMEDO
0.531	REGULAR	SECO
0.390	MALO	HUMEDO

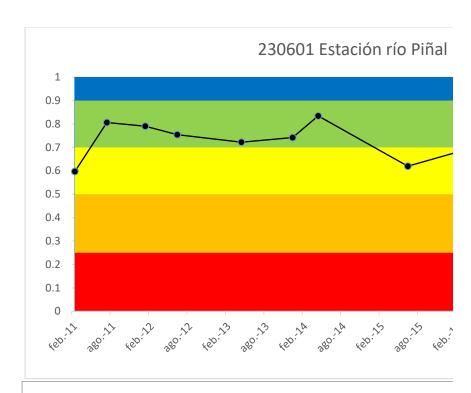
0.338	MALO	SECO
0.586	REGULAR	SECO
0.338	MALO	SECO
0.573	REGULAR	HUMEDO
0.352	MALO	HUMEDO
0.557	REGULAR	HUMEDO
0.327	MALO	HUMEDO
0.677	REGULAR	SECO
0.644	REGULAR	HUMEDO
0.571	REGULAR	SECO
0.391	MALO	HUMEDO
		· ·

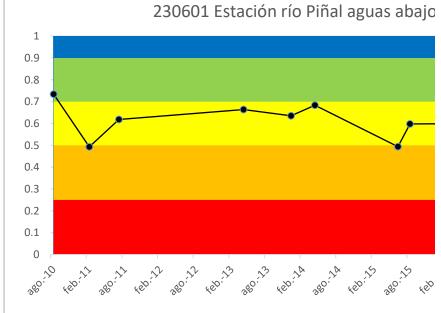
0.342	MALO	HUMEDO
0.386	MALO	SECO

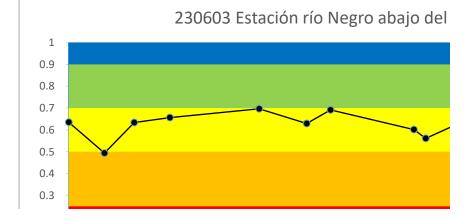
0.380	MALO	SECO
0.366	MALO	HUMEDO
0.322	MALO	HUMEDO
0.357	MALO	HUMEDO
0.329	MALO	HUMEDO
0.663	REGULAR	SECO
0.577	REGULAR	HUMEDO
0.345	MALO	SECO
0.429	MALO	HUMEDO

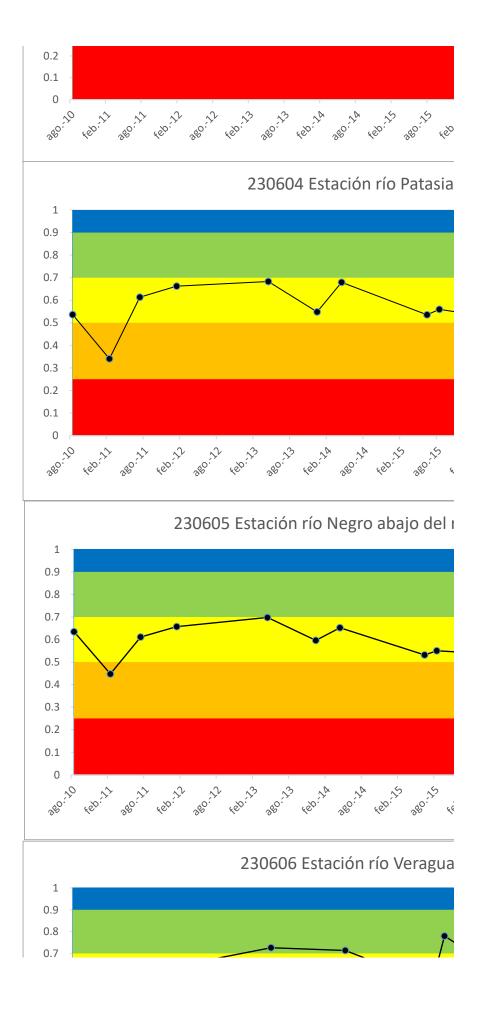
0.643	REGULAR	SECO
0.503	REGULAR	SECO
0.633	REGULAR	SECO
0.374	MALO	SECO
0.569	REGULAR	HUMEDO
0.475	MALO	HUMEDO
0.596	REGULAR	HUMEDO
0.630	REGULAR	HUMEDO
0.483	MALO	HUMEDO
0.687	REGULAR	SECO
0.690	REGULAR	HUMEDO
0.570	REGULAR	HUMEDO

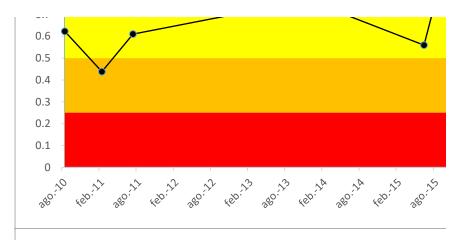
MALO	SECO
MALO	SECO
MALO	SECO
MALO	SECO
MALO	HUMEDO
MALO	HUMEDO
MALO	HUMEDO
ACEPTABLE	SECO
MALO	HUMEDO
MALO	SECO
MALO	HUMEDO
	MALO MALO MALO MALO MALO MALO MALO MALO

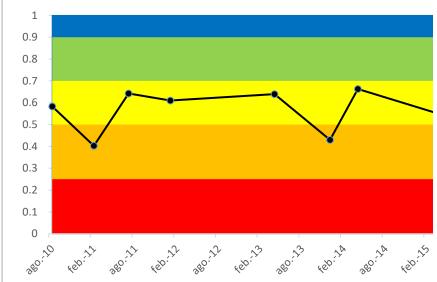

0.370	MALO	SECO
0.359	MALO	SECO
0.326	MALO SECO	SECO
0.296	MALO	HUMEDO
0.336	MALO	HUMEDO
0.307	MALO	HUMEDO
0.632	REGULAR	SECO
0.555	REGULAR	HUMEDO
0.409	MALO	SECO
0.408	MALO	HUMEDO

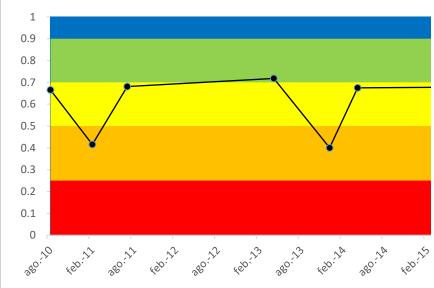

0.349	MALO	SECO
0.350	MALO	SECO
0.308	MALO	SECO
0.363	MALO	HUMEDO
0.328	MALO	HUMEDO
0.295	MALO	HUMEDO
0.716	ACEPTABLE	SECO
0.523	REGULAR	HUMEDO
0.431	MALO	HUMEDO

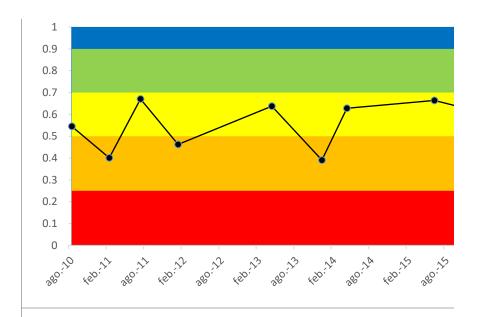

0.526	REGULAR	SECO
0.406	MALO	SECO
0.483	MALO	SECO
0.443	MALO	SECO
0.518	REGULAR	HUMEDO
0.558	REGULAR	HUMEDO
0.478	MALO	HUMEDO
0.416	MALO	SECO
0.436	MALO	HUMEDO
0.456	MALO	SECO
0.572	REGULAR	HUMEDO

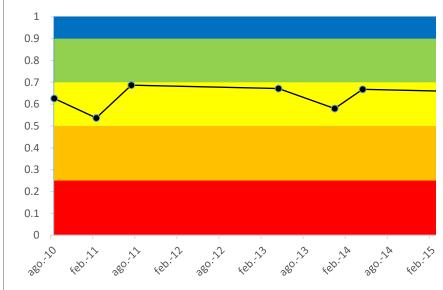

0.344	MALO	SECO
0.445	MALO	SECO
0.312	MALO	SECO
0.392	MALO	HUMEDO
0.339	MALO	HUMEDO
0.300	MALO	HUMEDO
0.645	REGULAR	SECO
0.347	MALO	SECO
0.374	MALO	HUMEDO

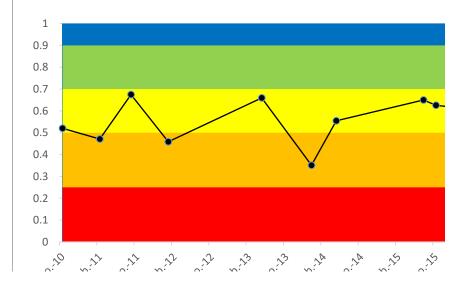

BUENO

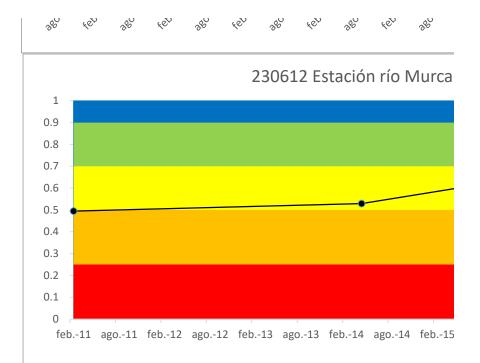


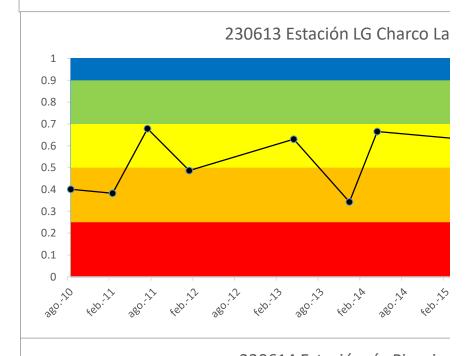


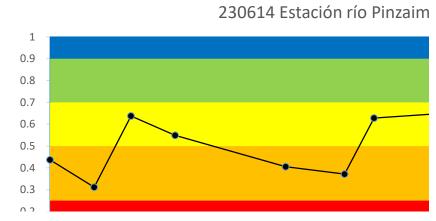


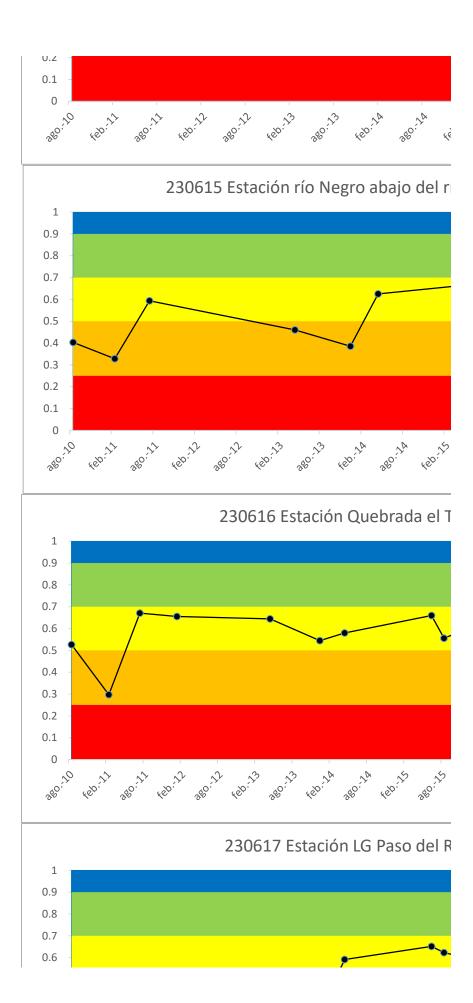

230608 Quebra Honda

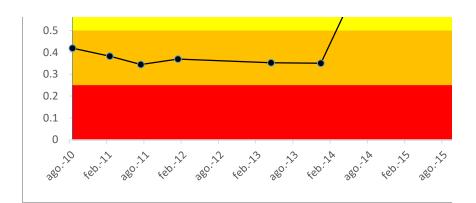

230609 Estación río Negro debajo de la Quel

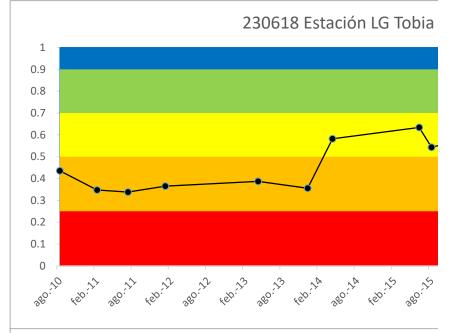


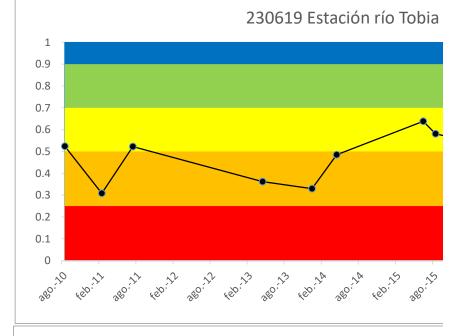

230610 Estación Quebrada la Cho

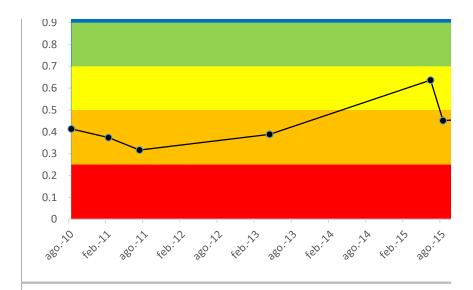


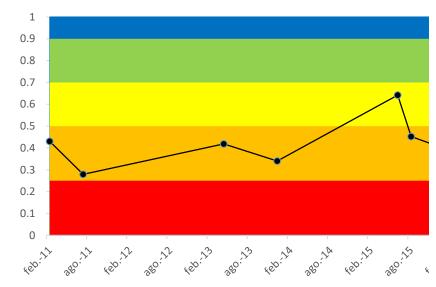

230611 Estación río Negro debajo de la Quebi



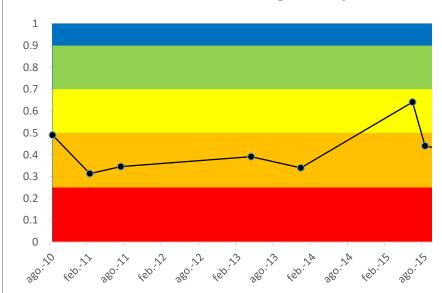


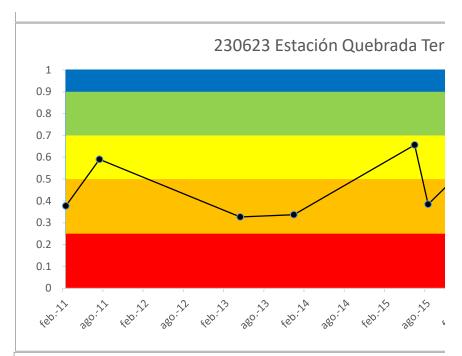




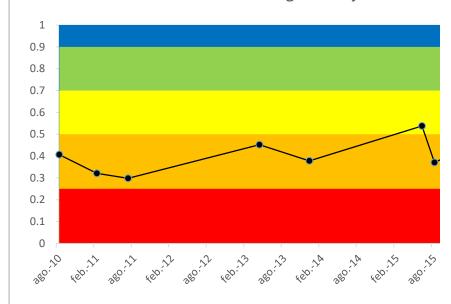


230620 Estación río Negro arriba c

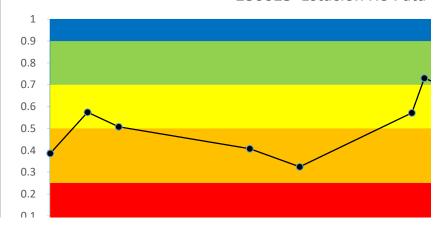

1

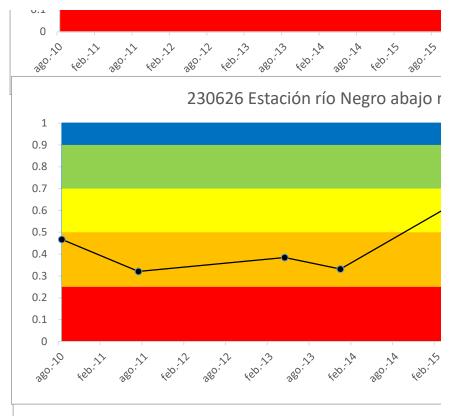


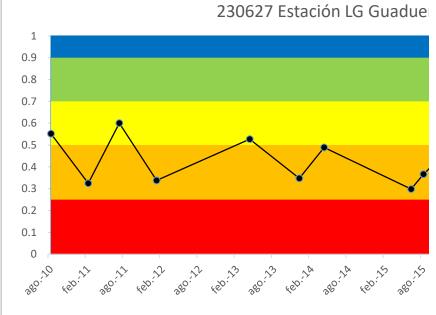
230621 Estación Quebrada Ne

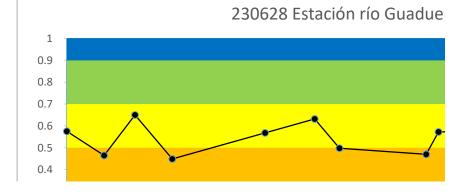


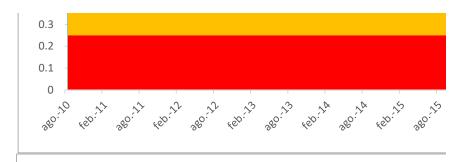
230622 Estación río Negro debajo de la Que

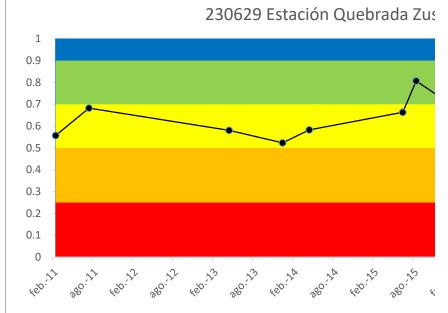


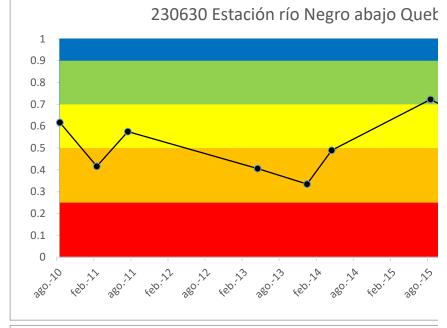


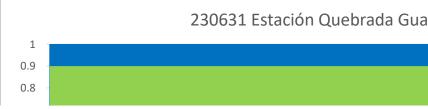


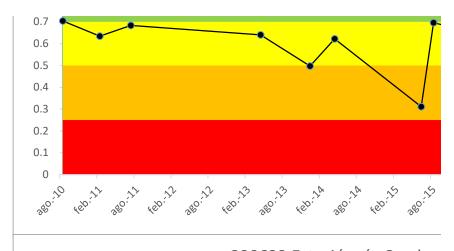


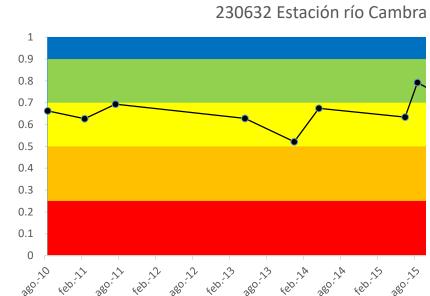


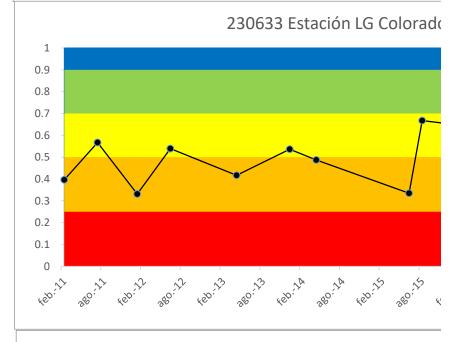


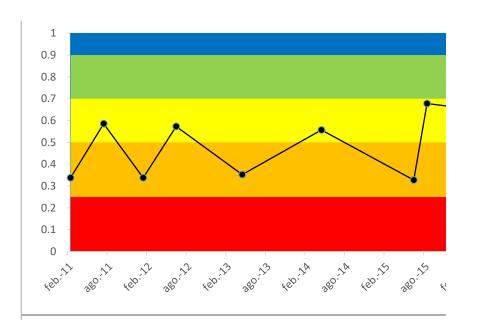


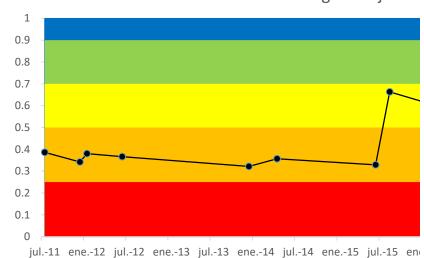


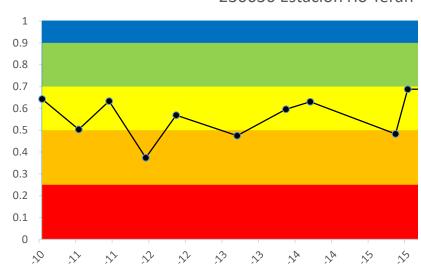


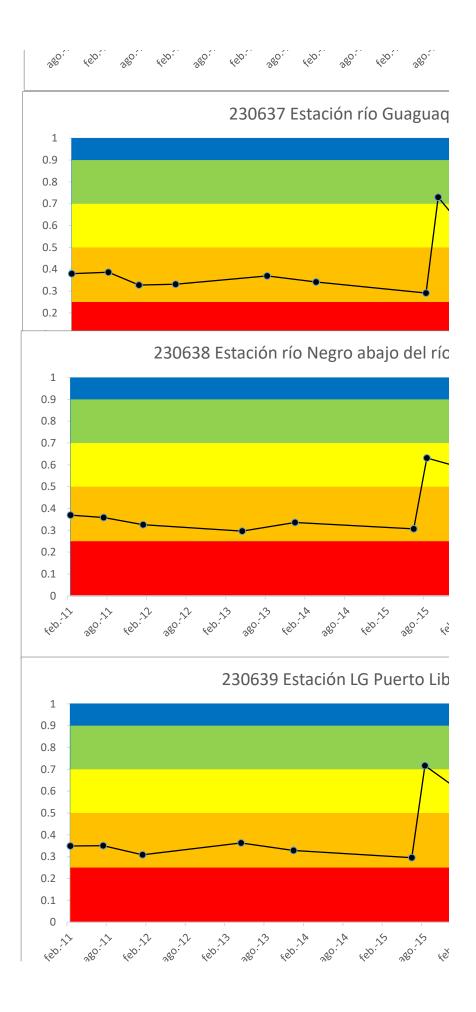


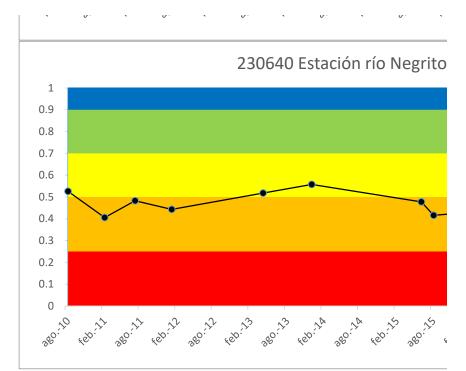


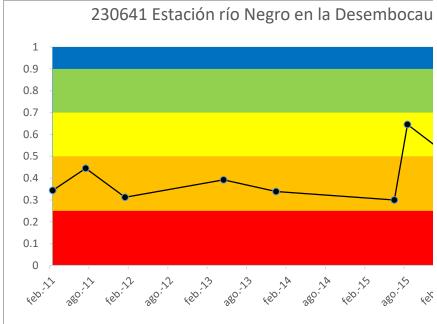


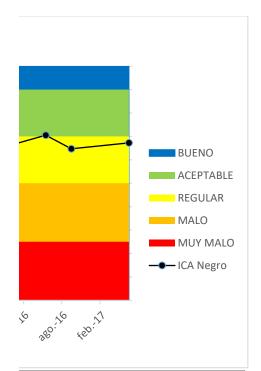


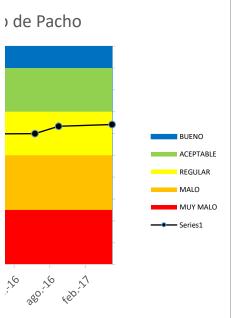

230634 Estación río Negro arriba río

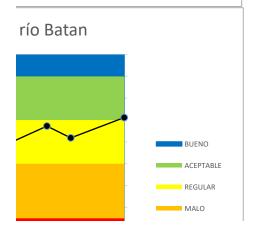


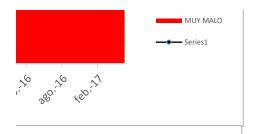


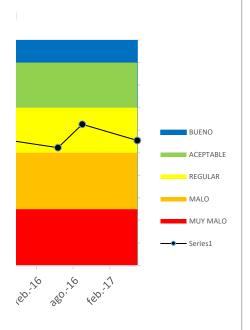


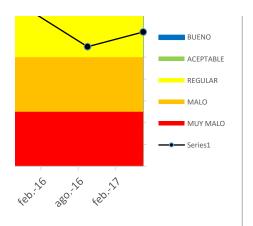

230636 Estación río Teran

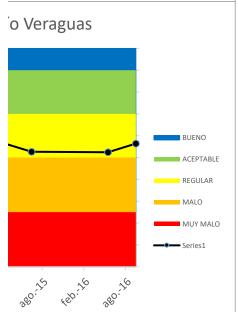


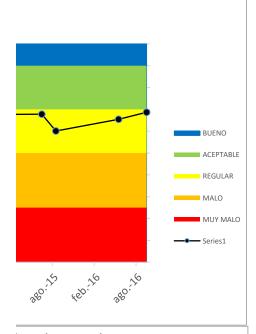




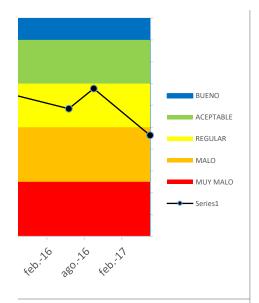


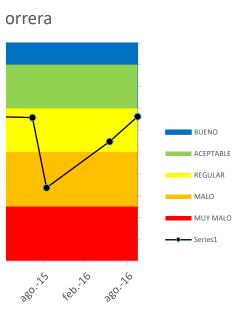


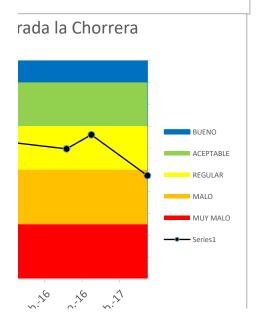

BUENO ACEPTABLE REGULAR MALO MUY MALO Series1

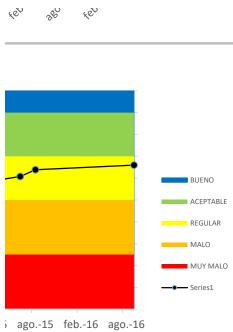

río Patasia

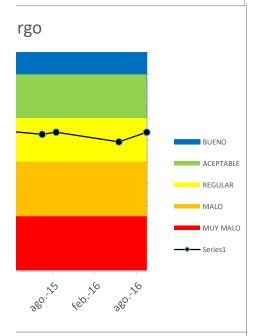
380.16 480.17

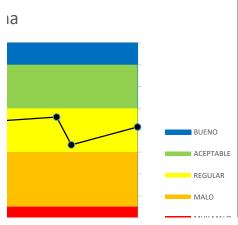


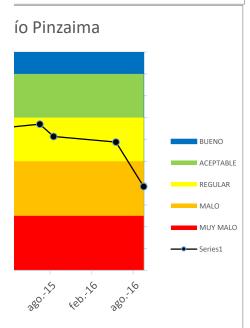


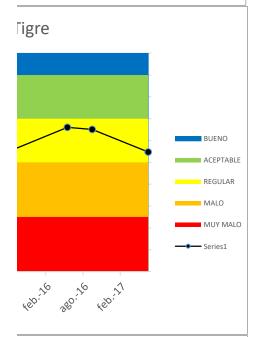


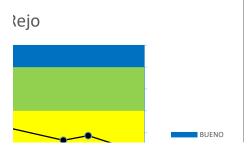


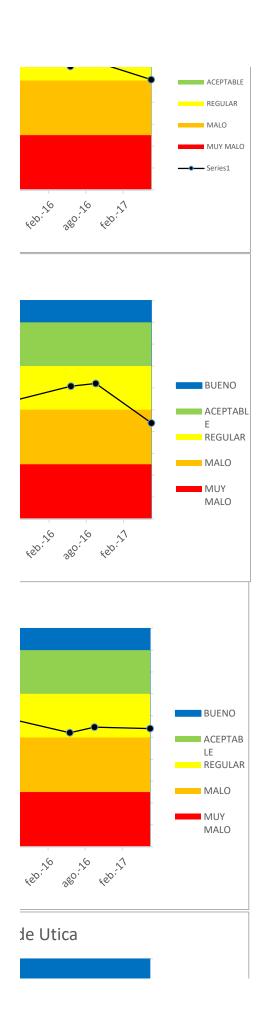

brada Honda

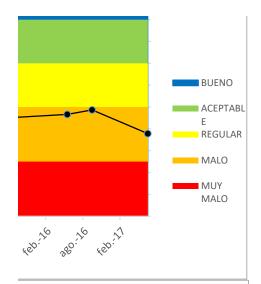


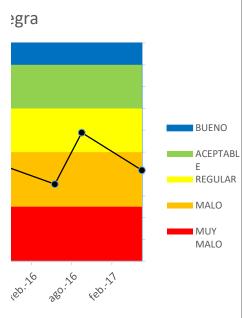


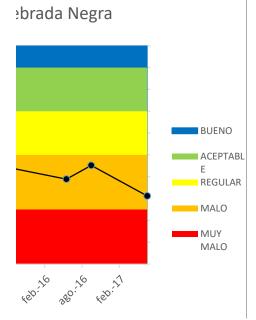


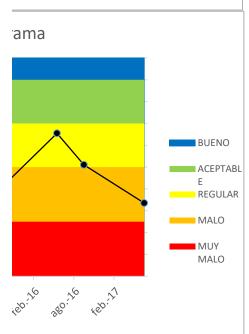


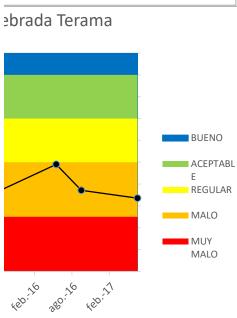


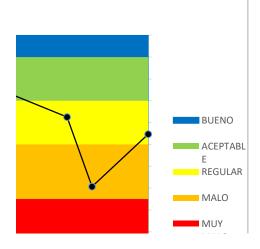


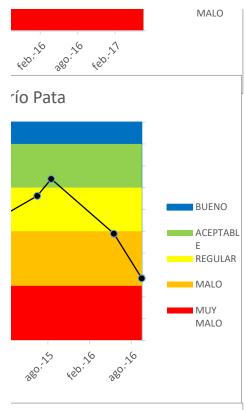


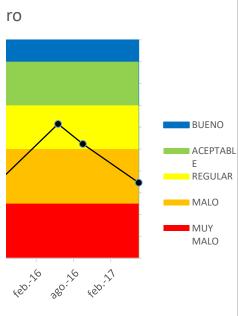


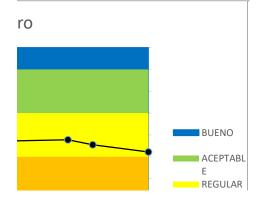


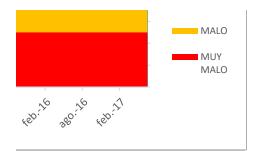


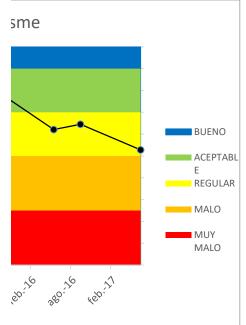




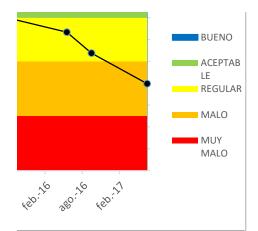


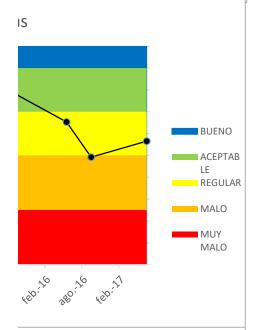


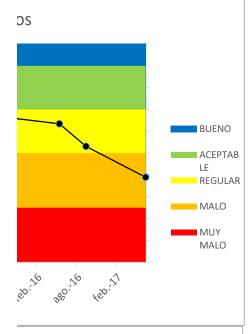


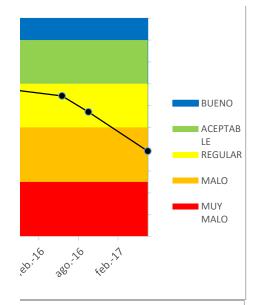


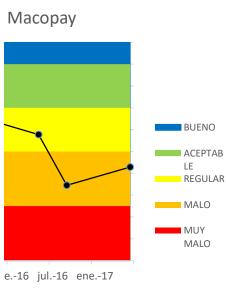


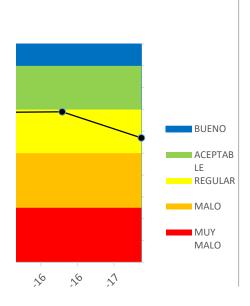


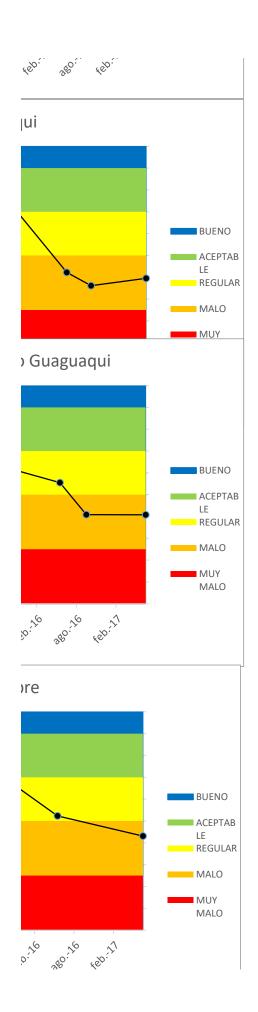


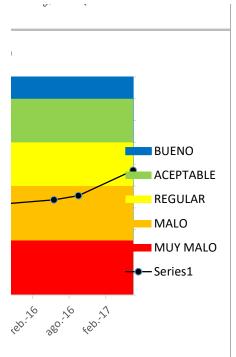


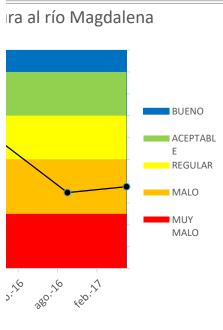









Macopay



COMPONENTE DE CALIDAD DE AGUA

Plan de Ordenación y Manejo de la Cuenca Hidrográfica

Bogotá D.C, diciembre 2017

CONTENIDO

1	CC	OMPC	NEN	ITE DE CALIDAD DE AGUA	7
	1.1	INT	ROD	UCCIÓN	7
	1.2	MA	RCO	CONCEPTUAL	8
	1.2	2.1	Esq	uema componente de Calidad del Agua en la fase de Diagnóstico	s 8
	1.2	2.2	Con	ceptos	9
		1.2.2.	1	Indicé de Calidad del Agua	9
		1.2.2.	2	Indicé de Alteración Potencial de la Calidad del Agua	9
	1.3	ME	TOD	OLOGIA	10
	1.3	3.1	Etap	oas – Componente de Calidad de Agua	10
		1.3.1.	1	Identificación y solicitud de la información	10
	•	1.3.1.	2	Análisis y tratamiento de la información	11
	•	1.3.1.	3	Generación de resultados	12
		1.3	.1.3.1	1 Actividad 1	12
		1.3	.1.3.2	2 Actividad 2	12
		1.3	.1.3.3	3 Actividad 3	13
		1.3	.1.3.4	4 Actividad 4	13
		1.3	.1.3.5	5 Actividad 5	14
		Est	imacı	ión de Índices ICA – IACAL	14
	1.4	RE:	SULT	ADOS	16
	1.4	1.1	Red	de monitoreo de Calidad de Agua Cuenca río Negro	16
		1.4.1.	1	Puntos de monitoreo de calidad de agua CAR	16
		1.4.1.	2	Suficiencia en la información Físico – Química	18
		1.4.1.	3	Suficiencia espacial de la información	18
	1.4	1.2	Sist	emas de manejo y disposición final de efluentes	26
	1.4	1.3	Esti	mación de cargas contaminantes a las corrientes principales	28
		1.4.3.	1	Cargas DBO5 y SST por municipio	28
		1.4.3.	2	Cargas generadas por actividad	29
		1.4.3.	3	Cargas DBO – SST vertidas por Nivel Subsiquiente	30

Plan de Ordenación y Manejo de la Cuenca Hidrográfica

•		ccripción y análisis de factores de contaminación en aguas y si manejo y disposición final de residuos sólidos ordinarios y	Jeios
			31
	1.4.4.1	Tipos de residuos sólidos	32
	1.4.4.2	Clasificación de los residuos sólidos	33
	1.4.4.2.	1 Área urbana cuenca rio Negro	33
	1.4.4.2.2	2 Área Rural cuenca rio negro	37
	1.4.4.3	Aprovechamiento de los residuos sólidos en la cuenca del rio 40	Negro
	1.4.4.4	Disposición final de los residuos sólidos	42
	1.4.4.4.	1 Relleno sanitario Nuevo Mondoñedo	43
	1.4.4.4.2	2 Relleno sanitario La Doradita	43
1	.4.5 Esti	mación del Índice de Calidad del Agua – ICA	45
	1.4.5.1	Índice de Calidad del Agua periodo I año 2017	45
	1.4.5.2 2017	Índice de Calidad del Agua por punto de monitoreo serie 2010 46	0 —
1.5	CONCL	USIONES	91
1.6	ANEXO	S	93
1.7	BIBLIO	GRAFÍA	93

Plan de Ordenación y Manejo de la Cuenca Hidrográfica

Gráfica 1 Cargas DBO5 – SST municipios cuenca río Negro	. 28
Gráfica 2 Cargas generadas por actividad – Cuenca río Negro	
Gráfica 3 Cargas DBO – SST por Nivel Subsiguiente	. 30
Gráfica 4 Cargas vertidas por Nivel Subsiguiente	. 30
Gráfica 5 Tipo de residuos sólidos - Cuenca del Rio Negro	. 35
Gráfica 6 Porcentaje por tipo de Residuos Sólidos - Cuenca rio Negro	. 36
Gráfica 7 Tipo de residuos sólidos rurales de la cuenca del rio negro	. 38
Gráfica 8 Porcentaje por tipo de residuos sólidos	. 39
Gráfica 9 Cantidad de residuos aprovechados - Municipios cuenca del rio Negro	
Gráfica 10 Porcentaje de residuos sólidos aprovechados - Municipios cuenca del rio	
Negro	
Gráfica 11 Índice de Calidad del Agua – ICA Estación río Piñal cod. 230601	
Gráfica 12 Índice de Calidad del Agua – ICA Estación río Piñal aguas abajo de Pach	
cod. 230602	. 48
Gráfica 13 Índice de Calidad del Agua – ICA Estación río Negro abajo del río Batan	
cod. 230603	
Gráfica 14 Indice de Calidad del Agua – ICA Estación río Patasia cod. 230604	
Gráfica 15 Índice de Calidad del Agua – ICA Estación río Negro abajo del río Patasia	
Orifica 40 Íadica da Calidad dal Agua IIOA Estación vía Varaguas and 200000	.51
Gráfica 16 Índice de Calidad del Agua – ICA Estación río Veraguas cod. 230606	
Gráfica 17 Índice de Calidad del Agua – ICA Estación río Negro abajo del río Veragu cod. 230607	
Gráfica 18 Índice de Calidad del Agua – ICA Estación Quebrada Honda cod. 230608 Gráfica 19 Índice de Calidad del Agua – ICA Estación río Negro debajo de la Quebra	
Honda cod. 230609	
Gráfica 20 Índice de Calidad del Agua – ICA Estación Quebrada la Chorrera cod.	. 55
230610	56
Gráfica 21 Índice de Calidad del Agua – ICA Estación río Negro debajo de la Quebra	
la Chorrera cod. 230611	
Gráfica 22 Índice de Calidad del Agua – ICA Estación río Murca cod. 230612	
Gráfica 23 Índice de Calidad del Agua – ICA Estación LG Charco Largo cod. 230613	
Gráfica 24 Índice de Calidad del Agua – ICA Estación río Pinzaima cod. 230614	
Gráfica 25 Índice de Calidad del Agua – ICA Estación río Negro abajo del río Pinzair	
cd. 230615	
Gráfica 26 Índice de Calidad del Agua – ICA Estación Quebrada el Tigre cod. 23061	6
	. 62
Gráfica 27 Índice de Calidad del Agua - ICA Estación LG Paso del Rejo cod. 230617	7
	. 63
Gráfica 28 Índice de Calidad del Agua – ICA Estación LG Tobia cod 230618	. 64
Gráfica 29 Índice de Calidad del Agua – ICA Estación río Tobia cod. 230619	. 65
Gráfica 30 Índice de Calidad del Agua – ICA Estación río Negro arriba de Utica cod	
230620	
Gráfica 31 Índice de Calidad del Agua – ICA Estación Quebrada Negra cod. 230621	67

Plan de Ordenación y Manejo de la Cuenca Hidrográfica

Gráfica 32 Índice de Calidad del Agua – ICA Estación río Negro debajo de la Quebrada
Negra cod. 230622
Gráfica 33 Índice de Calidad del Agua – ICA Estación Quebrada Terama cod. 23062369
Gráfica 34 Índice de Calidad del Agua – ICA Estación río Negro abajo de la Quebrada
Terama cod. 23062470
Gráfica 35 Índice de Calidad del Agua – ICA Estación río Pata cod. 23062571
Gráfica 36 Índice de Calidad del Agua – ICA Estación río Negro abajo del río Pata 72
Gráfica 37 Índice de Calidad del Agua – ICA Estación LG Guaduero cod 23062773
Gráfica 38 Índice de Calidad del Agua – ICA Estación río Guaduero74
Gráfica 39 Índice de Calidad del Agua – ICA Estación Quebrada Zusne cod 230629.75
Gráfica 40 Índice de Calidad del Agua – ICA Estación río Negro abajo de la Quebrada
Zusne
Gráfica 41 Índice de Calidad del Agua – ICA Estación Quebrada Guatachi cod 230631
77
Gráfica 42 Índice de Calidad del Agua – ICA Estación río Cambras cod. 23063278
Gráfica 43 Índice de Calidad del Agua – ICA Estación LG Colorados cod. 230633 79
Gráfica 44 Índice de Calidad del Agua – ICA Estación río Negro arriba del río
Macopay cod. 23063480
Gráfica 45 Índice de Calidad del Agua – ICA Estación río Negro abajo del río Macopay cod. 23063581
Gráfica 46 Índice de Calidad del Agua – ICA Estación río Teran cod. 23063682
Gráfica 47 Índice de Calidad del Agua – ICA Estación río Guaguaqui cod. 230637 83
Gráfica 48 Índice de Calidad del Agua – ICA Estación río Negro abajo del río
Guaguaqui cod 23063884
Gráfica 49 Índice de Calidad del Agua – ICA Estación LG Puerto Libre cod. 230639 . 85
Gráfica 50 Índice de Calidad del Agua – ICA Estación río Negrito cood. 230640 86
Gráfica 51 Índice de Calidad del Agua – ICA Estación río Negro en la desembocadura
al río Magdalena cod 23064187

Tabla 1 Información utilizada en el componente de Calidad del Agua
Tabla 5 Puntos de Monitoreo por niveles subsiguientes I en la Subzona Hidrográfica del río Negro
Tabla 6 Cargas DBO5 – SST municipios cuenca río Negro
Tabla 7 Cargas generadas por actividad – Cuenca río Negro
Tabla 8 Cantidad de residuos sólidos urbanos y rurales municipios de la cuenca del
Rio Negro32
Tabla 9 Caracterización de residuos sólidos generados por los municipios de la cuenca
del rio Negro33
Tabla 10 (Promedio) cantidad de residuos sólidos generados por los municipios de la
cuenca del Rio Negro34
Tabla 11 Porcentaje por tipo de Residuos Sólidos - Cuenca del rio Negro36
Tabla 12 Tipo de residuos sólidos rurales – Municipios cuenca río Negro37
Tabla 13 Cantidad de residuos sólidos rurales - Cuenca del río Negro38
Tabla 14 Porcentaje por tipo de residuos sólidos - Zona rural de la cuenca del rio
Negro39
Tabla 15 Cantidad de residuos sólidos aprovechados - Municipios cuenca río Negro 40
Tabla 16 Porcentaje de residuos sólidos aprovechados – Municipios cuenca río Negro
42
Tabla 17 Resultados Índice de Calidad del Agua – ICA45
Tabla 18 (Descripción, Tablas CAR)iError! Marcador no definido.

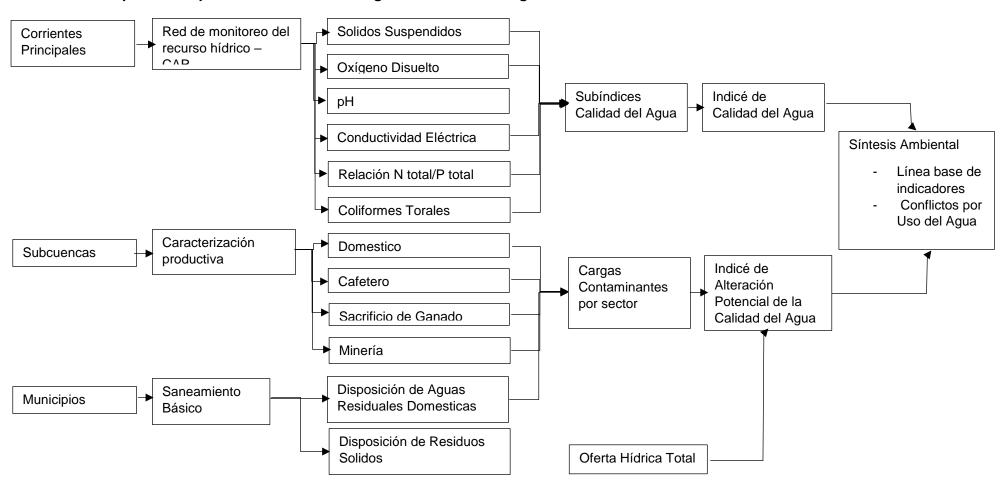
1 COMPONENTE DE CALIDAD DE AGUA

1.1 INTRODUCCIÓN

El componente de Calidad de Agua en el marco de la actualización del POMCA del río Negro, define sus alcances de acuerdo a lo establecido en la Guía Técnica para la formulación de Planes de Ordenación y Manejo de Cuencas Hidrográficas, formulada por el MADS y toma como referencia metodológica la establecida en el Estudio Nacional del Agua – 2010 y los Lineamientos Conceptuales y Metodológicos para la Evaluación Regional del Agua – ERAS 2013, formulados por el IDEAM.

Este componente busca caracterizar la cuenca en términos de Calidad de Agua para lo cual analiza la información resultante de la red monitoreo de Calidad de Agua de la cuenca y aquella relacionada con las actividades desarrolladas en el territorio de la cuenca y las condiciones de saneamiento básico, que de alguna manera tienen consecuencias en las características físicas, químicas y biológicas del recurso hídrico, a fin de aproximarse de manera cuantitativa a las cargas contaminantes vertidas.

Los resultados obtenidos permiten conocer a nivel de corriente principal el estado general del recurso hídrico, a partir de la información disponible de los parámetros fisicoquímicos requeridos por la metodología y las amenazas potenciales por la alteración de la calidad del agua derivada de las cargas aplicadas a nivel de subcuenca o nivel subsiguiente I.


El componente de Calidad de Agua ofrece el insumo para establecer en el análisis situacional los conflictos de uso del agua que permite categorizar la presión que ejerce la demanda del recurso hídrico y las actividades generadoras de cargas contaminantes sobre las corrientes o cuerpos de agua. Igualmente, con lo resultados de los indicadores ICA y IACAL aporta para establecer la línea base de la cuenca utilizada para consolidar la síntesis ambiental cuyo objetivo es condensar los resultados obtenidos en la fase de Diagnóstico

Además, en el contexto general del POMCA, los valores de los indicadores ICA y IACAL ofrecen un valor base para proyectar resultados en la construcción de escenarios prospectivos en la fase de Prospectiva y Zonificación Ambiental y criterio para definir las medidas de administración de los recursos naturales en la fase de Formulación.

1.2 MARCO CONCEPTUAL

1.2.1 Esquema componente de Calidad del Agua en la fase de Diagnóstico

1.2.2 Conceptos

1.2.2.1 Indicé de Calidad del Agua

El índice de calidad físico química de agua (ICA) es un indicativo de las condiciones de calidad física, química y microbiológica de las corrientes y cuerpos de agua. El indicador permite identificar problemas de contaminación en un punto determinado, para un intervalo de tiempo específico.

1.2.2.2 Indicé de Alteración Potencial de la Calidad del Agua

Presión Ambiental

Se entiende por presión ambiental la contribución potencial de cada agente social o actividad humana (población, industria, agricultura, minería) a las alteraciones del medioambiente por consumo de recursos naturales, generación de residuos (emisión o vertimiento) y transformación del medio físico. Es decir, es la capacidad de generar un impacto ambiental.

Afectación Ambiental

La afectación potencial se refiere a la posibilidad de generar un grado de alteración debido a una presión ambiental; por ejemplo, un vertimiento puede generar distintos impactos ambientales en función de diversos factores: la fragilidad del medio receptor, la concentración de presión ambiental en el área (existencia de muchos vertimientos) y la capacidad del medio receptor.

 Indicé de alteración potencial de la calidad del agua como indicativo de presión por contaminación.

Este indicador tiene como propósito determinar las amenazas potenciales por alteración de la calidad en las unidades de análisis. La afectación de la calidad de puede expresar como una amenaza, al considerar que, desde un punto de vista antropocéntrico, el sistema hídrico es más vulnerable a la afectación de la calidad en la medida de la disponibilidad natural y/o regulada de una cantidad suficiente para abastecer los usos de la población asentada en sus alrededores, la cual varia dinámica y paralelamente con la variabilidad climática. Así, se considera que la disponibilidad del agua se reduce en época seca como en época lluviosa.

La probabilidad de un evento de alteración en la calidad del agua de una fuente superficial representa una amenaza en la medida en que se incrementan ls cargas vertidas por los diferentes sectores y se reduce la capacidad natural de autodepuración del sistema hídrico superficial que las recibe, lo que hace que pierda la aptitud para usos específicos y afecta la calidad de los beneficios ambientales que presentan estos sistemas hídricos.

1.3 METODOLOGÍA APLICADA

Para plantear la metodología que se desarrolla para la consecución de resultados por actividad definida en la Guía Técnica para la formulación de POMCAS en el componente de Calidad de Agua, se presentan a continuación las etapas generales propias del documento (procedimiento) y se referencian las metodologías establecidas por el marco técnico que orienta la caracterización de las cuencas en términos de la calidad del agua.

1.3.1 Etapas – Componente de Calidad de Agua

1.3.1.1 Identificación y solicitud de la información

Previa consulta de la Guía técnica para la formulación de POMCAS, se identificó la información que se debía gestionar para avanzar en el desarrollo de las actividades. La información identificada y gestionada se limitó a aquella generada por la Corporación, la cual se considera que es la básica para dar alcance a la caracterización de la cuenca en términos de calidad del recurso hídrico, es decir, permite dar alcance a los propósitos del componente, pero omite las fuentes de información externas que podrían existir, como de estaciones de calidad de agua de otras entidades e información de monitoreos de hidrología y calidad de agua. A continuación, presentamos la información utilizada:

Tabla 1 Información utilizada en el componente de Calidad del Agua

Actividad (GT POMCAS)	Descripción de la información	Dependencia
1.Identificar y evaluar	Reportes de laboratorio de la	Dirección de
redes de monitoreo	calidad del agua durante la serie	Monitoreo.
	2010 - 2017	Modelamiento y
		Laboratorio
		Ambiental DMMLA
	Inventario de estaciones	Dirección de
	hidrometeorologicas	Monitoreo.
		Modelamiento y
		Laboratorio
		Ambiental DMMLA
2. Identificación de	Relación de sistemas de	Dirección operativa
actividades generadoras	tratamiento de aguas residuales	y de infraestructura
de vertimiento y PTARS	domesticas de los municipios y	
	centros poblados	
	Planes de Saneamiento y Manejo	Dirección de
	de Vertimientos	Evaluación,
		Seguimiento y
		Control Ambiental
3. Estimación de cargas	Línea base técnica de cálculo de	Dirección de
contaminantes vertidas a	cargas corrientes a cobrar por	Evaluación,
corrientes principales	concepto de tasa retributiva	Seguimiento y
		Control Ambiental

4. Manejo y disposición	Planes de Gestión Integral de	Dirección de
final de residuos sólidos	Residuos Sólidos - PGIRS	Evaluación,
ordinarios y especiales		Seguimiento y
urbano y rurales		Control Ambiental
5. Estimación del Índice de	Reportes de laboratorio de la	Dirección de
Calidad del Agua - ICA e	calidad del agua durante la serie	Monitoreo.
Índice de Alteración	2010 - 2017	Modelamiento y
Potencial de la Calidad del		Laboratorio
Agua -IACAL		Ambiental DMMLA
	Línea base técnica de cálculo de	Dirección de
	cargas corrientes a cobrar por	Evaluación,
	concepto de tasa retributiva	Seguimiento y
		Control Ambiental
Información cartográfica	Delimitación cuenca hidrográfica	Dirección de
	río Negro y niveles subsiguientes I	Monitoreo.
	Cartografía base - Delimitación	Modelamiento y
	municipios y cascos urbanos y	Laboratorio
	drenajes	Ambiental DMMLA

1.3.1.2 Análisis y tratamiento de la información

Previa revisión de la información se organizó para disponerla para la generación de análisis y resultados, lo cual implicó fundamentalmente espacializar y correlacionar la información, para lo cual se utilizó el software ARCGIS y las herramientas de corte y filtro. A continuación, se menciona el tratamiento dado a la información:

Tabla 2 Actividades de análisis y tratamiento de la información

Actividad	Insumo de información	Tratamiento y análisis
1	Reportes de laboratorio de la calidad del agua durante la serie 2010 – 2017 (Georeferenciación)	Espacialización de los puntos de monitoreo con referencia a municipios, subcuencas y drenajes Comparativo entre los parámetros medidos y los demandados para estlmar el ICA
3	Línea base técnica de cálculo de cargas corrientes a cobrar por concepto de tasa retributiva (Georeferenciación)	Espacialización de los vertimientos con referencia a municipios, cascos urbanos, drenajes y niveles subsiguientes Estimación de cargas contaminantes de DBO y SST a nivel de municipios y niveles subsiguientes.
4	Reportes de laboratorio de la calidad del agua durante la serie 2010 - 2017	Digitación de los resultados de calidad de agua de los parámetros utilizados para

de la Cuenca Hidrográfica

		la estimación del ICA y planteamiento de base de datos a nivel de punto de monitoreo y serie histórica 2010 - 2017.
	Línea base técnica de cálculo de cargas corrientes a cobrar por concepto de tasa retributiva	Organización de los valores de carga por nivel subsiguiente Organización de los valores de carga por sector o uso del agua asociado.
5	Delimitación cuenca hidrográfica río Negro y niveles subsiguientes I Cartografía base - Delimitación municipios y cascos urbanos y drenajes	9

1.3.1.3 Generación de resultados

1.3.1.3.1 Actividad 1

Identificar y evaluar las redes de monitoreo en la cuenca

Suficiencia en la información Físico Química

Verificar que la información suministrada por la Dirección de Monitoreo, Modelamiento y Laboratorio Ambiental cuente con datos de calidad de agua para la totalidad de los parámetros utilizados en la metodología para la estimación del Índice de Calidad del Agua – ICA.

• Suficiencia espacial de la información

Una vez espacializada la información de puntos de monitoreo de calidad del agua, se determina si la ubicación de estos permite conocer las características actuales en términos de calidad del agua para todas las corrientes principales de las subcuencas hidrográficas o niveles subsiguientes.

1.3.1.3.2 Actividad 2

Identificación de actividades generadoras de vertimiento y PTARS

Esta actividad se orientó solamente a la verificación de existencia de sistemas de tratamiento de aguas residuales para los municipios y centros poblados cuyos vertimientos drenan a la red hidrográfica del río Negro y si actualmente se encuentra en operación. Esta información sirve para justificar los aspectos que contribuyen en los tramos críticos en términos de calidad del agua.

1.3.1.3.3 Actividad 3

Estimación de cargas contaminantes vertidas a corrientes principales

Previo tratamiento de la información mencionado anteriormente, se espacializan las cantidades de carga contaminante vertidas a las corrientes de la cuenca del río Negro a nivel de subcuenca hidrográfica o nivel subsiguiente. La información utilizada es la reportada por el programa de tasas retributivas de la Corporación, la cual calcula las cargas en DBO 5 y SST. Igualmente se calcula la carga generada por cada municipio y las cantidades de carga generadas por actividad o uso asociado. Esta información se utiliza para calcular más adelante el Índice de Alteración Potencial de la Calidad del Agua – IACAL, pero que valga la pena mencionar, es en sí misma pertinente para determinar la relación comparativa en términos de calidad del agua entre municipios y subcuencas o niveles subsiguientes.

1.3.1.3.4 Actividad 4

Manejo y disposición final de residuos sólidos ordinarios y especiales

Partiendo de la información de los Planes de Gestión Integral de Residuos Sólidos presentados por los municipios a la Corporación, se busca obtener los siguientes resultados:

Nivel de detalle de la información presentada en los PGIRS

Cantidades de residuos sólidos generados

Cantidades de residuos sólidos aprovechados

Formas de disposición final

Cantidades de residuos sólidos dispuestos

La anterior información sirve para establecer comparativamente a nivel de municipios el control sobre el manejo de los residuos sólidos, como indicador de deterioro de la calidad hídrica en las corrientes de la red hidrográfica del río Negro

De acuerdo a la información obtenida de los PGIRS para cada uno de los municipios que hacen parte de la cuenca del rio negro se identificó que los siguientes municipios no evidencian un manejo adecuado de los residuos sólidos: Utica, Nimaima, Vergara, Quebrada Negra, Nocaima, Supatá, Villeta, La vega, Caparrapi, guaduas, Puerto Salgar, Viani.

Esta calificación se hizo sumando el puntaje según el cumplimiento de los 3 criterios que permitan evaluar el estado en cuanto al manejo de los residuos sólidos de cada municipio, como lo es la caracterización, aprovechamiento y cobertura de disposición final, la calificación que se asigno fue entre 0-2, en donde para el primer criterio

(caracterización de residuos sólidos) se asignó un puntaje de 0 para los municipios que no registran ninguna información, para el segundo criterio (Aprovechamiento de residuos sólidos) se asignó 1 para los que tienen aprovechamiento y 0 para los que no, finalmente para el tercer criterio (cobertura de disposición final) en el cual se asignó un puntaje de 2 para los municipios que se encuentran en el rango de 50-100 % en cuanto a disposición final. Después se sumaron estos puntajes obteniendo resultados entre 2 y 4, dando por críticos los que tuvieron menor puntaje (2).

1.3.1.3.5 Actividad 5
Estimación de Índices ICA – IACAL

1.3.1.3.5.1 Estimación del Índice de Calidad del Agua –ICA

Para la generación de resultados de los índices (ICA – IACAL) como síntesis del componente de calidad del agua e insumo para el desarrollo de actividades y productos de otros componentes del diagnóstico y fases de la actualización del POMCA del río Negro, se aplica la metodología sugerida en la Guía Técnica para la formulación de POMCAS, que a continuación se describe de manera resumida, pero que para mayor detalle se incluye en este documento el Anexo 1. Hoja metodológica estimación Índice de Calidad del Agua – IDEAM)

Desarrollo metodológico y conceptual¹

Definición y significado

El índice de calidad físico química del agua (ICA) es un indicativo de las condiciones de calidad física, química y microbiológica de las corrientes y cuerpos de agua. El indicador permite identificar problemas de contaminación en un punto determinado, para un intervalo de tiempo específico. Permite representar el estado en general del agua y las posibilidades o limitaciones para determinados usos en función de variables seleccionadas, mediante ponderaciones y agregación de variables físicas, químicas y microbiológicas.

Formula y unidad de medida del indicador

El índice de calidad del agua es una expresión agregada y simplificada, sumatoria aritmética equiponderada de varias variables. Para el nivel regional se propone calcular el ICA con 7 variables, es decir con inclusión de un parámetro microbiológico

Variable	Expresada como	Peso de importancia
Oxigeno disuelto	% de saturación	0,16
Sólidos en Suspensión	mg/l	0,14
Demanda Química de	mg/l	0,14
Oxigeno – DQO		

_

¹ Lineamientos conceptuales y metodológicos para la evaluación regional del agua ERAS -2013

Conductividad Eléctrica	Us/cm	0,14
Relación N/P	mg/l	0,14
Ph	Unidades de Ph	014
Coliformes Fecales	UFC/100 ml	0,14

Descripción metodológica

De acuerdo con la hoja metodológica IDEAM, se identifican 6 variables básicas, la cual se puede consultar para calcular cada una de las variables de la fórmula del indicador

Igualmente, en este documento se incluye para dar mayor detalle de la metodología para la estimación de este indicador el Anexo 2 Hoja metodológica estimación Índice de Alteración Potencial de la Calidad del Agua – IDEAM.

Categorías de valores que puede tomar el indicador	Calificación de la	Señal de alerta
puede tornar el indicador	calidad del agua	
0.00 - 0,25	Muy mala	Rojo
0,26 – 0,50	Mala	Naranja
0,51 – 0,70	Regular	Amarillo
0,71 – 0,90	Aceptable	Verde
0,91 – 1.00	Buena	Azul

La ponderación de las variables físicas, químicas y microbiológicas puede variar en función de la relevancia para análisis específicos de condiciones de calidad de aguas (IDEAM)

El sistema de fórmulas para estimar el indicador y los subíndices de cada parámetro de muestran en el anexo 1 Hoja Metodológica ICA.

1.3.1.3.5.2 Estimación del Índice de Alteración Potencial de la Calidad del Agua

Inicialmente es importante aclarar que la estimación del IACAL utiliza como insumo los resultados de oferta total generados por el componente de hidrología. Este dato permite establecer de alguna manera la capacidad de dilución y en consecuencia de asimilación de la carga potencial a aplicar por cada subcuenca hidrográfica o nivel subsiguiente.

De acuerdo a lo anterior, el avance en la estimación del indicador está supeditada a los insumos generados por el componente de Hidrología.

Desarrollo metodológico y conceptual²

Definición y significado

Este indicador es un referente de la presión por contaminantes sobre las condiciones de calidad del agua en los sistemas hídricos superficiales.

² Lineamientos conceptuales y metodológicos para la evaluación regional del agua ERAS -2013

Descripción metodológica

La descripción metodológica se describe con mayor claridad en el Anexo 2 Hoja Metodológica IACAL.

1.4 RESULTADOS

1.4.1 Red de monitoreo de Calidad de Agua Cuenca río Negro

El análisis de la red de monitoreo de calidad del agua, se orienta hacia dos propósitos, el primero establecer la suficiencia de la información generada por la red para la construcción de la línea base del POMCA y segundo evaluar respecto a los criterios y factores a tener en cuenta para la ubicación de puntos para el monitoreo de aguas superficiales, a fin de identificar potencialidades y limitantes como referencia para plantear líneas de acción en la fase de formulación.

1.4.1.1 Descripción red de monitoreo de calidad del agua e hidrometeorologica de la CAR.

Tabla 3 Red de monitoreo de la calidad del agua en la cuenca del río Negro

PUNTO	MUNICIPIO	ESTE	NORTE	ALTURA
Quebrada Honda	El Peñón	978187	1069823	1045
Río Negro aguas abajo Quebrada Honda	El Peñón	977365	1070448	1030
Quebrada la Chorrera	El Peñón	975992	1071089	1021
Río Negro aguas abajo Quebrada la Chorrera	El Peñón	975550	1070935	1016
Estación LG Charco largo	La Palma	970644	1072755	1013
Río Negro aguas abajo río Veraguas	El Peñón	986286	1065910	1266
Estación LG Colorados	Pto. Salgar	942834	1096590	308
Río Negro aguas arriba de río Macopay	Pto. Salgar	946375	1101285	295
Río Negro aguas abajo de río Macopay	Pto. Salgar	956482	1125080	225
Río Terán	Pto. Salgar	956989	1127082	212
Río Pinzaima	Tobia	965143	1060474	776
Río Negro aguas abajo del río Pinzaima	Tobia	964937	1060394	719
Quebrada el Tigre	Tobia	963696	1057801	708
Estación LG Paso del Rejo	Tobia	963513	1057950	714
Estación LG Tobia	Tobia	959034	1058302	754
Río Tobia	Tobia	958630	1058031	708
Río Piñal	Pacho	990062	1055606	2146
Río Piñal aguas abajo de Pacho	Pacho	991039	1059407	1745
Río Negro aguas abajo del río Batan	Pacho	990062	1062130	1581

Plan de Ordenación y Manejo de la Cuenca Hidrográfica

PUNTO	MUNICIPIO	ESTE	NORTE	ALTURA
Río Patasia	Pacho	988373	1063438	1370
Río Negro aguas abajo del río Patasia	Pacho	988373	1063938	1370
Río Veraguas	Pacho	987233	1067777	1539
Río Guaguaqui	Pto Salgar	956482	1130385	200
Río Negro aguas abajo del río Guaguaqui	Pto Salgar	950920	1132038	181
Estación L6 Puerto libre	Pto Salgar	938556	1128732	187
Río Negrito	Pto Salgar	939495	1125560	170
Desembocadura río Magdalena	Pto Salgar	936411	1128503	172
Estación LG Guaduero	Guaduas	944563	1066608	449
Río Guaduero	Guaduas	943481	1066560	451
Quebrada Zusne	Guaduas	946329	1079786	402
Río Negro aguas abajo Quebrada Zusne	Guaduas	946020	1081880	472
Quebrada Guatachi	Guaduas	947707	1089187	334
Río Cambras	Guaduas	942013	1091302	321
Río Negro aguas arriba de Utica	Utica	955542	1065618	505
Quebrada Negra	Utica	955105	1065810	510
Río Negro aguas abajo de la Quebrada Negra		954318	1079786	493
Quebrada Terama	Utica	955923	1066588	513
Río Negro aguas abajo Quebrada Terama	Utica	953386	1066928	496
Río Pata	Utica	953062	1070884	550

PUNTO	MUNICIPIO	ESTE	NORTE	ALTURA
Yacopí	Yacopí	969949	1097877	1347
Puente Granada	Guaduas	945370	1052950	1530
Zusne	Caparrapí	949777	1080111	2315
Caparrapí	Caparrapí	954079	1081988	1311
Puerto Leticia	La Palma	963016	1073349	1042
Paso del Rejo	Nimaima	964064	1058170	706
Agua Fría	Quebradanegra	957820	1056980	1319
El Acomodo	La Vega	971945	1046310	1384
Agua Fría	Quebradanegra	957670	1055950	1249
Puente Naranjal	Nocaima	962000	1051730	844
Río Dulce	Villeta	956600	1043230	914
Salitre Blanco	Villeta	954610	1047480	982
San Isidro	Villeta	952480	1050180	1124
Puente Naranjal	Nocaima	965939	1049845	844
El Puente	Villeta	954722	1043308	835
Los Tiestos	La Palma	963347	1084049	1664
Acueducto la Palma	La Palma	964693	1082693	1152
Negrete	Pacho	991879	1055051	2318
Instalación Agrícola Esc. Vocacional	Pacho	988700	1061600	1932

La Cabrera	Pacho	993850	1058360	2234
Puente El Cucharal	Pacho	985380	1066149	1224
Puente Arco	Pacho	990459	1057064	1960

1.4.1.2 Suficiencia en la información Físico – Química

Tabla 4 Disponibilidad de la información – Parámetros ICA

Variables físico químicas (ICA)	Unidades	Disponibilidad
Oxígeno disuelto (OD)	% Saturación	SI
Sólidos en Suspensión	mg/l	SI
Demanda química de oxigeno (DQO)	mg/l	SI
Demanda bioquímica de oxigeno (DBO)	mg/l	SI
Solidos suspendidos totales	mg/l	SI
Coliformes fecales	NMP/1000	SI
Caudal	L/seg	NO
Conductividad Eléctrica (C.E)	uS/cm	SI
Ph Total		SI

1.4.1.3 Suficiencia espacial de la información

La red de monitoreo de la calidad hídrica en la subzona hidrográfica del río Negro incluye 41 puntos de monitoreo, de los cuales 21 analizan la corriente principal y 20 analizan afluentes a la corriente principal.

Teniendo en cuenta que la unidad de análisis es el nivel subsiguiente a la subzona hidrográfica, a continuación, se presentan los puntos de monitoreo en cada nivel subsiguiente de la cuenca del río Negro a fin de establecer la suficiencia espacial de la información. Igualmente se incluye la relación espacial con las estaciones de medición hidrometeorologica, teniendo en cuenta que para establecer un panorama de la calidad del recurso hídrico es necesario el conocimiento de condiciones asociadas a la cantidad del recurso.

Tabla 5 Monitoreo por niveles subsiguientes I en la Subzona Hidrográfica del río Negro

Nivel Subsiguiente	Tipo	Puntos de Monitoreo (2017)	Ubicación
2306-01 Río Bajo Negro	Calidad de Agua	Desembocadura río Magdalena	Río Negro
	Calidad de Agua	Estación L6 Puerto Libre	Río Negro
	Calidad de Agua	Río Negrito	Afluente
	Calidad de Agua	Río Negro aguas abajo de río Guaguaqui	Río Negro
	Calidad de Agua	Río Negro aguas abajo de río Macopay	Río Negro
2306-02 Río Guaguaqui	Calidad de Agua	Río Guaguaqui	Afluente
	Hidrometeorologica Satelital (CP)	Yacopí	Río Negro
2306-03 Río Terán	Calidad de Agua	Río Terán	Afluente
2306-04 Río Macopay	Calidad de Agua	-	
2306-05 Río Cambras	Calidad de Agua	Río Cambras	Afluente
2306-06 Río Guatachi	Calidad de Agua	Quebrada Guatachi	Afluente
2306-07 Río Guaduero	Calidad de Agua	Río Guaduero	Afluente
	Hidrometeorologica Convencional (LM)	Puente Granada	Afluente
2306-08 Río Medio Negro 1	Calidad de Agua	Río Negro aguas abajo Quebrada Zusne	Río Negro
-	Calidad de Agua	Quebrada Zusne	Afluente
	Calidad de Agua	Estación LG Guaduero	Río Negro
	Calidad de Agua	Río Negro aguas abajo Quebrada Terama	Río Negro
	Hidrometeorologica Convencional (LM)	Zusne	Afluente
2306-09 Río Pata	Calidad de Agua	Río Negro aguas abajo Quebrada Negra	Río Negro
	Calidad de Agua	Río Patà	Afluente
	Hidrometeorologica Satelital (CP)	Caparrapí	Río Negro
	Hidrometeorologica Convencional (LM)	Puerto Leticia	Afluente
2306-10 Quebrada negra	Calidad de Agua	-	
2306-11 Quebrada Terama	Calidad de Agua	Quebrada Terama	Afluente
2306-12 Río Negro Medio 2	Calidad de Agua	Quebrada Negra	Afluente
_	Calidad de Agua	Río Negro aguas arriba de Utica	Río Negro
	Calidad de Agua	Estación LG Paso del Rejo	Río Negro

Nivel Subsiguiente	Tipo	Puntos de Monitoreo (2017)	Ubicación
	Calidad de Agua	Quebrada el Tigre	Afluente
	Hidrometeorologica Convencional (LM)	Paso del Rejo	Afluente
2306-13 Río Tobia	Calidad de Agua	Río Tobia	Afluente
	Calidad de Agua	Estación LG Tobia	Río Negro
	Hidrometeorologica Convencional (PM)	Agua Fría	Afluente
	Hidrometeorologica Convencional (CP)	El Acomodo	Afluente
	Hidrometeorologica Convencional (LM)	Agua Fría	Afluente
	Hidrometeorologica Convencional (LM)	Puente Naranjal	Afluente
	Hidrometeorologica Convencional (LM)	Río Dulce	Afluente
	Hidrometeorologica Convencional (LM)	Salitre Blanco	Afluente
	Hidrometeorologica Convencional (LM)	San Isidro	Afluente
	Hidrometeorologica Automática (LG)	Puente Naranjal	Afluente
	Hidrometeorologica Convencional (LG)	El Puente	Afluente
2306-14 Río Pinzaima	Calidad de Agua	Río Negro aguas abajo del río Pinzaima	Río Negro
	Calidad de Agua	Río Pinzaima	Afluente
2306-15 Río Murca	Calidad de Agua	Río Murca (no se tomó en 2017)	Afluente
	Hidrometeorologica Convencional (PM)	Los Tiestos	Afluente
	Hidrometeorologica Convencional (LM)	Bocatoma Acueducto Is Palma	Afluente
2306-16 Río Alto Negro	Calidad de Agua	Estación LG Charco Largo	Río Negro
	Calidad de Agua	Río Negro aguas abajo Quebrada la Chorrera	Río Negro
	Calidad de Agua	Quebrada la Chorrera	Afluente
	Calidad de Agua	Río Negro aguas Quebrada Honda	Río Negro
	Calidad de Agua	Quebrada Honda	Afluente
	Calidad de Agua	Río Veraguas	Afluente
	Calidad de Agua	Río Negro aguas abajo río Veraguas	Río Negro
	Calidad de Agua	Río Negro aguas abajo del río Patasia	Río Negro

Plan de Ordenación y Manejo de la Cuenca Hidrográfica

Nivel Subsiguiente	Tipo	Puntos de Monitoreo (2017)	Ubicación
	Calidad de Agua	Río Patasia	Afluente
	Calidad de Agua	Río Negro aguas abajo del río Batan	Río Negro
	Calidad de Agua	Río Piñal aguas abajo de Pacho	Afluente
	Calidad de Agua	Río Piñal	Afluente
	Hidrometeorologica Convencional (PM)	Negrete	Afluente
	Hidrometeorologica Convencional (CP)	Instituto Agrícola Escuela Vocacional	Afluente
	Hidrometeorologica Convencional (LM)	La Cabrera	Afluente
	Hidrometeorologica Convencional (LG)	Puente el Cucharal	Río Negro
	Hidrometeorologica Convencional (LM)	Puente Arco	Afluente

Finalmente, con el propósito de concluir respecto del estado actual del monitoreo de la calidad del agua, de manera que se identifiquen potencialidades y limitantes a incluir en el análisis situacional y síntesis ambiental de la cuenca, a continuación, se abordan parámetros definidos en la Guía para el monitoreo de vertimientos, aguas superficiales y subterráneas – IDEAM 2007, específicamente lo establecido para la ubicación de puntos de monitoreo de la calidad del agua para corrientes superficiales, aparte en el cual establecen lo siguiente:

Los factores y criterios para la ubicación de puntos de monitoreo en cuerpos de agua superficial se pueden agrupar en:

Factores fundamentales o estructurantes.

Son los que determinan el por qué y para que, de la localización del sitio, e involucran aspectos tales como: Condiciones de referencia, principales vertimientos, confluencia con ríos principales, políticas relacionadas con el recurso hídrico, zonas de desarrollo industrial y urbano existentes y potenciales, bocatomas de acueductos y distritos de riego, entre otros.

Factores condicionantes

Son los que se refieren a las limitaciones propias de cada localización, que tienen que ver con: dificultad de acceso, seguridad de los equipos y del personal, infraestructura existente, características hidráulicas de la sección, cercanía a estaciones hidrológicas existentes, facilidad para realizar actividades hidrométricas y facilidad para la recolección de muestras.

Factores limitantes

Son los que se refieren al presupuesto y al equipo de medición (capacidad, precisión, requerimientos de instalación, operación y mantenimiento).

Teniendo en cuenta que el ejercicio a desarrollar es establecer un diagnóstico con información disponible de una red de monitoreo de calidad de agua ya establecida y de acuerdo a los alcances del POMCA en relación a la línea base e identificación de líneas de acción en la fase de formulación, los factores a tener en cuenta son los siguientes:

Principales vertimientos

Confluencia con ríos principales

Cercanía a estaciones hidrológicas

1.4.2 Sistemas de manejo y disposición final de efluentes.

MUNICIPIO	Cabecera Municipal(CM) Centro Poblado	Sector	TIPO DE TRATAMIENTO ACTUAL	ESTADO (operación, construcción, ampliación, optimización, diseños)	ENTIDAD A CARGO DE LA OPERACIÓN REPORTADA EN EL SUI	FUENTE RECEPTORA
EL PEÑON	СМ	Urbano	UASB	En operación	Oficina servicios públicos el Peñón Cundinamarca	Q. La Amarilla
GUAYABAL DE SIQUIMA	СМ	Urbano	Lodos activados	En operación	Junta de servicios públicos de Guayabal de Siquima	Q. Las Animas Rio Siquima
LA PEÑA	СМ	Urbano	RAP	En operación	Junta de servicios públicos del Municipio de la Peña	Q.Terama
LA VEGA	СМ	Urbano	Lodos activados aireacion	Sin registros	Empresa de acueducto alcantarillado y aseo de la vega ESP	Rio Ila
NOCAIMA	СР	Tobia Chica	UASB	En operación	Empresa de servicios del Gualiva - Emsergualiva E.S.P	Q Inominada Rio Tobia
NOCAIMA	СМ	La Parcela V Jagual	Sistema Anaerobio	En operación	Empresa de servicios del Gualiva - Emsergualiva E.S.P	Q. La moya Rio Tobia
NOCAIMA	СМ	San Joaquin	UASB	En operación	Empresa de servicios del Gualiva - Emsergualiva E.S.P	Q San Juanito Rio Tobia
SUPATA	СМ	Ubano	imhoff, uasb desarenador	En operación	Oficina de servicios domiciliarios de acueducto alcantarillado y aseo de Supatá	Q. Hornos
VERGARA	СМ	Urbano	RAP	En construcción	Unidad de servicios públicos del municipio de Vergara	Q. Los tiestos Q. La Paz

Plan de Ordenación y Manejo de la Cuenca Hidrográfica


1.4.3 Estimación de cargas contaminantes a las corrientes principales

1.4.3.1 Cargas DBO5 y SST por municipio

Tabla 6 Cargas DBO5 – SST municipios cuenca río Negro

MUNICIPIO	DBO5 TON/AÑO	SST TON/AÑO
ALBAN	36,410	24,920
BITUIMA	15,081	15,841
CAPARRAPI	42,980	45,100
EL PEÑON	18,640	19,550
GUADUAS	101,304	286,426
GUAYABAL DE SIQUIMA	8,690	9,090
LA PALMA	61,790	69,500
LA PEÑA	8,010	9,580
LA VEGA	36,730	76,640
NIMAIMA	68,970	97,830
NOCAIMA	24,410	19,820
PACHO	188,860	248,060
QUEBRADANEGRA	23,320	20,770
SAN CAYETANO	3,070	1,280
SAN FRANCISCO	83,515	91,423
SASAIMA	33,792	35,620
SUPATA	21,320	18,290
TOPAIPI	12,630	13,220
UTICA	94,050	75,260
VERGARA	26,560	27,800
VIANI	32,610	35,140
VILLETA	214,978	127,240
ZIPAQUIRA	0,410	1,430
Total general	1158,13113	1369,82974

1.4.3.2 Cargas generadas por actividad

Tabla 7 Cargas generadas por actividad - Cuenca río Negro

USO ASOCIADO	DBO5 TON/AÑO	%	SST TON/AÑO	%
BENEFICIO ANIMAL	94,39	8,15%	79,28	5,79%
DOMESTICO	1049,27648	90,60%	1266,43	92,45%
INDUSTRIAL	0,07033	0,01%	0,4211	0,03%
MINERIA	0,41	0,04%	1,43	0,10%
PECUARIO	7,22	0,62%	8,81	0,64%
PISCICOLA	6,76432	0,58%	13,45864	0,98%
Total general	1158,13113	100,00%	1369,82974	100,00%

Gráfica 2 Cargas generadas por actividad - Cuenca río Negro


1.4.3.3 Cargas DBO - SST vertidas por Nivel Subsiguiente

Gráfica 3 Cargas DBO - SST por Nivel Subsiguiente

SUBCUENCAS	DBO5 TON/AÑO	SST TON/AÑO
QUEBRADA TERAMA	47,25	30,26
QUEBRADANEGRA	0,09	0,17
RÍO ALTO NEGRO	263,75	330,88
RÍO GUADUERO	101,24395	286,40612
RÍO MEDIO NEGRO 1	6,57	6,44
RÍO MURCA	15,66	16,4
RÍO NEGRO MEDIO 2	109,42	137,38
RÍO PATA	42,46	44,44
RÍO PINZAIMA	47,88	46,09
RÍO TOBIA	523,80718	471,36362
Total general	1158,13113	1369,82974

Gráfica 4 Cargas vertidas por Nivel Subsiguiente

1.4.4 Descripción y análisis de factores de contaminación en aguas y suelos asociados al manejo y disposición final de residuos sólidos ordinarios y especiales.

El manejo de residuos sólidos integra varias etapas desde la presentación, almacenamiento, los sistemas de tratamiento o aprovechamiento y los sistemas y sitios de disposición final para las distintas clases de residuos sólidos.

Teniendo en cuenta la importancia de la clasificación y adecuada disposición de los residuos sólidos, es pertinente que se implementen rutas selectivas que puedan ser utilizadas de manera responsable y eficiente por la comunidad, para lo cual se requieren jornadas de capacitación en temas de separación en la fuente. El porcentaje de población que realiza este proceso es muy bajo comparado con el total de habitantes de los municipios.

Ahora, para la realización del análisis de los factores de contaminación en la cuenca del rio negro asociados al manejo y disposición de residuos sólidos, se dispondrá de la información presentada en los Planes de Gestión Integral de Residuos Sólidos (PGIRS), de cada uno de los municipios que hacen parte de la cuenca del rio negro, para de esta forma contar con la información necesaria y relevante en cuanto al manejo, aprovechamiento y disposición final de los residuos sólidos que actualmente se generan en cada uno de los municipios y los programas que ejecutan para el buen manejo de los mismos o si por el contrario no hacen aprovechamiento de estos residuos.

Para finalizar este capítulo, es importante especificar que el objetivo principal es establecer la relación entre el manejo, aprovechamiento y disposición final de los residuos sólidos de los municipios con la contaminación de la cuenca del rio negro, es decir que tanto está afectando este factor la calidad del recurso hídrico y de esta manera

complementar y justificar la información sobre el estado de la calidad del agua de la cuenca del rio negro.

1.4.4.1 Tipos de residuos sólidos

Los municipios que hacen parte de la cuenca del Rio Negro cuentan con su respectivo Plan de Gestión Integral de Residuos Sólidos (PGIRS), los cuales fueron los documentos base para la recopilación de esta información la cual es primordial para determinar aspectos relacionados con los residuos sólidos, tipo, cantidad, características y, aspectos relacionados con el manejo de los residuos sólidos, coberturas del servicio, sistemas de aprovechamiento y sistema de disposición final, para de esta manera poder identificar debilidades de los municipios en el manejo integral de R.S., en detrimento de la calidad del recurso hídrico

Estos documentos fueron la fuente de información para determinar los tipos de residuos sólidos que se generan en estos municipios. También se encontró que no todos los municipios reportan la cantidad y el tipo de residuos generados y de igual forma no todos cuentan con la implementación de un programa de manejo y aprovechamiento o disposición final adecuada, por lo cual de identificaron fuentes y valores típicos para realizar estimaciones presuntivas.

La cuenca del Rio Negro está conformada por los siguientes municipios: Yacopi, La palma, Topaipi, Villagómez, El peñón, Pacho, La peña, Utica, Nimaima, Vergara, Quebrada Negra, Nocaima, Supata, Villeta, La vega, Albán, Caparrapi, guaduas, Puerto Salgar, Bituima, Viani, Guayabal de Siquima, el Rosal. (Puerto boyaca, Quipama, Otanche y la Victoria)

Tabla 8 Cantidad de residuos sólidos urbanos y rurales municipios de la cuenca del Rio Negro

MUNICIPIO	RESIDUOS GENER	RADOS (TON/MES)
	URBANO	RURAL
Yacopi	6,89	
La palma	6,89	
Topaipi	7,68	
Villagómez	8.28	
El peñón	13,38	
Pacho	164,08	
La peña	21,39	NR
Utica	62,98	1414
Nimaima	28,028	
Vergara	19,3	160
Quebrada Negra	45,73	
Nocaima	59,91	
Supata	32,79	NR
Villeta	834,28	
La vega	248	
Albán	48,87	
Caparrapi	79,3	
Guaduas	427,39	
Puerto Salgar	126,23	

Plan de Ordenación y l	Vlanejo
de la Cuenca Hidro	gráfico

Bituima	11,12
Viani	11,12
Guayabal de Siquima	11,58
El rosal	30

Los datos suministrados en la tabla anterior fueron extraídos del PGIRS de cada uno de los municipios que conforman la cuenca del rio Bogotá y como se puede observar no se reporta información sobre la cantidad de residuos generados en la parte rural de los municipios de la cuenca del Rio Negro, a excepción del municipio de Vergara que registra un valor de 160 ton/mes. Según información del PGIRS en la zona rural de estos municipios no se hace recolección de los residuos sólidos, por lo que estos son arrojados a campo abierto, quemados o en su defecto enterrados. Por otro lado se puede ver que el municipio que genero mayor cantidad de residuos sólidos en la parte urbana fue Villeta con 834,28 ton/mes y los de menor cantidad fueron Yacopí y la palma con 6.89 ton/mes.

1.4.4.2 Clasificación de los residuos sólidos

La clasificación de los residuos sólidos para la cuenca del rio negro se dividió en la zona urbana y rural para de esta forma determinar la cantidad de residuos generados y tener más clara la situación actual de las mismas.

1.4.4.2.1 Área urbana cuenca rio Negro

Con la información obtenida en los PGIRS de cada uno de los municipios analizados sé pudo evidenciar que no se reportó la cantidad de residuos generada tanto de residuos orgánicos como inorgánicos, de igual forma se evidencio que no todos los municipios tienen implementados programas de manejo o aprovechamiento de los residuos sólidos que generan.

En la siguiente tabla se muestra la caracterización de los residuos generados por cada municipio que conforman la cuenca del rio negro.

Tabla 9 Caracterización de residuos sólidos generados por los municipios de la cuenca del rio Negro

MUNICIPIOS	Generación de residuos ton/mes						
	Orgánico	Papel	Cartó	Plástico	Metales	Vidrio	Otros
	S		n				
Yacopí	35,9	NR	NR	NR	NR	NR	NR
La palma	10,14	NR	NR	NR	NR	NR	NR
Topaipi	8,19	NR	NR	NR	NR	NR	NR
Villagomez	0,05	0,04	0,05	0.02	0,06	0,06	0,02
El peñón	12,15	NR	NR	NR	NR	NR	NR
Pacho	85	0,08	NR	0,012	0,014	0,01	0,05
La peña	21,39	0.042	0,044	0,065	0,08	0,06	0,09
Utica	6,65	0,25	0,01	0,02	0,30	0,02	0,30
Nimaima	6,42	NR	NR	NR	NR	NR	NR
Vergara	7,16	NR	NR	NR	NR	NR	NR

Plan de Ordenacion y Manejo de la Cuenca Hidrográfica

Quebrada Negra	0,24	1,2	0,02	1,5	0,09	0,03	0,06
Nocaima	28,5	0,3	0,05	0,02	1,0	0,5	1,0
Supatá	24	NR	NR	NR	NR	NR	NR
Villeta	23,62	NR	NR	NR	NR	NR	NR
La vega	23	1,45	1,44	0,91	1,67	0,01	2,8
Albán	6,8	0,19	0,41	2,01	0,87	0,4	0,35
Caparrapi	15,53	NR	NR	NR	NR	NR	NR
Guaduas	36,92	0,58	0,32	0.89	1,200	0,35	0,87
Puerto Salgar	15,2	6,8	4,2	7,2	7,6	1,36	11,85
Bituima	0,12	0,10	0,3	0,15	0,5	0,2	NR
Viani	3,91	NR	NR	NR	NR	NR	NR
Guayabal de Siguima	0,025	0,063	NR	0,034	0,05	0,062	NR
El rosal	14,67	1,98	NR	0,23	0,4	1,5	NR

En la tabla anterior se puede evidenciar que los municipios Yacopí, La palma, Topaipi, el peñón, la peña, Nimaima, Supatá, Villeta, Caparrapi y viani no reportaron ninguna información asociada a la cantidad por tipo de residuos sólidos inorgánicos generados. Debido a lo anterior no se pudo establecer la cantidad por tipo de residuos sólidos generados en cada municipio. Para los demás municipios en donde se marca con NR es porque de igual forma no se reportó información, sin embargo se registra información generalizada tanto de la cantidad total de residuos orgánicos e inorgánicos se calculo un estimativo para cada tipo de residuos teniendo en cuenta la población y las actividades económicas de la región, para de esta forma poder generar las graficas y hacer una mejor descripción del estado actual del manejo y disposición final de los residuos sólidos generados por cada municipio.

Teniendo en cuenta lo anterior a continuación se muestra la cantidad de residuos inorgánicos de forma generalizada para los municipios que no reportaron la información clasificada por cada tipo de residuos sólidos. Este factor se convierte en criterio para identificar los municipios que no han adelantado procesos de caracterización y cuantificación de los residuos sólidos municipales.

La peña: 391 kg- Pacho: 0,062 - Quebrada negra: 117 kg - Nocaima: 6949 kg - La vega: 11479 kg-Albán: 2500 kg - Guaduas: 4010 kg - Bituima: 0,35 kg.

En la siguiente tabla se realizo un promedio de la cantidad en peso de los residuos sólidos generados por los municipios que conforman la cuenca del rio Negro, esto se realizo con la información de la tabla anterior (caracterización).

Tabla 10 (Promedio) cantidad de residuos sólidos generados por los municipios de la cuenca del Rio Negro

Cuenca Rio Negro	Ton/mes
Orgánicos	16,7645652
Papel	1,08608333
Cartón	0,6844
Plástico	1,10463636
Metales	1,06384615
Vidrio	0,35092308

Otros	1,739

Con el fin de mostrar de una forma más detallada y con una mejor perspectiva se realizo la siguiente grafica

Caracterizacion de residuos solidos (ton/mes)

Zona urbana cuenca Rio Negro

Tipo de residuo

Region de residuo

Tipo de residuo

Region de residuo

Tipo de residuo

Gráfica 5 Tipo de residuos sólidos - Cuenca del Rio Negro

De la grafica anterior se puede observar que el mayor tipo de residuos sólidos generados por los municipios de la cuenca del rio negro son los de tipo orgánico, seguido por los llamados otros, después plástico, metales, papel, cartón y por último el vidrio en menor cantidad.

Con los datos anteriores se puede determinar que los usuarios que mayor cantidad de residuos generan son los de tipo residencial, sobre todo con base a la información registrada en los PGIRS de cada municipio.

En la siguiente tabla se muestra el porcentaje de cada uno de los residuos, teniendo en cuenta que el 100 % de base manejada fueron las 22,7934541 ton/mes de residuos sólidos que se generaron en los municipios de la cuenca rio negro, se debe tener en cuenta que hubieron municipios que no registran algunos datos.

Tabla 11 Porcentaje por tipo de Residuos Sólidos - Cuenca del rio Negro

Tipo de residuo	(%)
Orgánicos	73,54
Papel	4,76
Cartón	3
Plástico	4,84
Metales	4,66
Vidrio	1,54
Otros	7,63

Gráfica 6 Porcentaje por tipo de Residuos Sólidos - Cuenca rio Negro

En la gráfica anterior se puede evidenciar que mediante el análisis porcentual se logra comprobar que el mayor componente de los residuos sólidos son los orgánicos con un 73%, seguido por los denominados otros con un 8%, después esta el plástico, papel, metal con un 5%, cartón con 3 % y finalmente el vidrio con un 1%. La composición de estos residuos pueden ser resultados de la demografía de la cuenca del rio negro y de las actividades económicas que allí se presentan, asimismo predomina la mala disposición de los residuos domiciliarios lo que estaría provocando la generación en exceso de este tipo de residuos.

1.4.4.2.2 Área Rural cuenca rio negro

Para la parte rural fue un poco más difícil conseguir la información, puesto que en el PGIRS no se registraba información suficiente ya que los municipios no reportaron información al respecto para esta zona, lo cual indica que no tienen un control adecuado de estos residuos y tampoco tienen programas de manejo o aprovechamiento de los mismos.

Para la generación de estos datos se tuvieron que hacer cálculos aproximados teniendo en cuenta la población y los datos típicos de la generación de residuos por habitante, también se baso en fuentes de estimaciones típicas presuntivas.

En la siguiente tabla se puede evidenciar la caracterización de los residuos generados por cada municipio que conforman la cuenca del rio negro para la parte rural.

Tabla 12 Tipo de residuos sólidos rurales – Municipios cuenca río Negro

MUNICIPIOS	Generación de residuos ton/mes						
	Orgánico	Papel	Cartó	Plástico	Metales	Vidrio	Otros
	S		n				
Yacopí	28,7	0,02	0,01	0,08	0,06	0,01	1,5
La palma	12,15	0,08	NR	0,05	0,01	0,4	NR
Topaipi	9,18	0,010	0,03	NR	0,09	NR	1,0
Villagomez	0,05	0,04	0,05	0.02	0,06	0,06	0,02
El peñón	8,5	0,06	NR	0,01	0,04	0,02	NR
Pacho	95	0,08	0,01	0,010	NR	0,02	0,06
La peña	33,12	0.04	0,07	0,09	0,07	0,05	0,10
Utica	5,75	0,32	0,01	0,02	0,28	0,02	0,30
Nimaima	5,32	NR	NR	1,05	0,87	NR	1,8
Vergara	0,16	0,03	0,02	NR	NR	0,01	NR
Quebrada	0,32	0,5	0,02	1,2	0,06	0,02	0,07
Negra							
Nocaima	18,7	0,2	0,04	0,06	1,5	0,02	1,0
Supatá	22	NR	NR	0,03	NR	NR	NR
Villeta	21,87	0,04	0,01	0,01	7,06	NR	NR
La vega	17	1,38	1,22	NR	NR	0,01	2,6
Albán	6,5	0,10	NR	1,5	0,56	0,3	0,42
Caparrapi	14,67	NR	0,03	NR	NR	NR	0,62
Guaduas	35,75	0,55	0,07	0,72	1	0,28	0,46
Puerto Salgar	12,24	5,6	3,8	6,5	0,02	0,04	8,43
Bituima	0,15	0,8	0,2	0,12	0,3	0,5	NR
Viani	2,50	NR	NR	NR	NR	NR	1,5
Guayabal de	0,032	0,06	NR	0,03	0,09	0,056	NR
Siquima							
El rosal	16,98	0,08	0,03	0,2	0,6	1,2	NR

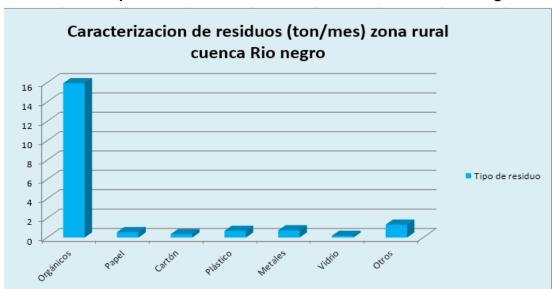


Tabla 13 Cantidad de residuos sólidos rurales - Cuenca del río Negro

Cuenca Rio Negro	Ton/mes
Orgánicos	15,9409565
Papel	0,55277778
Cartón	0,35125
Plástico	0,68705882
Metales	0,74529412
Vidrio	0,17741176
Otros	1,32533333

En la tabla anterior se puede evidenciar que la mayor proporción de residuos sólidos son de compuestos orgánicos. Para obtener una mejor perspectiva, se realizó la siguiente gráfica.

Gráfica 7 Tipo de residuos sólidos rurales de la cuenca del rio negro

En la grafica se puede observar que los residuos con mayor presencia son los orgánicos, luego le siguen los denominados otros, luego están los metales, plásticos, papel, cartón y últimamente el vidrio.

Un factor importante de este evento es la falta de conciencia por parte de los usuarios de la zona, así mismo el descuido por parte de las entidades ambientales en cuanto a la buena presentación de los residuos, o la proporción de centros de acopio adecuados para su aprovechamiento.

En la siguiente tabla se pueden ver los porcentajes de cada uno de los residuos teniendo en cuenta que el 100% de base manejada, se tratan de las **19,7800823** Ton/mes de residuos sólidos generados en la zona rural de la cuenca del rio negro.

Tabla 14 Porcentaje por tipo de residuos sólidos - Zona rural de la cuenca del rio Negro.

Tipo de residuo	(%)
Orgánicos	80,5
Papel	2,78
Cartón	1,76
Plástico	3,43
Metales	3,74
Vidrio	0,85
Otros	6,67

Gráfica 8 Porcentaje por tipo de residuos sólidos - Zona rural de la cuenca del rio Negro.

Como se puede observar en la grafica anterior el mayor porcentaje se ve reflejado en los residuos orgánicos con un 81%, seguido por los denominados otros 6%, metales con un 4% plástico y papel con 3%, cartón 2% y por último, vidrio con 1%. Es importante resaltar que, aunque esto es un panorama parcial por la insuficiencia de datos de los municipios se puede evidenciar que los usuarios residenciales son los que mayor cantidad de residuos generan en esta zona, ya que estos compuestos orgánicos son generalmente desechos de cocina o actividades domiciliarias, mientras que los demás residuos provienen de las diferentes actividades económicas que se desarrollan en cada uno de los municipios que conforman la cuenca del rio negro.

Para la parte de caracterización de los residuos en la tabla anterior se pudo analizar y comparar entre los porcentajes obtenidos evidenciándose que el área urbana presenta menor cantidad de residuos orgánicos que la rural, esto es debido a que la población que vive en esta zona es mayor a la de la zona urbana en algunos municipios, de igual

forma también conlleva a concluir que se están llevando malas o insuficientes campañas de sensibilización a la comunidad, para que contribuyan con el buen manejo de los residuos sólidos y el cuidado del medio ambiente.

1.4.4.3 Aprovechamiento de los residuos sólidos en la cuenca del rio Negro

Para determinar qué tipo de aprovechamiento se realiza en cada uno de los municipios de la cuenca del rio negro se recolecto información del PGIRS haciendo una caracterización con cada uno de los municipios que la componen (los que registran información) y así determinar la forma en que los aprovechan, aunque el PGIRS no cuenta con información suficiente ya que los municipios no han reportado información debido a que no tienen un programa de aprovechamiento determinado.

A continuación, se precisan las cantidades de residuos sólidos aprovechados por los municipios que presentaron información al respecto.

Tabla 15 Cantidad de residuos sólidos aprovechados – Municipios cuenca río Negro

MUNICIPIO	RESIDUOS APROVECHADOS
	(TON/MES)
Yacopi	28,5
La palma	15,5
Topaipi	9,5
Villagomez	1,681
El peñón	4,7
Pacho	3,622
La peña	NR
Utica	NR
Nimaima	NR
Vergara	NR
Quebrada Negra	NR
Nocaima	NR
Supatá	NR
Villeta	NR
La vega	NR
Albán	NR
Caparrapi	NR
Guaduas	NR
Puerto Salgar	NR
Bituima	3,55
Viani	NR
Guayabal de Siquima	1,549
El rosal	NR

En la tabla anterior se puede evidenciar la cantidad de residuos que aprovechan algunos municipios de la cuenca del rio negro, se observa que el municipio que tiene mayor aprovechamiento es Yacopi con 28,5 ton/mes y el que menos aprovecha es Guayabal

de siquima con 1,549 ton/mes. También se observa que los municipios La peña, Utica, Nimaima, Vergara, Quebrada Negra, Nocaima, Supata, Villeta, La vega, Albán, Caparrapi, guaduas, Puerto Salgar y viani no reportan información respecto al aprovechamiento y esto es debido a que aun no tienen implementando un programa de aprovechamiento y en algunos casos se encuentran en proceso de implementación el programa piloto para tal fin.

RESIDUOS APROVECHADOS (TON/MES) POR CADA MUNICIPIO

MUNICIPIO

1.681

1.549

4.7

3.622

3.55

1.549

Municipios

Gráfica 9 Cantidad de residuos aprovechados – Municipios cuenca del rio Negro.

En la grafica se puede apreciar la cantidad de residuos aprovechados por cada municipio que reportó información en el PGIRS y que hace parte de la cuenca del rio negro. Se observa que el municipio que presenta mayor aprovechamiento es Yacopi, esto es debido a que tienen un programa de aprovechamiento implementado lo que hace que haya una mejor caracterización y separación de los residuos sólidos generados, para su posterior aprovechamiento y el de menor aprovechamiento es Guayabal de siquima debido a que el programa piloto de aprovechamiento apenas se está implementando.

En la siguiente tabla se muestran los porcentajes de los residuos aprovechados por cada municipio teniendo en cuenta que el 100% de base manejada se tratan de las 68,602 Ton/mes de residuos sólidos aprovechados por los municipios que conforman la cuenca

Tabla 16 Porcentaje de residuos sólidos aprovechados – Municipios cuenca río Negro

Municipio	% de Residuos aprovechados
Yacopi	41,54
La palma	22,59
Topaipi	13,84
Villagomez	2,45
El peñón	6,85
Pacho	5,27
Bituima	5,17
Guayabal de Siquima	2,25

Gráfica 10 Porcentaje de residuos sólidos aprovechados - Municipios cuenca del rio Negro

En la gráfica se muestra que el porcentaje más representativo en cuanto al aprovechamiento es el del municipio de Yacopi con un 42 % por otro lado le sigue la palma con 23 %, lo cual significa que son los municipios que tienen mayor aprovechamiento de los residuos antes de que estos sean llevados al relleno sanitario para su disposición final.

1.4.4.4 Disposición final de los residuos sólidos

La disposición final de los residuos sólidos generados por los municipios de Topaipi, Villagómez, El peñón, Pacho, La peña, Utica, Nimaima, Vergara, Quebrada Negra, Nocaima, Supata, Villeta, La vega, Albán, Bituima, Viani, Guayabal de siquima y el Rosal los cuales hacen parte de la cuenca del rio negro se hace en el relleno sanitario nuevo Mondoñedo y para los municipios Yacopi, La palma, Caparrapi, guaduas, Puerto Salgar son dispuestos en el relleno sanitario la doradita.

1.4.4.4.1 Relleno sanitario Nuevo Mondoñedo

El relleno de nuevo Mondoñedo se encuentra ubicado en el departamento de Cundinamarca, municipio de Boyacá en el predio cruz verde, recibe los residuos de 95 municipios, cuenta con 17 hectáreas para la disposición de residuos y un predio total de 76 Ha, el relleno entró en funcionamiento en el año 2007 y cuenta con 22 años de actividad útil, a este llegan en promedio 1005 ton diarias de residuos, el relleno cuenta con las áreas de manejo pertinentes además de las licencias ambientales y un sistema de lixiviados de alta gama. El relleno sanitario se encuentra a una distancia promedio de 115 km de la cabecera municipal. El costo de tonelada dispuesta es de 18900 pesos.

De acuerdo a la información que se obtuvo del PGIRS de cada uno de los municipios que conforman la cuenca del rio negro y que disponen sus residuos en el relleno sanitario nuevo Mondoñedo ubicado en el municipio de Boyacá Cundinamarca aproximadamente 45,4 Km de distancia de Albán. Se puede analizar la importancia del manejo y disposición final de residuos, gases y lixiviados que allí se generan.

A continuación se relacionan los procesos básicos para la operación del relleno sanitario Nuevo Mondoñedo:

Control de ingreso y báscula; descargue de residuos; construcción de la celda diaria; compactación de los residuos; control de la densidad de los mismos; colocación de materiales voluminosos dentro de las celdas; conformación de las pendientes del frente de trabajo; colocación del material sintético de cobertura diaria (polietileno de baja densidad removible); cobertura final de las zonas donde se logren los niveles finales de diseño, mantenimiento y control de operaciones; facturación; cobranza y atención al cliente.

Las anteriores son las principales operaciones que se llevan a cabo en el relleno nuevo Mondoñedo.

1.4.4.4.2 Relleno sanitario La Doradita

El relleno sanitario regional La Doradita, de La Dorada, está ubicado en el departamento de caldas municipio de la dorada vereda buena vista a 15,5 km del casco urbano en el kilómetro 14 de la vía san miguel - Buena Vista y brinda el servicio de disposición de residuos a municipios aledaños de los departamentos de Tolima, Cundinamarca y Boyacá.

El lote cuenta con 30 Ha de terreno y se encuentra en funcionamiento desde el año 2004, con un periodo de vida hasta el año 2024. El relleno cuenta con las áreas de manejo pertinentes además de las licencias ambientales para su funcionamiento y un sistema de lixiviados. Debido a que el relleno sanitario se encuentra realizando un correcto funcionamiento de acuerdo a la legislación vigente, podemos indicar que estudios referentes a la ejecución de la disposición ya fueron llevados a cabo y acreditan el óptimo funcionamiento del relleno y por lo tanto de la correcta disposición, estudios que demanden un costo en la actualidad no son necesarios a menos de que se estipulen acciones de expansión u optimización.

Residuos a disposición final

Los municipios que hacen parte de la cuenca del rio negro disponen sus residuos en dos rellenos sanitarios: Nuevo Mondoñedo y la doradita, debido a que no todos los municipios cuentan con un relleno sanitario, por lo que deben hacer convenios para tal fin.

En la tabla que se muestra a continuación se relaciona la información detallada para cada municipio.

Tabla Disposición Final municipios cuenca río Negro

Municipio	Lugar de disposición final	Ton/mes
Yacopi	R. S la doradita	6,89
La palma	R. S la doradita	6,89
Topaipi	R.S nuevo Mondoñedo	7,68
Villagomez	R.S nuevo mondoñedo	8.28
El peñón	R.S nuevo mondoñedo	13,38
Pacho	R.S nuevo mondoñedo	164,08
La peña	NR	21,39
Utica	R.S nuevo mondoñedo	62,98
Nimaima	R.S nuevo mondoñedo	28,028
Vergara	R.S nuevo mondoñedo	19,3
Quebrada Negra	R.S nuevo mondoñedo	45,73
Nocaima	R.S nuevo mondoñedo	59,91
Supata	R.S nuevo mondoñedo	32,79
Villeta	R.S nuevo mondoñedo	834,28
La vega	R.S nuevo mondoñedo	248
Albán	R.S nuevo mondoñedo	48,87
Caparrapi	R.S La doradita	79,3
Guaduas	R.S La doradita	427,39
Puerto salgar	R.S La doradita	126,23
Bituima	R.S nuevo mondoñedo	11,12
Viani	R.S nuevo mondoñedo	11,12
Guayabal de siquima	R.S nuevo mondoñedo	11,58
El rosal	R.S nuevo mondoñedo	>30,000 ton/mes

Tabla Porcentaje de residuos sólidos destinados a disposición final en la cuenca del rio negro (del total)

Municipio	% de residuos sólidos dispuestos
Yacopi	0,02
La palma	0,02
Topaipi	0,02
Villagomez	0,02
El peñón	0,04
Pacho	0,5
La peña	0,06
Utica	0,19
Nimaima	0,08
Vergara	0,05
Quebrada Negra	0,14
Nocaima	0,18
Supata	0,1
Villeta	2,5

de la Cuenca Hidrográfica

La vega	0,7
Albán	0,15
Caparrapi	0,2
Guaduas	1,32
Puerto salgar	0,3
Bituima	0,03
Viani	0,03
Guayabal de siquima	0,03
Fl rosal	92.9

Tabla de síntesis y priorización de municipios con problemas en el manejo de Residuos Solidos

1.4.5 Estimación del Índice de Calidad del Agua – ICA

1.4.5.1 Índice de Calidad del Agua periodo I año 2017.

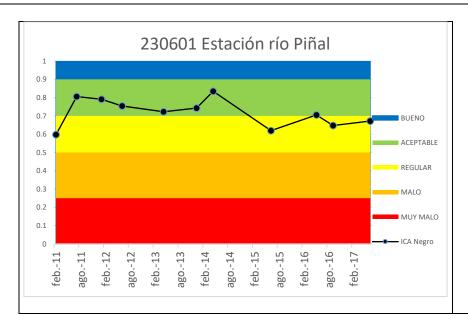
A continuación, los resultados del índice de calidad del agua - ICA siguiendo la metodología especificada en el numeral xxxxx y utilizando como fuente de información la red de monitoreo de calidad de agua que se ilustra en el numeral xxxxxxx. Los resultados del ICA se plantean espacialmente por nivel subsiguiente de manera que se logre definir el estado del recurso hídrico para las corrientes principales afluentes al río Negro y temporalmente se utilizó la seria de datos 2010 – 2017 con una frecuencia de monitoreo semestral.

El total de puntos de monitoreo habilitados para estimar el Índice de Calidad del Agua para el año 2017 semestre I (33), 3% (1 punto) se encuentra en el rango aceptable, 42% (14 puntos), en el rango regular y 55 % (18 puntos) en el rango malo.

Tabla 17 Resultados Índice de Calidad del Agua - ICA

Nivel Subsiguiente	Puntos de Monitoreo (2017)	Valor ICA	Descripción
2306-01 Río Bajo Negro	Desembocadura río Magdalena	0,37	Malo
	Estación L6 Puerto Libre	0,43	Malo
	Río Negrito	0,57	Regular
	Río Negro aguas debajo de río	0,41	Malo
	Guaguaqui		
	Río Negro aguas abajo de río Macopay	0,43	Malo
2306-02 Río Guaguaqui	Río Guaguaqui	0,40	Malo
2306-03 Río Terán	Río Terán	0,57	Regular
2306-04 Río Macopay	-	NR	
2306-05 Río Cambras	Río Cambras	0,57	Regular
2306-06 Río Guatachi	Quebrada Guatachi	0,40	Malo
2306-07 Río Guaduero	Río Guaduero	0,52	Regular

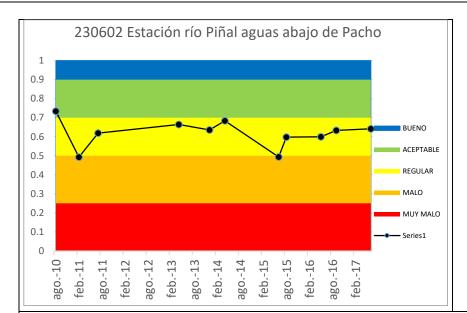
2306-08 Río Negro Medio 1	Río Negro aguas abajo Quebrada Zusne	0,34	Malo
	Quebrada Zusne	0,53	Regular
	Estación LG Guaduero	0,35	Malo
	Río Negro aguas abajo Quebrada	0,34	Malo
	Terama		
2306-09 Río Pata	Río Negro aguas abajo Quebrada Negra	0,31	Malo
	Río Patà	0,55	Regular
2306-10 Quebrada negra	-		
2306-11 Quebrada Terama	Quebrada Terama	0,34	Malo
2306-12 Río Negro Medio 2	Quebrada Negra	0,42	Malo
	Río Negro aguas arriba de Utica	0,38	Malo
	Estación LG Paso del Rejo	0,50	Regular
	Quebrada el Tigre	0,55	Regular
2306-13 Río Tobia	Río Tobia	0,54	Regular
	Estación LG Tobia	0,44	Malo
2306-14 Río Pinzaima	Río Negro aguas abajo del río Pinzaima	NR	
	Río Pinzaima	NR	
2306-15 Río Murca	Río Murca (no se tomó en 2017)	NR	
2306-16 Río Alto Negro	Estación LG Charco Largo	NR	
	Río Negro aguas abajo Quebrada la	0,47	Malo
	Chorrera		
	Quebrada la Chorrera	NR	
	Río Negro aguas Quebrada Honda	0,46	Malo
	Quebrada Honda	NR	
	Río Veraguas	0,62	Regular
	Río Negro aguas abajo río Veraguas	NR	
	Río Negro aguas abajo del río Patasia	0,69	Regular
	Río Patasia	0,55	Regular
	Río Negro aguas abajo del río Batan	0,71	Aceptable
	Río Piñal aguas abajo de Pacho	0,64	Regular
	Río Piñal	0,67	Regular


1.4.5.2 Índice de Calidad del Agua por punto de monitoreo serie 2010 – 2017

A continuación, se presentan mediante graficas los resultados del Índice de Calidad del Agua por punto de monitoreo durante la serie de datos suministrada por el laboratorio 2010 – 2017. Igualmente se plantea un análisis de resultados a partir de 3 aspectos específicos:

- La ubicación del punto de monitoreo y resultados del ICA
- Los puntos de vertimientos identificados por el programa de tasas retributivas de la Corporación
- La relación comparativa entre los resultados de laboratorio para cada parámetro durante el periodo 2010 - 2017 y los valores proyectados para el cumplimiento de los objetivos de calidad definidos en la resolución 3561 de 2009.

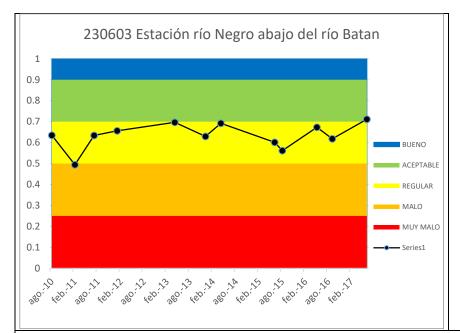
Gráfica 11 Índice de Calidad del Agua – ICA Estación río Piñal cod. 230601



VALORES DE	DBO	SST	OD	CT	NO2	NO3	PH
REFERENCIA	20	2000	>4	<20000	10	1	4.5 - 9
feb-11	С	С	С	С			С
jul-11	С	С	С	С			С
ene-12	С	С	С	С			С
jun-12	С	С	С	С			С
abr-13	С	С	С	С			С
dic-13	С	С	С	С			С
abr-14	С	С	С	С			С
jun-15	С	С	С	С			С
may-16	С	С	С	С			С
sep-16	С	С	С	С			С
jun-17	С	С	С	С			С

La estación río Piñal se encuentra ubicada en el nivel subsiguiente I Alto río Negro, ubicada en el municipio de Pacho en donde nace el río Negro. A pesar de ser el punto de monitoreo más cercano al nacimiento, los resultados evidencian aportes de carga del municipio durante su trayecto inicial. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2011 – 2017, la calidad del agua se ha venido deteriorando a partir del año 2014, ya que los resultados 2011 – 2014 se encuentran en el rango de calidad aceptable y los resultados 2015 – 2017 se encuentran en el rango de calidad regular. No obstante, los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020.

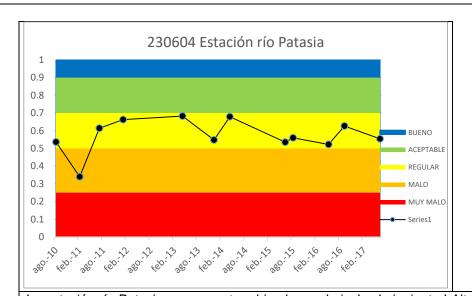
Gráfica 12 Índice de Calidad del Agua – ICA Estación rio Pinal aguas abajo de Pacho cod. 230602


VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	20	2000	>4	<20000	10	1	4.5 - 9
ago-10	С	С	С	NC			С
feb-11	С	С	С	С			С
jul-11	С	С	С	NC			С
abr-13	С	С	С	NC			С
dic-13	С	С	С	NC			С
abr-14	С	С	С	NC			С
jun-15	С	С	С	С			С
ago-15	С	С	С	NC			С
may-16	С	С	С	NC			С
sep-16	С	С	С	NC			С
jun-17	С	С	С	NC			С

La estación río Piñal aguas abajo de Pacho se encuentra ubicada en el nivel subsiguiente I Alto río Negro, ubicada en el municipio de Pacho en donde nace el río Negro. En este punto de monitoreo la calidad del agua disminuye por los aportes en carga del casco urbano, la planta de potabilización y la planta de beneficio animal del municipio de Pacho.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua se encuentra en su mayoría en el rango regular. No obstante, los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción del parámetro de Coliformes Fecales, determinante para el uso del agua.

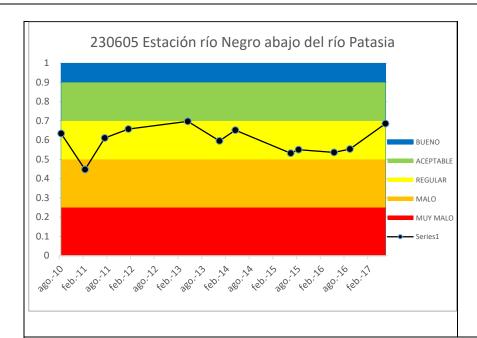
Gráfica 13 Índice de Calidad del Agua – ICA Estación río Negro abajo del río Batan cod. 230603


VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		NC			С
feb-11	С	С		С			С
jul-11	С	С		NC			С
ene-12	С	С		NC			С
abr-13	С	С		NC			О
dic-13	С	С		NC			С
abr-14	С	С		NC			С
jun-15	С	С		С			С
ago-15	С	С		С			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	С	С		NC			С

La estación río Negro abajo del río Batan se encuentra ubicada en el nivel subsiguiente I Alto río Negro, ubicada en el municipio de Pacho en donde nace el río Negro. En este punto de monitoreo la calidad del agua se mantiene con respecto al punto precedente e incluso se incrementa la calidad por la capacidad de asimilación que implica las características morfométricas y de dilución en este tramo.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua se encuentra en su mayoría en el rango regular y con tendencia al rango aceptable. No obstante, los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción del parámetro de Coliformes Fecales, determinante para el uso del agua.

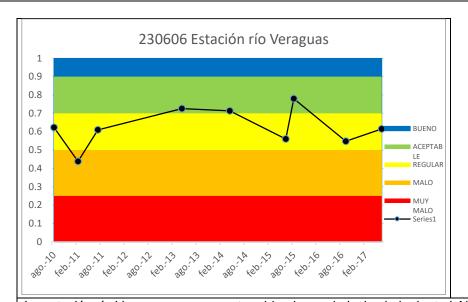
Gráfica 14 Indice de Calidad del Agua – ICA Estación río Patasia cod. 230604


VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	20	2000	>4	<20000	10	1	4.5 - 9
ago-10	С	С	С	С			С
feb-11	С	С	С	С			С
jul-11	С	С	С	С			O
ene-12	С	С	С	С			С
abr-13	С	С	С	С			С
dic-13	С	С	С	С			С
abr-14	С	С	С	NC			С
jun-15	С	С	С	С			С
ago-15	С	С	С	С			С
may-16	С	С	С	NC			С
sep-16	С	С	С	С			С
jun-17	С	С	С	С			С

La estación río Patasia se encuentra ubicada en el nivel subsiguiente I Alto río Negro, ubicada en el municipio de Pacho en donde nace el río Negro. En este punto de monitoreo la calidad del agua se mantiene con respecto al punto precedente, aunque se identifican aportes domésticos del municipio de pacho y no domésticos de actividades porcicolas.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua se encuentra en su mayoría en el rango regular. No obstante, los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción del parámetro de Coliformes Fecales en el año 2014 y 2017, determinante para el uso del agua.

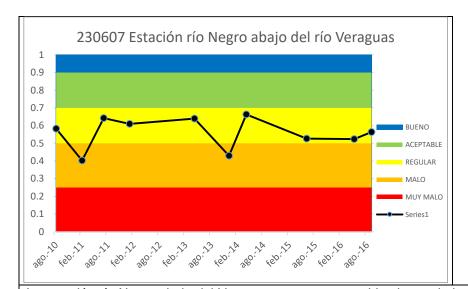
Gráfica 15 Índice de Calidad del Agua – ICA Estación río Negro abajo del río Patasia


VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		NC			С
feb-11	С	С		NC			С
jul-11	С	С		NC			С
ene-12	С	С		NC			С
abr-13	С	С		NC			С
dic-13	С	С		NC			С
abr-14	С	С		NC			С
jun-15	С	С		С			С
ago-15	С	С		С			С
may-16	С	С		NC			С
sep-16	С	С		С			С
jun-17	С	С		NC			С

La estación río Negro aguas abajo del río Patasia se encuentra ubicada en el nivel subsiguiente I Alto río Negro, ubicada en el municipio de Pacho en donde nace el río Negro. En este punto de monitoreo la calidad del agua se mantiene con respecto al punto precedente, aunque recibe los aportes en carga que trae el río Patasia, igualmente la capacidad de dilución también se ve incrementada.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua se encuentra en su mayoría en el rango regular, con puntos cercanos a las características aceptables. No obstante, los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase VI en el año 2020, a excepción del parámetro de Coliformes Fecales, determinante para el uso del agua.

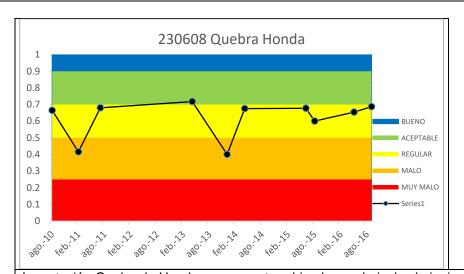
Gráfica 16 Índice de Calidad del Agua – ICA Estación río Veraguas cod. 230606


VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	20	2000	>4	<20000	10	1	4.5 - 9
ago-10	С	С	С	С			С
feb-11	С	С	С	С			С
jul-11	С	С	С	NC			С
abr-13	С	С	С	С			С
abr-14	С	С	С	С			С
jun-15	С	С	С	С			С
ago-15	С	С	С	С			С
sep-16	С	С	С	С			С
jun-17	С	С	С	С			С

La estación río Veraguas se encuentra ubicada en el nivel subsiguiente I Alto río Negro, ubicada en el municipio de Pacho en donde nace el río Negro. En este punto de monitoreo la calidad del agua se incrementa con respecto al punto precedente dado que se encuentra en un afluente del río Negro, en el cual no se identifican vertimientos según las fuentes reportadas por el programa de tasa retributivas.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua se encuentra en el rango aceptable y regular, con punto con características de mala calidad en el año 2011. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020.

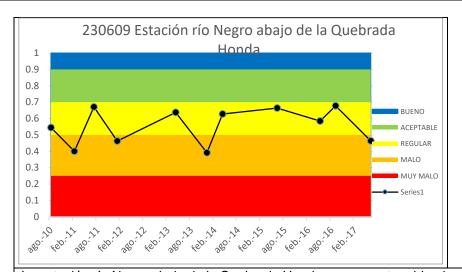
Gráfica 17 Índice de Calidad del Agua – ICA Estación río Negro abajo del río Veraguas cod. 230607



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		NC			С
feb-11	С	NC		С			С
jul-11	С	С		NC			С
ene-12	С	С		NC			С
abr-13	С	С		NC			С
dic-13	С	С		NC			С
abr-14	С	С		NC			С
jun-15	С	С		С			С
may-16	С	С		NC			С
sep-16	С	С		NC			NC

La estación río Negro abajo del Veraguas se encuentra ubicada en el nivel subsiguiente I Alto río Negro, ubicada en el municipio de Pacho en donde nace el río Negro. En este punto de monitoreo la calidad del agua se mantiene con respecto al punto precedente sobre la corriente principal. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua se encuentra en el rango regular y dos puntos con características de mala calidad en el año 2011 y 2014. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Totales cuyos resultados exceden los valores máximos establecidos para la Clase IV, lo que evidencia efectos de descargas domesticas del municipio de Pacho.

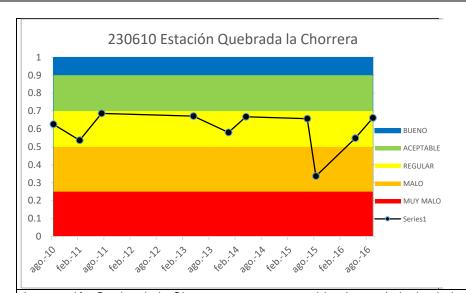
Gráfica 18 Índice de Calidad del Agua – ICA Estación Quebrada Honda cod. 230608


VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	20	2000	>4	<20000	10	1	4.5 - 9
ago-10	С	С	С	NC			С
feb-11	С	С	С	С			С
jul-11	С	С	С	С			С
abr-13	С	С	С	С			С
dic-13	С	С	С	С			С
abr-14	С	С	С	С			С
jun-15	С	С	С	С			С
ago-15	С	С	С	NC			С
may-16	С	С	С	NC			С
sep-16	С	С	С	NC			С

La estación Quebrada Honda se encuentra ubicada en el nivel subsiguiente I Alto río Negro, ubicada en el municipio de Pacho en donde nace el río Negro, en límites con el municipio del Peñón. En este punto de monitoreo la calidad del agua se incrementa con respecto al punto precedente dado que se encuentra en un afluente del río Negro, en el cual no se identifican vertimientos puntuales según las fuentes reportadas por el programa de tasas retributivas.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en la mayoría de los puntos de monitoreo se encuentra en el rango regular, pero con valores cercanos al rango de calidad aceptable y dos puntos con características de mala calidad en el año 2011 y 2014. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados en el año 2010, 2015 y 2016 exceden los valores máximos para la clase mencionada.

Gráfica 19 Índice de Calidad del Agua – ICA Estación río Negro debajo de la Quebrada Honda cod. 230609


VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		NC			С
feb-11	С	С		NC			С
jul-11	С	С		С			С
ene-12	С	O		NC			С
abr-13	С	С		NC			O
dic-13	С	С		С			С
abr-14	С	С		NC			С
jun-15	С	С		С			С
may-16	С	С		NC			С
sep-16	С	С		С			С
jun-17	С	С		NC			С

La estación río Negro abajo de la Quebrada Honda se encuentra ubicada en el nivel subsiguiente I Alto río Negro, ubicada en el municipio de Pacho en donde nace el río Negro, en límites con el municipio del Peñón. En este punto de monitoreo la calidad del agua decrece con respecto al punto precedente sobre la corriente principal del río Negro, lo cual evidencia efectos a partir de la confluencia de la Quebrada Honda o vertimientos difusos o puntuales no identificados por el programa de tasas retributivas.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en seis de los puntos de monitoreo se encuentra en el rango Regular, pero con valores cercanos al rango de calidad aceptable y cinco puntos con características de mala calidad. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados en la mayoría de los puntos de monitoreo exceden los valores máximos para la clase mencionada.

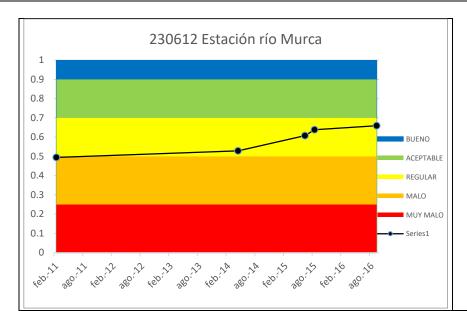
Gráfica 20 Índice de Calidad del Agua – ICA Estación Quebrada la Chorrera cod. 230610


VALORES DE	DBO	SST	OD	CT	NO2	NO3	PH
REFERENCIA	20	2000	>4	<20000	10	1	4.5 - 9
ago-10	С	С	С	С			С
feb-11	С	С	С	С			С
jul-11	С	С	С	С			С
abr-13	С	С	С	С			С
dic-13	С	С	С	NC			С
abr-14	С	С	С	С			С
jun-15	С	С	С	С			С
ago-15	С	NC	С	NC			С
may-16	С	С	С	NC			С
sep-16	С	С	С	С			С
onto I Alto río Nogro	hioodo	00010	allmiaini	10 dol D	añán d	ممال مم	

La estación Quebrada la Chorrera se encuentra ubicada en el nivel subsiguiente I Alto río Negro, ubicada en el municipio del Peñón, en límites con el municipio del Pacho. En este punto de monitoreo la calidad del agua se mantiene en el rango regular y se identifican vertimientos de origen domestico del casco urbano del municipio del Peñón.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en la mayoría de los puntos de monitoreo se encuentra en el rango regular, pero con valores cercanos al rango de calidad aceptable y un punto con características de mala calidad en el año 2011 y 2014. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados en el año 2013, 2015 y 2016 exceden los valores máximos para la clase mencionada.

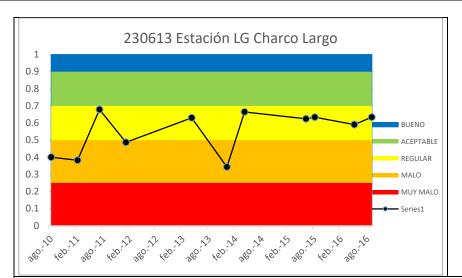
Gráfica 21 Índice de Calidad del Agua – ICA Estación río Negro debajo de la Quebrada la Chorrera cod. 230611


\/AL 0DE0 DE	DBO	SST	OD	СТ	NO2	NO3	PH
VALORES DE	DBO		_	_			
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		NC			С
feb-11	С	С		NC			С
jul-11	С	С		С			С
ene-12	С	С		NC			С
abr-13	С	С		NC			С
dic-13	С	С		С			С
abr-14	С	С		NC			С
jun-15	С	С		С			С
ago-15	С	С		С			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	С	С		NC			С
a an al nival cubciqui	onto I /	\lto río	Moaro	ubicad	2 00 0	munici	nia da

La estación río Negro abajo de la Quebrada la Chorrera se encuentra ubicada en el nivel subsiguiente I Alto río Negro, ubicada en el municipio de Peñón. En este punto de monitoreo la calidad del agua decrece con respecto al punto precedente sobre la corriente principal del río Negro, lo cual evidencia efectos a partir de la confluencia de la Quebrada Chorrera y los aportes en carga de origen domestico de los municipios de Pacho y el Peñón, identificados por el programa de tasas retributivas.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en ocho de los puntos de monitoreo se encuentra en el rango Regular y cuatro puntos con características de mala calidad. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados en la mayoría de los puntos de monitoreo exceden los valores máximos para la clase mencionada.

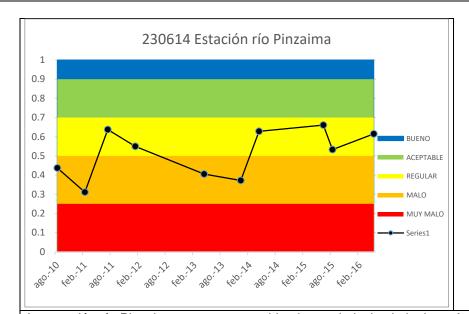
Gráfica 22 Índice de Calidad del Agua – ICA Estación río Murca cod. 230612


VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
feb-11	С	С		NC			С
abr-14	С	NC		NC			С
jun-15	С	С		NC			С
ago-15	С	С		С			С
sep-16	С	С		С			С

La estación río Murca se encuentra ubicada en el nivel subsiguiente I Alto río Negro, ubicada en el municipio del Peñón. En este punto de monitoreo la calidad del agua se mantiene en el rango regular y evidencia un incremento en la calidad hacia el año 2015 y 2016.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en el primer monitoreo en el año 2011 se encuentra en el rango Malo y de ahí en adelante mejora la calidad dentro del rango regular. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados en el año 2013, 2015 y 2016 exceden los valores máximos para la clase mencionada, al igual que los Solidos Suspendidos en el año 2014.

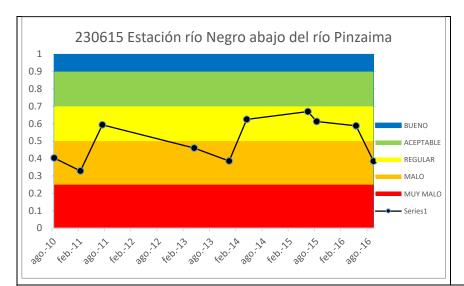
Gráfica 23 Índice de Calidad del Agua – ICA Estación LG Charco Largo cod. 230613


VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		NA			С
feb-11	С	С		NC			С
jul-11	С	O		С			С
ene-12	С	С		NC			С
abr-13	С	С		NC			С
dic-13	С	С		С			С
abr-14	С	С		NC			С
jun-15	С	С		С			С
ago-15	С	С		С			С
may-16	С	С		NC			С
sep-16	С	С		NC			С

La estación LG Charo Largo se encuentra ubicada en el nivel subsiguiente I Alto río Negro, ubicada en el municipio de Peñón en límites con el municipio de la Palma. En este punto de monitoreo la calidad del agua se mantiene con respecto al punto precedente sobre la corriente principal del río Negro. Se identifican aportes domésticos en afluentes aguas arriba de este punto provenientes de centros poblados del municipio del Peñón e identificados por el programa de tasas retributivas.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en siete de los puntos de monitoreo se encuentra en el rango Regular y cuatro puntos con características de mala calidad. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados en la mayoría de los puntos de monitoreo exceden los valores máximos para la clase mencionada.

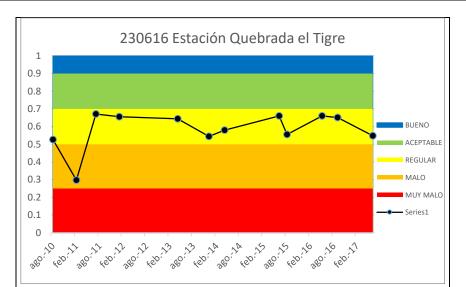
Gráfica 24 Índice de Calidad del Agua – ICA Estación río Pinzaima cod. 230614


VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	C	С		NC			С
feb-11	O	NC		NC			С
jul-11	C	С		NC			С
ene-12	С	С		NC			С
abr-13	С	С		NC			С
dic-13	С	С		NC			С
abr-14	С	С		NC			С
jun-15	С	С		NC			С
ago-15	С	С		NC			С
may-16	С	С		NC			С

La estación río Pinzaima se encuentra ubicada en el nivel subsiguiente I río Pinzaima y en el municipio de Nimaima en límites con el municipio de la Peña. En este punto de monitoreo la calidad del agua se mantiene en el rango regular y evidencia deterioro de la calidad del agua con respecto a los afluentes descargados aguas arriba. No obstante, la calidad mejora en el periodo 2014 – 2015.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, 6 monitoreos se encuentran en el rango de calidad del agua regular y cuatro en el rango malo. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados para todos los años exceden los valores máximos para la clase mencionada, al igual que los Solidos Suspendidos en el año 2011. En esta subcuenca del río Pinzaima se identificaron aportes domésticos de los municipios de Vergara y Supata.

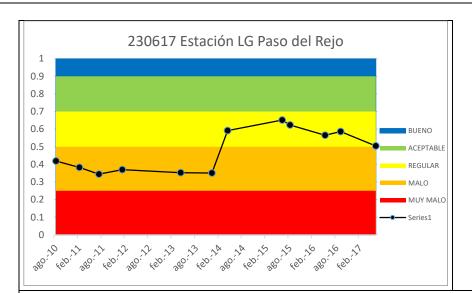
Gráfica 25 Índice de Calidad del Agua – ICA Estación río Negro abajo del río Pinzaima cd. 230615


VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		NC			С
feb-11	С	NC		NC			O
jul-11	С	С		NC			С
abr-13	С	С		NC			O
dic-13	С	С		NC			С
abr-14	С	С		NC			С
jun-15	С	С		С			С
ago-15	С	С		С			С
may-16	С	С		С			С
sep-16	С	С		NC		1/ 1/	С

La estación río Negro abajo del río Pinzaima se encuentra ubicada en el nivel subsiguiente I río Pinzaima y en el municipio de Nimaima en límites con el municipio de la Peña. En este punto de monitoreo la calidad del agua decrece con respecto al punto precedente sobre la corriente principal del río Negro. Se identifican aportes domésticos y no domésticos en afluentes del río Pinzaima provenientes de los municipios de Vergara y Supata e identificados por el programa de tasas retributivas.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en cinco de los puntos de monitoreo se encuentra en el rango Regular y cinco puntos con características de mala calidad. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados en la mayoría de los puntos de monitoreo exceden los valores máximos para la clase mencionada.

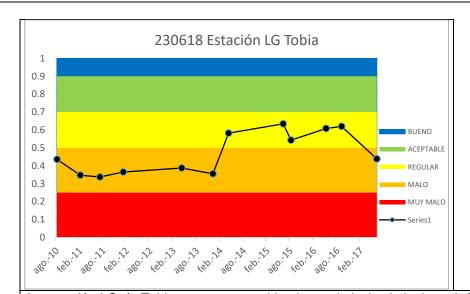
Gráfica 26 Índice de Calidad del Agua – ICA Estación Quebrada el Tigre cod. 230616


VALORES DE	DBO	SST	OD	CT	NO2	NO3	PH
REFERENCIA	20	2000	>4	<20000	10	1	4.5 - 9
ago-10	С	С	С	NC			С
feb-11	С	NC	С	NC			С
jul-11	С	С	С	NC			С
ene-12	С	С	С	NC			С
abr-13	С	С	С	С			С
dic-13	С	С	С	NC			С
abr-14	С	С	С	NC			С
jun-15	С	С	С	NC			С
ago-15	С	С	С	NC			С
may-16	С	С	С	NC			С
sep-16	С	С	С	NC			С
jun-17	С	С	С	NC			С

La estación Quebrada el Tigre se encuentra ubicada en el nivel subsiguiente I río Medio Negro I y en el municipio de Nimaima en límites con el municipio de la Peña. En este punto de monitoreo la calidad del agua se mantiene en el rango regular con valores de calidad más estables durante el tiempo y evidencia deterioro de la calidad del agua por aportes domésticos provenientes del municipio de Nimaima aguas.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la mayoría de valores se encuentran en el rango de calidad del agua regular. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados para todos los años exceden los valores máximos para la clase mencionada, al igual que los Solidos Suspendidos en el año 2011. En esta subcuenca del río Pinzaima se identificaron aportes domésticos de los municipio de Nimaima y la Peña.

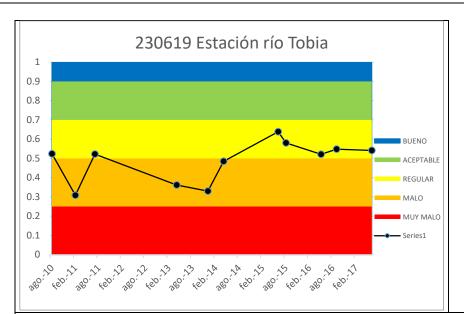
Gráfica 27 Índice de Calidad del Agua – ICA Estación LG Paso del Rejo cod. 230617


VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		NC			С
feb-11	С	NC		NC			С
jul-11	С	NC		NC			С
ene-12	С	С		NC			С
abr-13	С	С		NC			С
dic-13	С	С		С			С
abr-14	С	С		С			С
jun-15	С	С		С			С
ago-15	С	С		С			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	С	С	1	NC			С

La estación LG Paso del Rejo se encuentra ubicada en el nivel subsiguiente I río Negro Medio I y en el municipio de Nimaima en límites con el municipio de la Peña. En este punto de monitoreo el ICA decrece con respecto al punto precedente sobre la corriente principal del río Negro, aunque las condiciones de calidad del agua mejoran a partir del año 2014. Se identifican aportes domésticos provenientes de los municipios de la Peña y Nimaima e identificados por el programa de tasas retributivas.

Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en seis de los puntos de monitoreo se encuentra en el rango Regular y seis puntos con características de mala calidad. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados en la mayoría de los puntos de monitoreo exceden los valores máximos para la clase mencionada y Solidos Suspendidos que exceden el mayor máximo durante el año 2011.

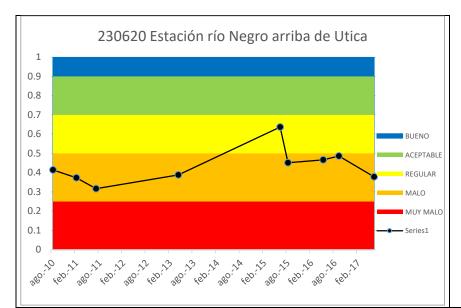
Gráfica 28 Índice de Calidad del Agua – ICA Estación LG Tobia cod 230618



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		NC			С
feb-11	С	NC		NC			С
jul-11	С	NC		NC			С
ene-12	С	С		NC			С
abr-13	С	С		NC			С
dic-13	С	С		NC			С
abr-14	С	С		NC			С
jun-15	С	С		NC			С
ago-15	С	С		NC			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	NC	С		NC			С

La estación LG río Tobia se encuentra ubicada en el nivel subsiguiente I río Negro Medio I y en el municipio de Nimaima en límites. En este punto de monitoreo las condiciones de calidad del agua tienen un comportamiento similar a la estación precedente, manteniendo el impacto generado por los municipios de Nimaima y la Peña. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en cinco de los monitoreos se encuentra en el rango Regular y siete con características de mala calidad. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados en la mayoría de los puntos de monitoreo exceden los valores máximos para la clase mencionada y Solidos Suspendidos que exceden el mayor máximo durante el año 2011.

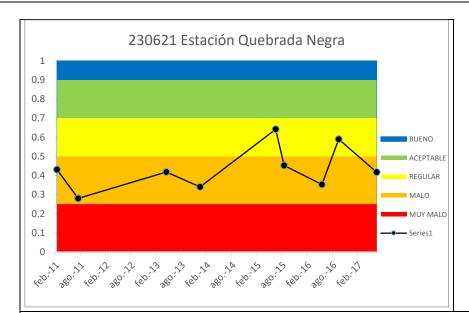
Gráfica 29 Índice de Calidad del Agua – ICA Estación río Tobia cod. 230619



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	C	С		NC			С
feb-11	O	NC		NC			С
jul-11	O	C		NC			С
abr-13	С	С		NC			O
dic-13	С	С		NC			С
abr-14	С	С		NC			С
jun-15	С	С		С			С
ago-15	С	С		С			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	NC	С		NC			С

La estación río Tobia se encuentra ubicada en el nivel subsiguiente I río Tobia y en el municipio de Quebrada Negra en límites con el municipio de Nimaima. En este afluente al río Negro la calidad del agua se mantiene en el rango de ICA Malo y a partir del año 2014 pasa ala rango Regular. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, cuatro de los valores se encuentran en el rango de ICA Malo y siete en el rango ICA regular. Se identificaron vertimientos domésticos generados por el centro poblado Tobia, circunstancia critica dado su potencial turístico y la afluencia de población que ello implica y de centros poblados del municipio de Quebrada Negra. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados para todos los años exceden los valores máximos para la clase mencionada, al igual que los Solidos Suspendidos y Demanda Bioquímica de Oxigeno en el año 2011 y 2017, respectivamente.

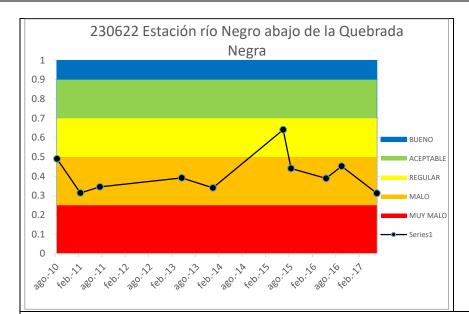
Gráfica 30 Índice de Calidad del Agua – ICA Estación río Negro arriba de Utica cod 230620



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		NC			С
feb-11	С	С		NC			С
jul-11	С	NC		NC			С
abr-13	С	С		NC			С
jun-15	С	С		С			С
ago-15	С	С		NC			С
may-16	С	С		NC			С
sep-16	С	С		С			С
jun-17	С	С		NC			С

La estación río Negro aguas arriba de Utica, se encuentra ubicada en el nivel subsiguiente I río Negro Medio II y en el municipio de Utica. En este punto de monitoreo las condiciones de calidad del agua tienen son más críticas, manteniendo el impacto generado por los municipios de Nimaima, la Peña, Quebrada Negra. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en uno de los monitoreos se encuentra en el rango Regular y ocho con características de mala calidad. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados en la mayoría de los puntos de monitoreo exceden los valores máximos para la clase mencionada y Solidos Suspendidos que exceden el mayor máximo durante el año 2011.

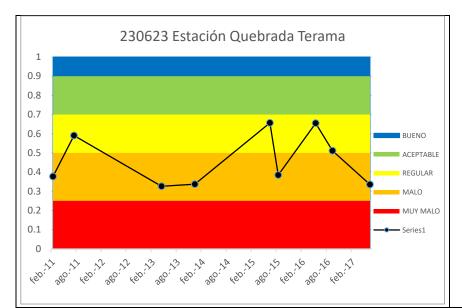
Gráfica 31 Índice de Calidad del Agua – ICA Estación Quebrada Negra cod. 230621



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
feb-11	С	С		NC			С
jul-11	С	С		NC			С
abr-13	С	С		NC			С
dic-13	С	С		С			С
jun-15	С	С		С			С
ago-15	С	С		NC			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	С	С		NC			С

La estación Quebrada Negra se encuentra ubicada en el nivel subsiguiente I río Tobia y en el municipio de Utica. En este afluente al río Negro la calidad del agua se mantiene en el rango de ICA Malo con dos valores en el rango de ICA Regular. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, Siete de los valores se encuentran en el rango de ICA Malo y dos en el rango ICA regular. Se identificaron vertimientos de la planta de sacrificio animal del municipio de Utica, además del impacto generado por la afluencia del río Tobia. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados para todos los años exceden los valores máximos para la clase mencionada.

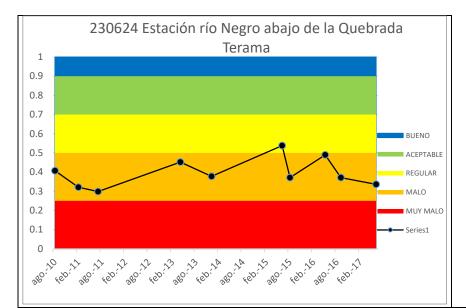
Gráfica 32 Índice de Calidad del Agua – ICA Estación río Negro debajo de la Quebrada Negra cod. 230622



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	C		NC			С
feb-11	С	С		NC			С
jul-11	С	NC		NC			С
abr-13	С	С		NC			С
dic-13	С	С		NC			С
jun-15	С	С		NC			С
ago-15	С	С		NC			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	С	NC		NC			С

La estación río Negro debajo de la Quebrada Negra, se encuentra ubicada en el nivel subsiguiente I río Negro Medio II y en el municipio de Utica. En este punto de monitoreo las condiciones de calidad del agua son críticas, aunque no guardan una diferencia marcada con las condiciones de calidad estimadas en el punto precedente sobre el río Negro. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en uno de los monitoreos se encuentra en el rango Regular y nueve con características de mala calidad. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados de los puntos de monitoreo exceden los valores máximos para la clase mencionada y Solidos Suspendidos que excedieron el valor máximo en el año 2011 y 2017.

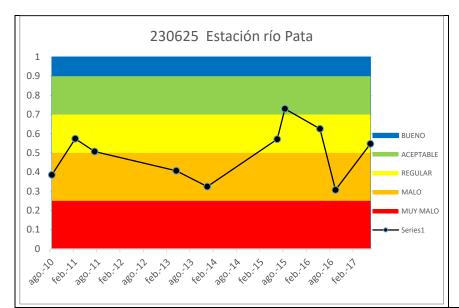
Gráfica 33 Índice de Calidad del Agua – ICA Estación Quebrada Terama cod. 230623



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	20	2000	>4	<20000	10	1	4.5 - 9
feb-11	С	С	С	NC			С
jul-11	С	С	С	NC			С
abr-13	С	С	С	NC			С
dic-13	С	С	С	NC			С
jun-15	С	С	С	С			С
ago-15	С	NC	С	NC			С
may-16	С	С	С	NC			С
sep-16	С	С	NC	NC			С
jun-17	С	С	С	NC			С

La estación Quebrada Terama se encuentra ubicada en el nivel subsiguiente I Quebrada Terama y en el municipio de Utica. En este afluente al río Negro la calidad del agua alcanza valores del rango ICA regular, pero cercanos al nivel aceptable y valores críticos ubicados en el rango Malo en los periodos 2011, 2013, 2015 y 2017. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, cinco de los valores se encuentran en el rango de ICA Malo y cuatro en el rango ICA regular. Se identificaron vertimientos de origen doméstico generados por el municipio de Utica. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados para todos los años exceden los valores máximos para la clase mencionada.

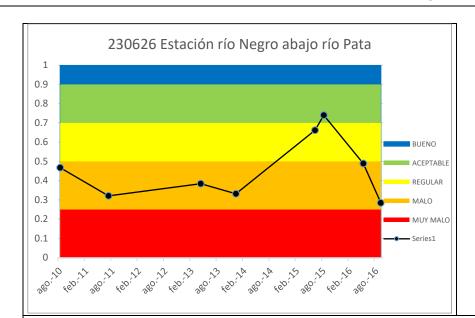
Gráfica 34 Índice de Calidad del Agua – ICA Estación río Negro abajo de la Quebrada Terama cod. 230624



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	C		NC			С
feb-11	С	С		NC			С
jul-11	С	NC		NC			С
abr-13	С	С		NC			С
dic-13	С	С		NC			С
jun-15	С	С		С			С
ago-15	С	С		NC			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	С	С		NC			С

La estación río Negro abajo de la Quebrada Terama, se encuentra ubicada en el nivel subsiguiente I río Negro Medio I y en el municipio de Utica. En este punto de monitoreo las condiciones de calidad del agua son críticas, aunque no guardan una diferencia marcada con las condiciones de calidad estimadas en el punto precedente sobre el río Negro. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en uno de los monitoreos se encuentra en el rango Regular y nueve con características de mala calidad. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados de los puntos de monitoreo exceden los valores máximos para la clase mencionada y Solidos Suspendidos que excedieron el valor máximo en el año 2011.

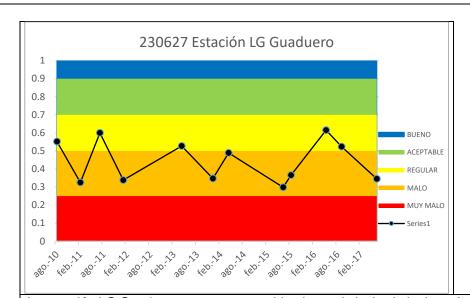
Gráfica 35 Índice de Calidad del Agua – ICA Estación río Pata cód. 230625



VALORES DE	DBO	SST	OD	CT	NO2	NO3	PH
REFERENCIA	20	2000	>4	<20000	10	1	4.5 - 9
Cago-10	С	С	С	NC			О
feb-11	С	С	С	С			С
jul-11	С	С	С	NC			С
abr-13	С	С	С	NC			С
dic-13	С	С	С	NC			С
jun-15	С	С	С	С			С
ago-15	С	С	С	С			С
may-16	С	С	С	NC			С
sep-16	С	NC	С	NC			С
jun-17	С	С	С	NC			С

La estación río Pata se encuentra ubicada en el nivel subsiguiente I río Pata y en el municipio de Utica. En este afluente al río Negro la calidad del agua alcanza valores del rango ICA regular, un pico en el rango aceptable y valores críticos ubicados en el rango Malo en los periodos 2011, 2013 y 2016. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, cuatro de los valores se encuentran en el rango de ICA Malo, cinco en el rango ICA regular y uno en el rango aceptable. Se identificaron vertimientos directos de origen doméstico generados por el municipio de Caparrapi. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados para la mayoría de los años exceden los valores máximos para la clase mencionada y Solidos Suspendidos para el año 2016.

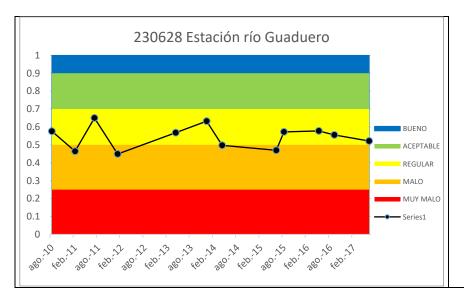
Gráfica 36 Índice de Calidad del Agua – ICA Estación río Negro abajo del río Pata



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		NC			С
jul-11	С	NC		NC			С
abr-13	С	C		NC			С
dic-13	С	С		NC			С
jun-15	С	С		С			С
ago-15	С	C		NC			С
may-16	С	C		NC			С
sep-16	С	С		NC			С

La estación río Negro abajo del río Pata, se encuentra ubicada en el nivel subsiguiente I río Negro Medio I y en el municipio de Utica. En este punto de monitoreo las condiciones de calidad del agua son críticas, aunque no guardan una diferencia marcada con las condiciones de calidad estimadas en el punto precedente sobre el río Negro. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en uno de los monitoreos se encuentra en el rango Aceptable, uno en el rango regular y seis con características de mala calidad, posiblemente por las cargas aportadas por el río Pata (municipio de Caparrapi). Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados de los puntos de monitoreo exceden los valores máximos para la clase mencionada y Solidos Suspendidos que excedieron el valor máximo en el año 2011.

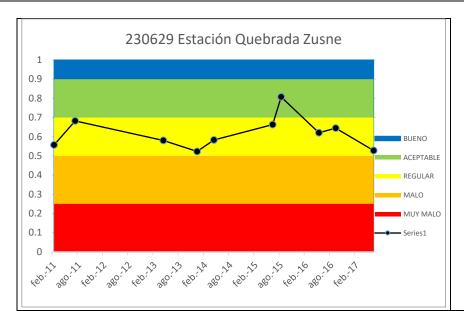
Gráfica 37 Índice de Calidad del Agua – ICA Estación LG Guaduero cod 230627



VALORES DE	DBO	SST	OD	CT	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		NC			С
feb-11	С	NC		NC			С
jul-11	С	С		NC			С
ene-12	С	NC		NC			С
abr-13	С	С		NC			С
dic-13	С	С		NC			С
abr-14	С	С		NC			С
jun-15	С	С		NC			С
ago-15	С	С		NC			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	С	С		NC			С

La estación LG Guaduero, se encuentra ubicada en el nivel subsiguiente I río Negro Medio I y en el municipio de Caparrapi. En este punto de monitoreo las condiciones de calidad del agua son críticas, pues la mayoría de valores ICA se ubican en el estrato bajo del rango de calidad Malo. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en cinco de los monitoreos se encuentra en el rango regular, uno en el rango regular y siete con características de mala calidad, posiblemente por las cargas aportadas por el municipio de Caparrapi y Guaduas de origen doméstico e industrial. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados de los puntos de monitoreo exceden los valores máximos para la clase mencionada y Solidos Suspendidos que excedieron el valor máximo en el año 2011 y 2012.

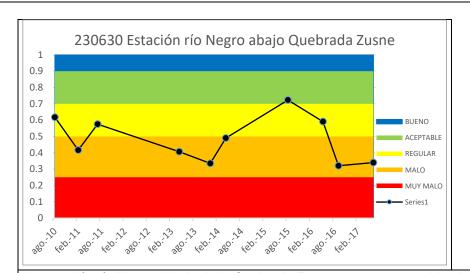
Gráfica 38 Índice de Calidad del Agua – ICA Estación río Guaduero



VALORES DE	DBO	SST	OD	CT	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		С			С
feb-11	С	С		NC			С
jul-11	С	С		С			С
ene-12	С	С		NC			С
abr-13	С	С		NC			С
dic-13	С	С		NC			С
abr-14	С	С		С			С
jun-15	С	С		NC			С
ago-15	С	С		NC			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	С	C		NC		41-4	С

La estación río Guaduero se encuentra ubicada en el nivel subsiguiente I río Negro Medio 1 y en el municipio de Guaduas. En este afluente al río Negro la calidad del agua alcanza valores del rango ICA regular y valores críticos ubicados en el rango Malo en los periodos 2011, 2012, 2014 y 2015. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, cuatro de los valores se encuentran en el rango de ICA Malo y ocho en el rango ICA. Se identificaron vertimientos directos de origen doméstico generados por el municipio de Guaduas. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados para la mayoría de los años exceden los valores máximos para la clase mencionada.

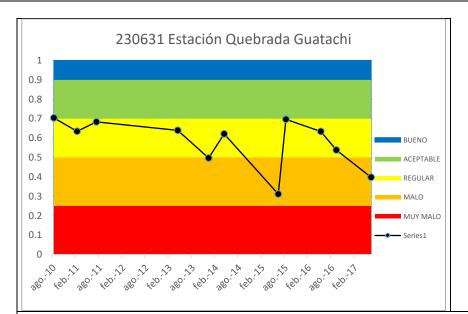
Gráfica 39 Índice de Calidad del Agua – ICA Estación Quebrada Zusne cod 230629



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	20	2000	>4	<20000	10	1	4.5 - 9
feb-11	С	С	С	С			С
jul-11	С	С	С	NC			С
abr-13	С	С	С	NC			С
dic-13	С	С	С	С			С
abr-14	С	С	С	NC			С
jun-15	С	С	С	С			С
ago-15	С	С	С	С			С
may-16	С	С	С	С			С
sep-16	С	С	С	С			С
jun-17	С	С	С	NC			С

La estación Quebrada Zusne se encuentra ubicada en el nivel subsiguiente I río Negro Medio 1 y en el municipio de Caparrapi. En este afluente al río Negro los valores de calidad de agua ICA se ubican en el rango Regular y un pico en el rango aceptable. No obstante se presentan valores cercanos al rango de mala calidad. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, nueve de los valores se encuentran en el rango de ICA regular y uno en el rango ICA aceptable. Se identificaron vertimientos directos de origen doméstico generados por el municipio de Caparrapi. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados para los años 2011, 2014 y 2017 exceden los valores máximos para la clase mencionada.

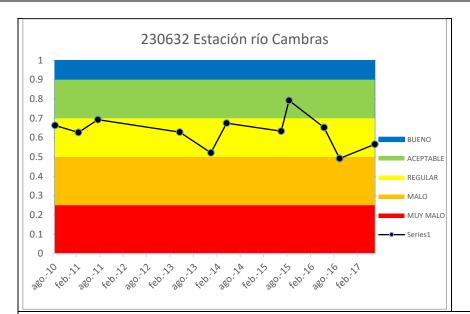
Gráfica 40 Índice de Calidad del Agua – ICA Estación río Negro abajo de la Quebrada Zusne



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		NC			С
feb-11	С	NC		NC			С
jul-11	С	С		NC			С
abr-13	С	С		NC			С
dic-13	С	С		NC			С
abr-14	С	С		NC			С
ago-15	С	С		NC			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	С	С		NC			С

La estación río Negro debajo de la Quebrada Zusne, se encuentra ubicada en el nivel subsiguiente I río Negro Medio I y en el municipio de Caparrapi. En este punto de monitoreo las condiciones de calidad del agua en algunos años mejoran con respecto a las registradas en los puntos precedentes sobre la corriente principal, pero la generalidad tiende al rango de calidad Malo. El valor atípico ubicado en el rango de calidad aceptable puede deberse a efectos de dilución durante una temporada y en general se evidencia los efectos de los aportes de la Quebrada Zusne sobre el río Negro. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en tres de los monitoreos se encuentra en el rango Regular, uno en el rango Aceptable y seis con características de mala calidad, posiblemente por las cargas aportadas por el municipio de Caparrapi de origen doméstico. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados de los puntos de monitoreo exceden los valores máximos para la clase mencionada y Solidos Suspendidos que excedieron el valor máximo en el año 2011.

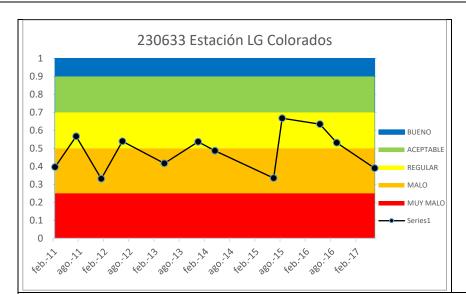
Gráfica 41 Índice de Calidad del Agua – ICA Estación Quebrada Guatachi cod 230631



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	20	2000	>4	<20000	10	1	4.5 - 9
ago-10	С	С	С	С			С
feb-11	С	С	С	С			С
jul-11	С	С	С	NC			С
abr-13	С	С	С	NC			С
dic-13	С	С	С	NC			С
abr-14	С	С	С	NC			С
jun-15	С	С	С	NC			С
ago-15	С	С	С	С			С
may-16	С	С	С	NC			С
sep-16	С	С	С	С			С
jun-17	С	С	С	NC			С

La estación Quebrada Guatachi se encuentra ubicada en el nivel subsiguiente I río Guatachi y en el municipio de Caparrapi. En este afluente al río Negro los valores de calidad de agua ICA se ubican en el rango Aceptable en el año 2011, en el rango regular en la mayoría de años y dos puntos críticos en el rango Malo en los años 2015 y 2017. No se identificaron vertimientos sobre las corrientes de esta subcuenca. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados para los años 2011, 2014 y 2017 exceden los valores máximos para la clase mencionada.

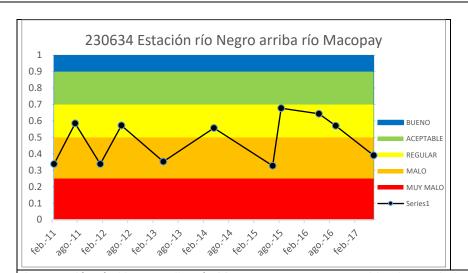
Gráfica 42 Índice de Calidad del Agua – ICA Estación río Cambras cod. 230632



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	20	2000	>4	<20000	10	1	4.5 - 9
ago-10	С	С	С	С			С
feb-11	С	С	С	NC			С
jul-11	С	С	С	NC			С
abr-13	С	С	С	NC			С
dic-13	С	С	С	NC			С
abr-14	С	С	С	NC			С
jun-15	С	С	С	С			С
ago-15	С	С	С	С			С
may-16	С	С	С	С			С
sep-16	С	С	С	NC			С
jun-17	С	С	С	NC			С

La estación Quebrada Cambras se encuentra ubicada en el nivel subsiguiente I río Cambras y en el municipio de Puerto Salgar. En este afluente al río Negro los valores de calidad de agua ICA se ubican en el rango Aceptable en el año 2015 y en el rango Regular en el resto de periodos. No se identificaron vertimientos sobre las corrientes de esta subcuenca. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados en su mayoría exceden los valores máximos para la clase mencionada.

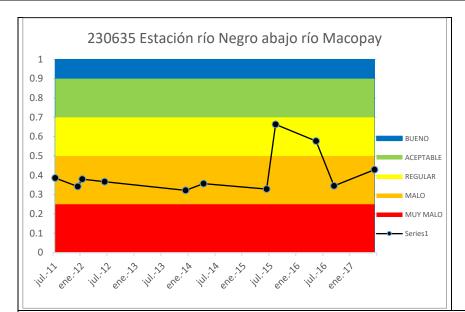
Gráfica 43 Índice de Calidad del Agua – ICA Estación LG Colorados cod. 230633



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
feb-11	С	С		NC			С
jul-11	С	С		NC			С
ene-12	С	NC		NC			С
jun-12	С	С		NC			С
abr-13	С	NC		NC			С
dic-13	С	С		NC			С
abr-14	С	С		NC			С
jun-15	С	NC		NC			С
ago-15	С	С		NC			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	С	С		NC			С
Lrío Nearo Medio Ly e	n al mi	inicinio	do Puo	rto Sala	ar En	acta afl	LIANTA

La estación Quebrada Cambras se encuentra ubicada en el nivel subsiguiente I río Negro Medio I y en el municipio de Puerto Salgar. En este afluente al río Negro los valores de calidad de agua ICA evidencian mayor deterioro del recurso hídrico, los valores se ubican en el rango Regular en 5 periodos y en el rango Malo en 5 periodos. En las corrientes que drenan por esta subcuenca aguas arriba del punto de monitoreo se identificaron vertimientos generados por la actividad porcicola. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados exceden los valores máximos para la clase mencionada e igualmente los Solidos Suspendidos Totales para os periodos 2012, 2013 y 2015.

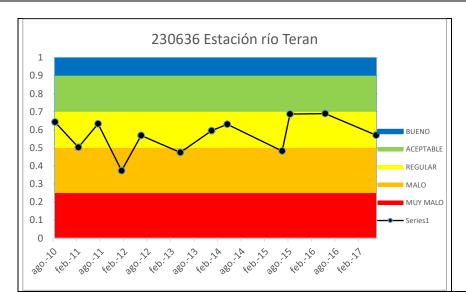
Gráfica 44 Índice de Calidad del Agua – ICA Estación río Negro arriba del río Macopay cod. 230634



VALORES DE	DBO	SST	OD	CT	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
feb-11	С	С		NC			С
jul-11	С	С		NC			С
ene-12	С	NC		NC			С
jun-12	С	С		С			С
abr-13	С	С		NC			С
abr-14	С	С		NC			С
jun-15	С	С		NC			С
ago-15	С	С		NC			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	С	С	Ĺ	NC			С

La estación río Negro arriba río Macopay, se encuentra ubicada en el nivel subsiguiente I río Negro Medio I y en el municipio de Caparrapi. En este punto de monitoreo las condiciones de calidad del agua en algunos años mejoran con respecto a las registradas en los puntos precedentes sobre la corriente principal, pero la generalidad tiende al rango de calidad Malo. El valor atípico ubicado en el rango de calidad aceptable puede deberse a efectos de dilución durante una temporada y en general se evidencia los efectos de los aportes de la Quebrada Zusne sobre el río Negro. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en tres de los monitoreos se encuentra en el rango Regular, uno en el rango Aceptable y seis con características de mala calidad, posiblemente por las cargas aportadas por el municipio de Caparrapi de origen doméstico. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados de los puntos de monitoreo exceden los valores máximos para la clase mencionada y Solidos Suspendidos que excedieron el valor máximo en el año 2011.

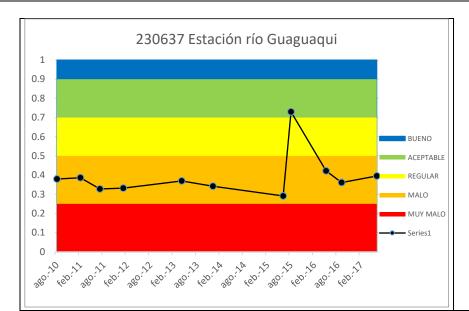
Gráfica 45 Índice de Calidad del Agua – ICA Estación río Negro abajo del río Macopay cod. 230635



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
dic-11	С	С		NC			С
jul-11	С	С		NC			С
ene-12	С	NC		NC			С
jun-12	С	С		NC			С
dic-13	С	С		NC			С
abr-14	С	С		NC			С
jun-15	С	С		NC			С
ago-15	С	С		С			С
may-16	С	С		NC			С
sep-16	С	NC		NC			С
jun-17	С	NC		NC			С

La estación río Negro abajo del río Macopay, se encuentra ubicada en el nivel subsiguiente I río Bajo Negro y en el municipio de Puerto Salgar. En este punto de monitoreo las condiciones de calidad del agua evidencian los efectos por la confluencia del río Macopay. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en casi todos los periodos (9 periodos) se encuentra en el rango Malo y. dos en el rango regular, posiblemente por las cargas aportadas por los municipios aguas arriba Yacopi y Caparrapi. Según información de tasas retributivas en esta subcuenca no se identifican vertimientos Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados de los puntos de monitoreo exceden los valores máximos para la clase mencionada y Solidos Suspendidos que excedieron el valor máximo en el año 2011, 2016 y 2017.

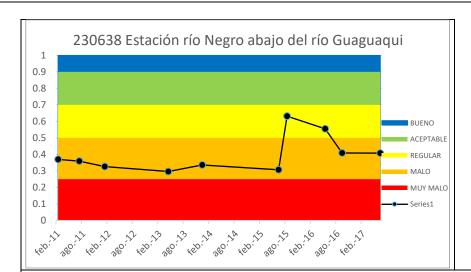
Gráfica 46 Índice de Calidad del Agua – ICA Estación río Teran cod. 230636



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	20	2000	>4	<20000	10	1	4.5 - 9
ago-10	С	С	С	С			С
feb-11	С	С	С	NC			С
jul-11	С	С	С	С			С
ene-12	С	С	С	NC			С
jun-12	С	С	С	NC			С
abr-13	С	С	С	NC			С
dic-13	С	С	С	NC			С
abr-14	С	С	С	С			С
jun-15	С	С	С	С			С
ago-15	С	С	С	NC			С
may-16	С	С	С	NC			С
jun-17	С	С	С	NC			С

La estación río Terán se encuentra ubicada en el nivel subsiguiente I río Téran y en el municipio de Puerto Salgar. En este afluente al río Negro los valores de calidad de agua ICA se ubican en el rango regular durante la mayoría de periodos y en el rango en el rango Malo en los periodos 2012, 2013 y 2015. No se identificaron vertimientos sobre las corrientes de esta subcuenca. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados en su mayoría exceden los valores máximos para la clase mencionada.

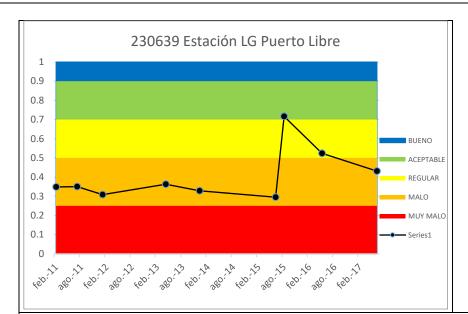
Gráfica 47 Índice de Calidad del Agua – ICA Estación río Guaguaqui cod. 230637



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	20	2000	>4	<20000	10	1	4.5 - 9
ago-10	С	С	С	NC			С
feb-11	С	С	С	NC			С
jul-11	С	С	С	NC			С
ene-12	С	NC	С	NC			С
abr-13	С	С	С	NC			С
dic-13	С	С	С	NC			С
jun-15	С	С	С	NC			С
ago-15	С	С	С	С			С
may-16	С	С	С	NC			С
sep-16	С	С	С	NC			С
jun-17	С	NC	С	С		, N	С

La estación río Guaguaqui se encuentra ubicada en el nivel subsiguiente I río Guaguaqui y en el municipio de Yacopi. En este afluente al río Negro los valores de calidad de agua ICA se ubican en el rango de Mala calidad durante la mayoría de periodos a excepción de un pico en el rango de calidad aceptable. No se identificaron vertimientos sobre las corrientes de esta subcuenca pero los resultados del ICA evidencian cargas considerables por lo cual debe ser una corriente objeto de análisis. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados en su mayoría exceden los valores máximos para la clase mencionada al igual que solidos suspendidos totales en los periodos 2012 y 2017.

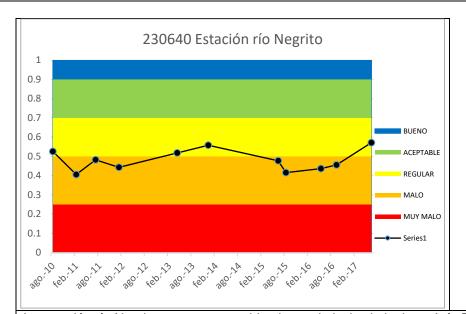
Gráfica 48 Índice de Calidad del Agua – ICA Estación río Negro abajo del río Guaguaqui cod 230638



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
feb-11	С	С		NC			С
jul-11	С	С		NC			С
ene-12	С	NC		NC			С
abr-13	С	NC		NC			С
dic-13	С	С		NC			С
jun-15	С	С		NC			С
ago-15	С	С		NC			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	С	С		С			С

La estación río Negro abajo del río Guaguaqui, se encuentra ubicada en el nivel subsiguiente I río Bajo Negro y en el municipio de Puerto Salgar. En este punto de monitoreo las condiciones de calidad del agua evidencian los efectos por la confluencia del Guaguaqui ya que los resultados muestran un estado crítico de la calidad del agua. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en casi todos los periodos (8 periodos) se encuentra en el rango Malo y dos en el rango regular, posiblemente por las cargas aportadas por los municipios aguas arriba Yacopi, Caparrapi y Puerto Salgar. Según información de tasas retributivas en esta subcuenca no se identifican vertimientos, no obstante los resultados evidencian remanentes de cargas y vertimientos no identificados Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados de los puntos de monitoreo exceden los valores máximos para la clase mencionada y Solidos Suspendidos que excedieron el valor máximo en el año 2012 y 2013.

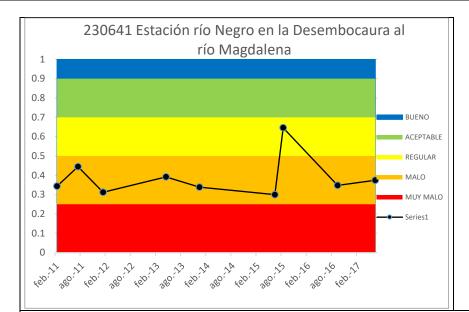
Gráfica 49 Índice de Calidad del Agua – ICA Estación LG Puerto Libre cod. 230639



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
feb-11	С	С		NC			С
jul-11	С	С		NC			С
ene-12	С	NC		NC			С
abr-13	С	NC		NC			С
dic-13	С	С		NC			С
jun-15	С	С		NC			С
ago-15	С	С		С			С
may-16	С	С		NC			С
jun-17	С	NC		С			С

La estación LG Puerto Libre, se encuentra ubicada en el nivel subsiguiente I río Bajo Negro y en el municipio de Puerto Salgar. En este punto de monitoreo las condiciones de calidad del agua mantienen un estado crítico de la calidad del agua muy similar al punto precedente sobre la corriente principal. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en casi todos los periodos (7 periodos) se encuentra en el rango Malo, uno en el rango regular y un pico en el rango aceptable. Según información de tasas retributivas en esta subcuenca no se identifican vertimientos, no obstante los resultados evidencian remanentes de cargas y vertimientos no identificados Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados de los puntos de monitoreo en su mayoría exceden los valores máximos para la clase mencionada y Solidos Suspendidos que excedieron el valor máximo en el año 2012, 2013 y 2017.

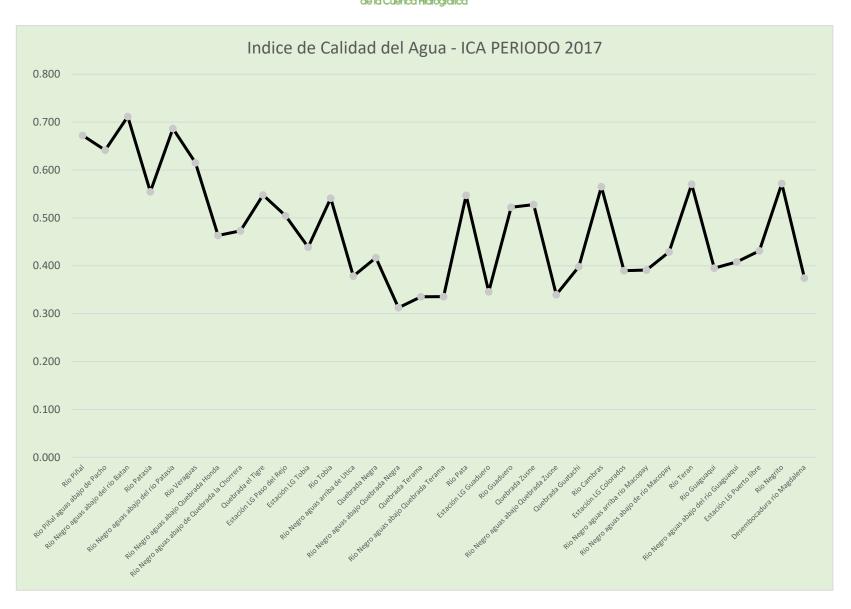
Gráfica 50 Índice de Calidad del Agua – ICA Estación río Negrito cood. 230640



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
ago-10	С	С		NC			С
feb-11	С	С		С			С
jul-11	С	С		С			С
ene-12	С	С		NC			С
abr-13	С	С		NC			С
dic-13	С	С		С			С
jun-15	С	С		NC			С
ago-15	С	С		NC			С
may-16	С	С		NC			С
sep-16	С	С		NC			С
jun-17	С	С		NC	- (1 (С

La estación río Negrito se encuentra ubicada en el nivel subsiguiente I río Bajo Negro y en el municipio de Puerto Salgar. En este afluente al río Negro los valores de calidad de agua ICA se ubican en el rango de Regular calidad durante 4 periodos y en el rango de mala calidad durante 7 periodos. Se identificó un vertimiento sobre las corrientes de esta subcuenca, no obstante, los resultados del ICA evidencian cargas considerables por lo cual debe ser una corriente objeto de análisis. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase II en el año 2020, a excepción de los Coliformes Fecales cuyos resultados en su mayoría exceden los valores máximos para la clase mencionada.

Gráfica 51 Índice de Calidad del Agua – ICA Estación río Negro en la desembocadura al río Magdalena cod 230641



VALORES DE	DBO	SST	OD	СТ	NO2	NO3	PH
REFERENCIA	50	2000	NA	<20000	10	NA	4 - 9
feb-11	С	С		NC			С
jul-11	С	С		NC			С
ene-12	С	NC		NC			С
abr-13	С	NC		NC			С
dic-13	С	С		NC			С
jun-15	С	С		NC			С
ago-15	С	С		С			С
sep-16	С	С		NC			С
jun-17	С	С		NC			С

La estación río Negro en la desembocadura al río Magdalena, se encuentra ubicada en el nivel subsiguiente I río Bajo Negro y en el municipio de Puerto Salgar. En este punto de monitoreo las condiciones de calidad del agua mantienen un estado crítico ya que acumula las descargas de los municipios aguas arriba. Según resultado de la estimación del ICA en este punto a través de la serie de datos 2010 – 2017, la calidad del agua en casi todos los periodos (8 periodos) se encuentra en el rango Malo y uno en el rango regular. Según información de tasas retributivas en esta subcuenca no se identifican vertimientos, no obstante los resultados evidencian remanentes de cargas de los municipios aguas arriba y vertimientos no identificados. Los resultados de los parámetros medidos se encuentran por debajo de los máximos valores establecidos en la Resolución 3461 de 2009, para alcanzar los objetivos de calidad clase IV en el año 2020, a excepción de los Coliformes Fecales cuyos resultados de los puntos de monitoreo en su mayoría exceden los valores máximos para la clase mencionada y Solidos Suspendidos que excedieron el valor máximo en el año 2012 y 2013.

Plan de Ordenación y Manejo de la Cuenca Hidrográfica

1.5 CONCLUSIONES

- La información fisicoquímica y microbiológica suministrada por la Dirección de Monitoreo, Modelamiento y Laboratorio Ambiental – DMMLA, permite dar alcance a lo establecido en la Guía técnica para la formulación de POMCAS para el componente de calidad de agua – Índice de la Calidad del Agua.
- La densidad y distribución de la red de monitoreo de calidad del agua ofrece información básica de todas las subcuencas o niveles subsiguientes de la cuenca del río Negro principalmente en la zona de mezcla de los afluentes principales a la corriente principal o puntos cercanos.
- La información suministrada por la Dirección de Monitoreo, Modelamiento y Laboratorio Ambiental – DMMLA, limita la correlación entre los resultados de los monitoreos puntuales y las condiciones hidrológicas.
- Con sustento en la información suministrada por la Dirección operativo y de Infraestructura, ocho (8) de los 20 municipios cuyos vertimientos municipales drenan a la cuenca del río Negro, cuentan son sistema de tratamiento de aguas residuales domesticas en operación.
- La información levantada en relación con el saneamiento de los vertimientos no permite establecer condiciones de funcionamiento sanitario de los sistemas de tratamiento.
- De acuerdo a la información suministrada por la Dirección de Evaluación, Seguimiento y Control Ambiental relacionad con los vertimientos puntuales identificados para el cobro de la tasa retributiva, los municipios que generan mayor carga de SST son Guaduas, Pacho y Villeta (>100 ton/año) y de DBO5 son Villeta y Pacho.
- De acuerdo a la información obtenida de los PGIRS para cada uno de los municipios que hacen parte de la cuenca del rio negro se analizó a partir de conocimiento de los residuos sólidos (caracterización), aprovechamiento y y cobertura de disposición final de los residuos sólidos, resultado de lo cual se determinó que los siguientes municipios no evidencian un manejo adecuado de los residuos sólidos: Utica, Nimaima, Vergara, Quebrada Negra, Nocaima, Supatá, Villeta, La vega, Caparrapi, guaduas, Puerto Salgar, Viani.

Lo anterior teniendo en cuenta que los municipios no tienen implementado ningún programa de aprovechamiento, no realizan una clasificación adecuada de los residuos sólidos generados, sobre todo para la parte rural en donde no hay recolección de los mismos y por el contrario estos son quemados, enterrados o dispuestos a campo abierto contaminando el suelo y las fuentes hídricas, aspecto critico teniendo en cuenta que la población en varios de estos municipios es mayoritariamente rural.

- De acuerdo a la información suministrada por la Dirección de Evaluación, Seguimiento y Control Ambiental relacionada con los vertimientos puntuales identificados para el cobro de la tasa retributiva, las subcuencas o niveles subsiguientes que más reciben carga de SST y DBO son Tobia, Alto Negro y Guaduero.
- Los resultados finales de estimación de cargas contaminantes definidos en este documento deben ser complementados con la estimación presuntiva de las cargas generadas por los vertimientos difusos Agrícolas, a fin de conocer los aportes de nutrientes de estas actividades a los cuerpos de agua y aquellos aportes en carga generados por la actividad minera.
- Teniendo en cuenta que en la escala del ICA los valores altos representan corrientes con mejores características de calidad del recurso hídrico y en la medida en que este valor es inferior evidencia deterioro de la calidad hídrica, se concluye lo siguiente:

Según resultados del índice de calidad del agua acumulado en la serie histórica 2010 - 2017, la subcuenca Bajo río Negro es la que evidencia mayor deterioro de la calidad del recurso hídrico

Según resultados del índice de calidad del agua para el periodo 2017, los puntos de monitoreo que mayor deterioro del recurso hídrico evidencian sobre la corriente principal son Desembocadura río Negro al río Magdalena, Río Negro aguas abajo del río Guaguaqui, Estación LG Puerto Libre, Río Negro aguas abajo de la Quebrada Terama, río Negro aguas abajo de Quebrada Negra y río Negro aguas abajo del río Macopay y la corriente afluente al río Negro que más deterioro evidencia es el río Guaguaqui.

Según gráfica de los resultados del ICA para el año 2017, el tramo crítico en términos de calidad del agua se encuentra entre el punto río Tobia y quebrada Terama.

El análisis de los resultados del Índice de Calidad del Agua debe complementarse para condiciones hidrológicas determinadas para año seco y temporada seca y húmeda.

1.7 ANEXOS

- Anexo 1 Hoja metodológica índice de calidad del agua ICA
- Anexo 2 Hoja metodológica Índice de Alteración Potencial de la calidad del agua.
- Anexo 3 Estimación del Índice de Calidad de Agua -ICA
- Anexo 4 Estimación de cargas contaminantes
- Anexo 5 Consolidado análisis del manejo municipal de los residuos solidos

1.8 BIBLIOGRAFÍA

PGIRS

RAS

FID	Shana *	FID_	Shano
FID	Shape *	FID_	Shape
0	Point	0	Point
1	Point	1	Point
2	Point	2	Point
3	Point	3	Point
4	Point	4	Point
5	Point	5	Point
6	Point	6	Point
7	Point	7	Point
8	Point	8	Point
9	Point	9	Point
10	Point	10	Point
	Point	11	
	Point		Point
	Point	21	
	Point		Point
23	Point	23	Point
	Point	24	
		25	
	Point		Point
27			Point
	Point		Point
	Point	29	
	Point	30	Point
31	Point	31	
	Point	32	
	Point	33	
	Point		Point
	Point	35	Point
	Point	36	
	Point	37	Point
			Point
	Point	39	
	Point	40	Point
41	Point	41	Point
42	Point	42	Point
43	Point	43	Point

44	Doint	1.1	Doint
		44	
	Point		Point
	Point		Point
47		47	
48			Point
49			Point
	Point		Point
	Point		Point
52			Point
	Point	56	Point
	Point		Point
	Point		Point
	Point		Point
60	Point		Point
	Point	61	Point
62	Point	62	Point
63	Point	63	Point
64	Point	64	Point
65	Point	65	Point
66	Point	66	Point
67	Point	67	Point
68	Point	68	Point
69	Point	69	Point
70	Point	70	Point
71	Point	71	Point
72	Point	72	Point
73	Point	73	Point
74	Point	74	Point
75	Point	75	Point
76	Point	76	Point
77	Point	77	Point
78	Point	78	Point
79	Point	79	Point
80	Point	80	Point
81	Point	81	Point
82	Point	82	Point
83	Point	83	Point
84	Point	84	Point
85	Point	85	Point
86	Point	86	Point
87	Point	87	Point
88	Point	88	Point
89		89	Point
90	Point	90	Point

91	Point	91	Point
92	Point	92	Point
93	Point	93	Point
94	Point	94	Point
95	Point	95	Point
	Point		Point
97			Point
	Point		Point
	Point		Point
	Point	110	Point
111	Point	111	Point
112	Point	112	Point
113	Point	113	Point
114	Point	114	Point
115	Point	115	Point
116	Point	116	Point
117	Point	117	Point
118	Point	118	Point
119	Point	119	Point
120	Point	120	Point
121	Point	121	Point
	Point		Point
123			Point
	Point		Point
125			Point
126			Point
127			Point
128			Point
129	Point		Point
130			Point
131			Point
132			Point
133			Point
134			Point
135			Point
	Point		Point
137	Point	137	Point

	Point		Point
	Point		Point
	Point		Point
	Point		Point
142	Point	142	Point
143	Point	143	Point
144	Point	144	Point
145	Point	145	Point
146	Point	146	Point
147	Point	147	Point
148	Point	148	Point
149	Point	149	Point
150	Point	150	Point
151	Point	151	Point
152	Point	152	Point
153	Point	153	Point
154	Point	154	Point
155	Point	155	Point
156	Point	156	Point
157	Point	157	Point
158	Point	158	Point
159	Point	159	Point
160	Point	160	Point
161	Point	161	Point
162	Point	162	Point
163	Point	163	Point
164	Point	164	Point
165	Point	165	Point
166	Point	166	Point
167	Point	167	Point
168	Point	168	Point
	Point	169	Point
	Point		Point
177	Point		Point
	Point		Point
107	. 511.10	107	. 511.12

	Point		Point
186	Point	186	Point
187	Point	187	Point
	Point	188	Point
189	Point	189	Point
190	Point	190	Point
191	Point	191	Point
192	Point	192	Point
193	Point	193	Point
194	Point	194	Point
195	Point	195	Point
196	Point	196	Point
197	Point	197	Point
198	Point	198	Point
199	Point	199	Point
200	Point	200	Point
201	Point	201	Point
202	Point	202	Point
203	Point	203	Point
204	Point	204	Point
205	Point	205	Point
206	Point	206	Point
207	Point	207	Point
208	Point	208	Point
	Point	209	Point
210	Point	210	Point
	Point		Point
212	Point	212	Point
	Point	213	Point
	Point		Point
231	ruiit	231	FUIIL

000		000	
	Point		Point
236	Point	236	Point
237	Point	237	Point
238	Point	238	Point
239	Point	239	Point
240	Point	240	Point
241	Point	241	Point
242	Point	242	Point
243	Point	243	Point
244	Point	244	Point
245	Point	245	Point
246	Point	246	Point
247	Point	247	Point
248	Point	248	Point
249	Point	249	Point
250	Point	250	Point
251	Point	251	Point
252	Point	252	Point
253	Point	253	Point
254	Point	254	Point
255	Point	255	Point
256	Point	256	Point
257	Point	257	Point
258	Point	258	Point
259	Point	259	Point
260	Point	260	Point
261	Point	261	Point
262	Point	262	Point
	Point		Point
264	Point	264	Point
	Point		Point
	Point	266	Point
267	Point		Point
	Point		Point
	Point		Point
			Point
	Point		Point
270	1 Offic	270	1 Offic

	Point		Point
280	Point		Point
	Point		Point
	Point		Point
283	Point	283	Point
284	Point	284	Point
285	Point	285	Point
286	Point	286	Point
287	Point	287	Point
288	Point	288	Point
289	Point	289	Point
290	Point	290	Point
291	Point	291	Point
292	Point	292	Point
293	Point	293	Point
294	Point	294	Point
295	Point	295	Point
296	Point	296	Point
297	Point	297	Point
298	Point	298	Point
299	Point	299	Point
300	Point	300	Point
301	Point	301	Point
302	Point	302	Point
303	Point	303	Point
304	Point	304	Point
305	Point	305	Point
306	Point	306	Point
307	Point	307	Point
308	Point	308	Point
309	Point	309	Point
	Point		Point
322	Point		Point
	Point		Point
	Point		Point
	Point		Point
525	rollit	525	FUIIL

	Point		Point
	Point		Point
328	Point	328	Point
329	Point	329	Point
330	Point	330	Point
331	Point	331	Point
332	Point	332	Point
333	Point	333	Point
334	Point	334	Point
335	Point	335	Point
336	Point	336	Point
337	Point	337	Point
338	Point	338	Point
339	Point	339	Point
340	Point	340	Point
341	Point	341	Point
342	Point	342	Point
343	Point	343	Point
344	Point	344	Point
345	Point	345	Point
346	Point	346	Point
347	Point	347	Point
348	Point	348	Point
349	Point	349	Point
350	Point	350	Point
	Point		Point
3/2	Point	3/2	Point

373 Point 374 Point 375 Point 376 Point 376 Point 377 Point 377 Point 378 Point 377 Point 378 Point 379 Point 380 Point 380 Point 381 Point 382 Point 382 Point 383 Point 384 Point 385 Point 386 Point 386 Point 387 Point 388 Point 388 Point 389 Point 389 Point 389 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 394 Point 395 Point 396 Point 397 Point 398 Point 399 Point 400 Point 400 Point 401 Point 402 Point 403 Point 404 Point 405 Point 406 Point 407 Point 408 Point 409 Point 410 Point 410 Point 411 Point 411 Point 411 Point 412 Point 413 Point				
375 Point 376 Point 376 Point 376 Point 377 Point 377 Point 378 Point 379 Point 379 Point 380 Point 380 Point 380 Point 381 Point 381 Point 382 Point 382 Point 383 Point 382 Point 384 Point 384 Point 385 Point 385 Point 386 Point 386 Point 387 Point 388 Point 388 Point 389 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 393 Point 394 Point 394 Point				
376 Point 377 Point 377 Point 378 Point 378 Point 379 Point 379 Point 380 Point 380 Point 381 Point 381 Point 382 Point 382 Point 382 Point 383 Point 383 Point 384 Point 384 Point 385 Point 385 Point 386 Point 386 Point 387 Point 387 Point 388 Point 389 Point 389 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 393 Point 394 Point 394 Point 395 Point				
377 Point 378 Point 378 Point 379 Point 379 Point 380 Point 380 Point 381 Point 381 Point 382 Point 382 Point 383 Point 384 Point 384 Point 385 Point 385 Point 386 Point 386 Point 387 Point 387 Point 388 Point 388 Point 389 Point 389 Point 389 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 393 Point 394 Point 394 Point 396 Point 395 Point 397 Point				
378 Point 379 Point 379 Point 379 Point 380 Point 381 Point 381 Point 381 Point 382 Point 382 Point 382 Point 383 Point 383 Point 384 Point 384 Point 385 Point 385 Point 386 Point 386 Point 387 Point 387 Point 387 Point 388 Point 388 Point 389 Point 389 Point 389 Point 389 Point 390 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 392 Point 393 Point 394 Point 395 Point 396 Point 397 Point 397 Point 397 Point 398 Point 399 Point 400 Point 400 Point 401 Point 401 Point 401 Point 402 Point 402 Point 403 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 409 Point 410 Point 411 Po				
379 Point 379 Point 380 Point 381 Point 381 Point 381 Point 382 Point 382 Point 383 Point 383 Point 384 Point 384 Point 385 Point 385 Point 385 Point 386 Point 386 Point 387 Point 387 Point 388 Point 388 Point 388 Point 389 Point 389 Point 389 Point 390 Point 390 Point 391 Point 391 Point 391 Point 392 Point 392 Point 393 Point 394 Point 394 Point 395 Point 396 Point 397 Point 397 Point 397 Point 397 Point 398 Point 399 Point 400 Point 400 Point 401 Point 401 Point 401 Point 402 Point 403 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 410 Point 411 Point 411 Point 411 Point 411 Point 411 Point 411 Point 412 Point 412 Point 412 Point 412 Point	377	Point	377	Point
380 Point 381 Point 381 Point 382 Point 382 Point 383 Point 384 Point 384 Point 385 Point 385 Point 386 Point 386 Point 387 Point 387 Point 388 Point 389 Point 389 Point 389 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 393 Point 394 Point 394 Point 395 Point 395 Point 396 Point 396 Point 397 Point 397 Point 398 Point 398 Point 399 Point 399 Point 400 Point 400 Point 401 Point	378	Point		
381 Point 381 Point 382 Point 382 Point 383 Point 383 Point 384 Point 384 Point 385 Point 385 Point 386 Point 386 Point 387 Point 387 Point 388 Point 388 Point 389 Point 389 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 393 Point 394 Point 394 Point 395 Point 395 Point 396 Point 396 Point 397 Point 397 Point 398 Point 398 Point 399 Point 399 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 409 Point	379	Point	379	Point
382 Point 383 Point 384 Point 384 Point 385 Point 385 Point 386 Point 386 Point 387 Point 387 Point 388 Point 389 Point 389 Point 389 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 392 Point 394 Point 394 Point 395 Point 395 Point 396 Point 396 Point 397 Point 397 Point 398 Point 398 Point 400 Point 400 Point 401 Point 400 Point 402 Point 401 Point	380	Point	380	Point
383 Point 384 Point 385 Point 385 Point 386 Point 386 Point 387 Point 387 Point 388 Point 388 Point 389 Point 389 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 393 Point 394 Point 394 Point 395 Point 395 Point 396 Point 396 Point 397 Point 397 Point 398 Point 398 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point	381	Point	381	Point
384 Point 385 Point 386 Point 386 Point 387 Point 387 Point 388 Point 389 Point 389 Point 389 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 393 Point 394 Point 394 Point 395 Point 395 Point 396 Point 396 Point 397 Point 397 Point 398 Point 398 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point	382	Point	382	Point
385 Point 386 Point 387 Point 387 Point 388 Point 388 Point 389 Point 389 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 394 Point 394 Point 394 Point 395 Point 395 Point 396 Point 396 Point 397 Point 397 Point 398 Point 398 Point 400 Point 400 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 406 Point 406 Point	383	Point	383	Point
386 Point 387 Point 387 Point 388 Point 389 Point 389 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 393 Point 394 Point 394 Point 395 Point 395 Point 397 Point 397 Point 398 Point 398 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 405 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point	384	Point	384	Point
387 Point 388 Point 388 Point 388 Point 389 Point 389 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 393 Point 394 Point 394 Point 395 Point 395 Point 396 Point 396 Point 397 Point 397 Point 398 Point 398 Point 399 Point 399 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 406 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 409 Point 409 Point 401 Point 401 Point 402 Point 402 Point	385	Point	385	Point
388 Point 388 Point 389 Point 389 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 393 Point 394 Point 394 Point 395 Point 395 Point 396 Point 396 Point 397 Point 397 Point 398 Point 398 Point 399 Point 399 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 406 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	386	Point	386	Point
389 Point 389 Point 390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 393 Point 394 Point 394 Point 395 Point 395 Point 396 Point 396 Point 397 Point 397 Point 398 Point 398 Point 399 Point 399 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	387	Point	387	Point
390 Point 390 Point 391 Point 391 Point 392 Point 392 Point 393 Point 393 Point 394 Point 394 Point 395 Point 395 Point 396 Point 396 Point 397 Point 397 Point 398 Point 398 Point 399 Point 399 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 406 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	388	Point	388	Point
391 Point 391 Point 392 Point 392 Point 393 Point 393 Point 394 Point 394 Point 395 Point 395 Point 396 Point 396 Point 397 Point 397 Point 398 Point 398 Point 399 Point 399 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	389	Point	389	Point
392 Point 392 Point 393 Point 393 Point 394 Point 394 Point 395 Point 395 Point 396 Point 396 Point 397 Point 397 Point 398 Point 398 Point 400 Point 400 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 404 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point	390	Point	390	Point
393 Point 393 Point 394 Point 394 Point 395 Point 395 Point 396 Point 396 Point 397 Point 397 Point 398 Point 398 Point 400 Point 400 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 409 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	391	Point	391	Point
394 Point 394 Point 395 Point 395 Point 396 Point 397 Point 397 Point 398 Point 399 Point 399 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	392	Point	392	Point
395 Point 395 Point 396 Point 396 Point 397 Point 397 Point 398 Point 399 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	393	Point	393	Point
396 Point 396 Point 397 Point 397 Point 398 Point 398 Point 399 Point 399 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	394	Point	394	Point
397 Point 397 Point 398 Point 398 Point 399 Point 399 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	395	Point	395	Point
398 Point 398 Point 399 Point 399 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	396	Point	396	Point
399 Point 399 Point 400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	397	Point	397	Point
400 Point 400 Point 401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	398	Point	398	Point
401 Point 401 Point 402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	399	Point	399	Point
402 Point 402 Point 403 Point 403 Point 404 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	400	Point	400	Point
403 Point 403 Point 404 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	401	Point	401	Point
404 Point 404 Point 405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	402	Point	402	Point
405 Point 405 Point 406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	403	Point	403	Point
406 Point 406 Point 407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	404	Point	404	Point
407 Point 407 Point 408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	405	Point	405	Point
408 Point 408 Point 409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	406	Point	406	Point
409 Point 409 Point 410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	407	Point	407	Point
410 Point 410 Point 411 Point 411 Point 412 Point 412 Point	408	Point	408	Point
411 Point 411 Point 412 Point 412 Point	409	Point	409	Point
412 Point 412 Point	410	Point	410	Point
	411	Point	411	Point
413 Point 413 Point	412	Point	412	Point
120 1.0	413	Point	413	Point
414 Point 414 Point	414	Point	414	Point
415 Point 415 Point	415	Point	415	Point
416 Point 416 Point	416	Point	416	Point
417 Point 417 Point	417	Point	417	Point
418 Point 418 Point	418	Point	418	Point
419 Point 419 Point	419	Point	419	Point

	Point		Point
	Point		Point
422	Point		Point
423	Point	423	Point
424	Point	424	Point
425	Point	425	Point
426	Point	426	Point
427	Point	427	Point
428	Point	428	Point
429	Point	429	Point
430	Point	430	Point
431	Point	431	Point
432	Point	432	Point
433	Point	433	Point
434	Point	434	Point
435	Point	435	Point
436	Point	436	Point
437	Point	437	Point
438	Point	438	Point
439	Point	439	Point
440	Point	440	Point
441	Point	441	Point
442	Point	442	Point
443	Point	443	Point
444	Point	444	Point
445	Point	445	Point
446	Point	446	Point
447	Point	447	Point
448	Point	448	Point
449	Point	449	Point
450	Point	450	Point
	Point	451	Point
452	Point	452	Point
	Point		Point
	Point	454	Point
455	Point	455	Point
	Point		Point
461	Point		Point
	Point		Point
+00	. 31110	+00	. 31110

467	Point	467	Point
468	Point	468	Point
469	Point	469	Point
470	Point	470	Point
471	Point	471	Point
472	Point	472	Point
473	Point	473	Point
474	Point	474	Point
475	Point	475	Point
476	Point	476	Point
477	Point	477	Point
478	Point	478	Point
479	Point	479	Point
480	Point	480	Point
481	Point	481	Point
482	Point	482	Point
483	Point	483	Point
484	Point	484	Point
485	Point	485	Point
486	Point	486	Point
487	Point	487	Point
488	Point	488	Point
489	Point	489	Point
490	Point	490	Point
491	Point	491	Point
492	Point		Point
493	Point	493	Point
494	Point	494	Point
495	Point	495	Point
496	Point	496	Point
497	Point	497	Point

NOMBRE	VEREDA
CAÑON FORERO JOSE RUBEN	LAJITA
ASOC SUSCRIPTORES DEL ACUEDUCTO DE LA VDA ARBOLED	ARBOLEDAS
LAITON CASTELLANOS JOSE URIEL Y OTRO	MERCHAN
CASTELLANOS CASTELLANOS JOSE LEONARDO	MERCHAN
CASTELLANOS CLAUDIA CRISTINA Y OTRO	LAJITA
SUAREZ RONCANCIO CLARA MARIA Y OTRO	LAJITA
PAEZ PAEZ JESUS FLORIBERTO Y OTRO	LAJITA
AVILA SAZA LUIS ENRIQUE	RESGUARDO
TORRES LUIS ADOLFO Y OTRO	MERCHAN
CASTELLANOS POVEDA BERNARDO	LAJITA
VARGAS MARTINEZ NUBIA ESPERANZA Y OTROS	CORDOBA
ROJAS RODRIGUEZ ELSA MARIA	MOYAVITA
SANCHEZ VILLAMIL JOSE HELI	MERCHAN
CELIS DURAN JOSUE DE JESUS	MOYAVITA
RODRIGUEZ ZAMBRANO ALVARO Y OTRO	MOYAVITA
PAEZ GONZALEZ ANTONIO GERMAN	MERCHAN
LAITON PAEZ SEGUNDO TOMAS	MERCHAN
GONZALEZ GONZALEZ PEDRO MIGUEL	MERCHAN
RODRIGUEZ SANCHEZ MARCO ANTONIO	MERCHAN
CASTELLANOS CASTELLANOS FREDY ALEXANDER	MERCHAN
GONZALEZ DE GONZALEZ DORA ALICIA	MOYAVITA
ABRIL DE JIMENEZ EMELINA	VINCULO
ABRIL JOSE DEL CARMEN	NCULO LLANO GRANI
ABRIL MARIA DEL CARMEN	VINCULO
ALARCON MATEUS DIANA CAROLINA	LA LAJITA
MUNICIPIO DE SAN MIGUEL DE SEMA	CHARCO
MUNICIPIO DE SAN MIGUEL DE SEMA	SABANECA
MUNICIPIO DE SAN MIGUEL DE SEMA	ARBOLEDAS
ALFONSO RODRIGUEZ JOSE ISMAEL	PUENTE DE TIERRA
LOPEZ LOPEZ BERTA CECILIA	PUENTE DE TIERRA
LUGO OSORIO PEDRO JOSE Y OTRO	MOYAVITA
MORALES CASTILLO GERMAN	PUENTE DE TIERRA
MOYA RUEDA CLARA ELIZABETH Y OTROS	HATO VIEJO
MURCIA ABRIL JULIO HOMERO	MOYAVITA
MURCIA PINILLA BLANCA CECILIA	SASA
NIÑO DE PUENTES MARIA DEL CARMEN Y OTROS	ALTO SAN DIMAS
NIÑO SANCHEZ GLORIA ISABEL	MERCHAN
OBANDO LOPEZ ISMAEL	LA LAJITA
ORTEGON DE ORTEGON MARIA ROSA Y OTRO	VDA MOYABITA
ORTEGON ORTEGON GLORIA YASMITH	MOYABITA
ORTEGON SALINAS JOVANNY ALEXANDER	SABANECA
PAEZ CASAS CAMPO ELIAS	MOYABITA
PAEZ ORTEGON SANTIAGO	SASA
PAEZ DE SANCHEZ MARIA VICENTA	ARBOLEDAS

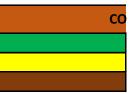
PARRA LUIS ANTONIO	QUICHE
PEDRAZA DE GONZALEZ MARIA BERTILDE	VDA MOYAVITA
PENEDA PARRA MARIA HELENA Y OTROS	SABANECA
PEÑA BONILLA GUSTAVO	VINCULO
PEÑA GUERRERO LUIS ALFREDO	MOLINO
PERALTA CASTILLO MARIA IMELDA Y OTROS	HATO VIEJO
PINEDA DE RODRIGUEZ CELINA	VDA HATO VIEJO
PINEDA ROJAS BERNARDO	VINCULO
PINEDA LUIS EMIRO Y OTROS	RESGUARDO
PINILLA ORTEGON LUIS ARMANDO	SASA
PINILLA LUIS HERNANDO Y OTRO	SASA
POVEDA RODRIGUEZ JUAN MANUEL	LA LAJITA
RAMOS MARTINEZ LUZ DARY	MOLINO
RODRIGUEZ CASTELLANOS CRISTOBAL	VELANDIA
RODRIGUEZ CORTES LUIS ANGELMIRO	VDA RESGUARDO
RODRIGUEZ DE POVEDA AURA STELLA Y OTROS	MONTE DE LUZ
ROJAS HERNANDEZ LUZ MARINA	MERCHAN
ROJAS RONCANCIO VICTOR LENIN Y OTRO	ESCOBAL
ROMERO HERNANDEZ NOE IGNASIO	VDA MERCHAN
ROMERO MARIA BENITA	VINCULO
ROZO ROMERO SEGUNDO ALFONSO	VINCULO
RUGE ROJAS MARIA STELA	MERCHAN
RUGE CASTELLANOS YENNY MARBELY	MERCHAN
SALINAS DE DUARTE JOSEFINA	QUICHE
SANABRIA MARTINEZ LUIS FERNANDO	VDA TIBISTA
SANCHEZ BERNAL MARIA IMELDA	DA PUENTE DE TIERR
SANCHEZ BURGOS GLORIA MARIELA	SASA
SANCHEZ DE ROMERO GLORIA MARIA	VINCULO
RONCANCIO VDA DE TORRES HERCILIA	VINCULO
SANCHEZ LAITON RODRIGO Y OTROS	TIBISTA
SIERRA SANCHEZ MARIA CECILIA Y OTROS	VDA SABANETA
SANCHEZ HIPOLITO Y OTRO	SASA
SANCHEZ DE VILLAMIL GLORIA ANGEL	VINCULO
SANTAMARIA DE MURILLO ANA CELIA	RESGUARDO
SANTOS CUBILLOS JORGE ENRIQUE Y OTRO	VDA RESGUARDO
SEAREZ LEON JOSE ALIRIO	VDA MOYAVITA
SERRATO DE GONZALEZ RITA EMMA	VDA LAJITA
SOTELO JOSE EUSTERIO	VDA ARBOLEDAS
SOTELO CAÑON GILDARDO	VDA MOYAVITA
SOTELO CASTELLANOS JORGE MIGUEL	VELANDIA
VILLAMIL SOTELO LEONOR	RESGUARDO BAJO
ACOSTA PAEZ LUIS ALONSO	SASA
ASOCIACION DE SUSCRIPTORES DEL ACUEDUCTO DE LA VDA QUICH	·
ASOCIACION DE SUSCRIPTORES DEL ACUEDUCTO VDA MONTE DE L	MONTE DE LUZ
LEON RAMIREZ LUZ MARLENY Y OTROS	RESGUARDO
ORTEGON CASTILLO VICTOR RAUL Y OTRO	VINCULO
PAEZ GONZALEZ NIDIA ESPERANZA	SASA

PASTRAN DE LAITON FLOR MARINA DEL CARMEN Y OTROS	TIBISTA
RODRIGUEZ JOSE ADELMO	VINCULO
ROJAS CORTES AUDELIO	ESCOBAL
SUAREZ AVILA NELDA INES	MOYAVITA
VILLAMIL VILLAMIL ROSA HELENA	LA LAJITA
ACOSTA ORTEGON HECTOR MANUEL Y OTRO	SASA
HERNADEZ HERNANDEZ JOSE DOLORES	VINCULO
FORERO DE CASTILLO ROSALBA	ARBOLEDAS
MARTINEZ CASTILLO ANA ELIZABETH Y OTROS	RESGUARDO
CAÑON FORERO JOSE RUBEN	LAJITA
PACHECO MIRANDA AMAURY	RESGUARDO
TOVAR GARCIA LUZ NELLY Y OTROS	RESGUARDO
ROZO POVEDA GERARDO ANTONIO	MERCHAN
LUGO OSORIO PEDRO JOSE Y OTRO	MOYAVITA
ROJAS COCA ALEJANDRO	SASA
ORTIZ DE BERNAL CARMEN	LAJITA
LAITON LAITON ELEACER DE JESUS	TIBISTA
TORRES ALFONSO Y OTRO	MOYAVITA
VILLAMIL SANCHEZ MARIA DEL SOCORRO Y OTRO	CARAPACHO
BERNAL ORTIZ MARIA YANIRA	LAJITA
ASOC DE USUARIOS ACUEDUCTO DE ESCOBAL Y RESGUARDO	ESCOBAL
AVILA FAJARDO MARIA CECILIA Y OTRO	RESGUARDO
RODRIGUEZ VARGAS JORGE EDILBERTO	PUENTE DE TIERRA
ASOC SUSCRIOTORES ACUEDUCTO EL HURACAN	MERCHAN
SALINAS LOPEZ EINAR EULOGIO	MOLINO
ASOCIACION SUSCRIPTORES DEL ACUEDUCTO Y ALCANTARILLADO I	
	MATA DE MORA
ROJAS BURGOS PABLO EMILIO	SASA
TORRES ALFONSO	SASA MOYAVITA
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA	SASA MOYAVITA SASA
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS	SASA MOYAVITA
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS ORTIZ LANCHEROS DIANA MARCELA	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO PUENTE DE TIERRA
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS ORTIZ LANCHEROS DIANA MARCELA PEÑA BURGOS CARMEN ROSA	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO PUENTE DE TIERRA CARAPACHO
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS ORTIZ LANCHEROS DIANA MARCELA PEÑA BURGOS CARMEN ROSA PEÑA AVILA LUIS FELIPE YOTRO	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO PUENTE DE TIERRA CARAPACHO VINCULO
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS ORTIZ LANCHEROS DIANA MARCELA PEÑA BURGOS CARMEN ROSA PEÑA AVILA LUIS FELIPE YOTRO PIÑARETE DE ROZO ANA TULIA	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO PUENTE DE TIERRA CARAPACHO VINCULO LAJITA
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS ORTIZ LANCHEROS DIANA MARCELA PEÑA BURGOS CARMEN ROSA PEÑA AVILA LUIS FELIPE YOTRO PIÑARETE DE ROZO ANA TULIA ROJAS ROZO MARIA ANA ROSA	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO PUENTE DE TIERRA CARAPACHO VINCULO LAJITA MERCHAN
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS ORTIZ LANCHEROS DIANA MARCELA PEÑA BURGOS CARMEN ROSA PEÑA AVILA LUIS FELIPE YOTRO PIÑARETE DE ROZO ANA TULIA ROJAS ROZO MARIA ANA ROSA CASTELLANOS CASTELLANOS PABLO EMILIO Y OTRO	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO PUENTE DE TIERRA CARAPACHO VINCULO LAJITA MERCHAN MOYAVITA
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS ORTIZ LANCHEROS DIANA MARCELA PEÑA BURGOS CARMEN ROSA PEÑA AVILA LUIS FELIPE YOTRO PIÑARETE DE ROZO ANA TULIA ROJAS ROZO MARIA ANA ROSA CASTELLANOS CASTELLANOS PABLO EMILIO Y OTRO COBOS MORALES SIERVO JOSE	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO PUENTE DE TIERRA CARAPACHO VINCULO LAJITA MERCHAN MOYAVITA RESGUARDO
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS ORTIZ LANCHEROS DIANA MARCELA PEÑA BURGOS CARMEN ROSA PEÑA AVILA LUIS FELIPE YOTRO PIÑARETE DE ROZO ANA TULIA ROJAS ROZO MARIA ANA ROSA CASTELLANOS CASTELLANOS PABLO EMILIO Y OTRO COBOS MORALES SIERVO JOSE ROJAS ROZO MARIA ANA ROSA	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO PUENTE DE TIERRA CARAPACHO VINCULO LAJITA MERCHAN MOYAVITA RESGUARDO MERCHAN
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS ORTIZ LANCHEROS DIANA MARCELA PEÑA BURGOS CARMEN ROSA PEÑA AVILA LUIS FELIPE YOTRO PIÑARETE DE ROZO ANA TULIA ROJAS ROZO MARIA ANA ROSA CASTELLANOS CASTELLANOS PABLO EMILIO Y OTRO COBOS MORALES SIERVO JOSE ROJAS ROZO MARIA ANA ROSA ROJAS ROZO TERESA DE JESUS	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO PUENTE DE TIERRA CARAPACHO VINCULO LAJITA MERCHAN MOYAVITA RESGUARDO MERCHAN MERCHAN MERCHAN
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS ORTIZ LANCHEROS DIANA MARCELA PEÑA BURGOS CARMEN ROSA PEÑA AVILA LUIS FELIPE YOTRO PIÑARETE DE ROZO ANA TULIA ROJAS ROZO MARIA ANA ROSA CASTELLANOS CASTELLANOS PABLO EMILIO Y OTRO COBOS MORALES SIERVO JOSE ROJAS ROZO MARIA ANA ROSA ROJAS ROZO TERESA DE JESUS ROJAS DE VILLAMIL MARIA ADELA	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO PUENTE DE TIERRA CARAPACHO VINCULO LAJITA MERCHAN MOYAVITA RESGUARDO MERCHAN MERCHAN MERCHAN MERCHAN MERCHAN
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS ORTIZ LANCHEROS DIANA MARCELA PEÑA BURGOS CARMEN ROSA PEÑA AVILA LUIS FELIPE YOTRO PIÑARETE DE ROZO ANA TULIA ROJAS ROZO MARIA ANA ROSA CASTELLANOS CASTELLANOS PABLO EMILIO Y OTRO COBOS MORALES SIERVO JOSE ROJAS ROZO MARIA ANA ROSA ROJAS ROZO TERESA DE JESUS ROJAS DE VILLAMIL MARIA ADELA ROJAS ROZO GERMAN JOSE	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO PUENTE DE TIERRA CARAPACHO VINCULO LAJITA MERCHAN MOYAVITA RESGUARDO MERCHAN MERCHAN MERCHAN MERCHAN MERCHAN
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS ORTIZ LANCHEROS DIANA MARCELA PEÑA BURGOS CARMEN ROSA PEÑA AVILA LUIS FELIPE YOTRO PIÑARETE DE ROZO ANA TULIA ROJAS ROZO MARIA ANA ROSA CASTELLANOS CASTELLANOS PABLO EMILIO Y OTRO COBOS MORALES SIERVO JOSE ROJAS ROZO MARIA ANA ROSA ROJAS ROZO TERESA DE JESUS ROJAS DE VILLAMIL MARIA ADELA ROJAS ROZO GERMAN JOSE ASOCOIACION DE SUSCRIPTORES DEL PROACUEDUCTO SECTOR CAP	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO PUENTE DE TIERRA CARAPACHO VINCULO LAJITA MERCHAN MOYAVITA RESGUARDO MERCHAN MERCHAN MERCHAN MERCHAN MERCHAN MERCHAN MERCHAN TIBISTA
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS ORTIZ LANCHEROS DIANA MARCELA PEÑA BURGOS CARMEN ROSA PEÑA AVILA LUIS FELIPE YOTRO PIÑARETE DE ROZO ANA TULIA ROJAS ROZO MARIA ANA ROSA CASTELLANOS CASTELLANOS PABLO EMILIO Y OTRO COBOS MORALES SIERVO JOSE ROJAS ROZO MARIA ANA ROSA ROJAS ROZO TERESA DE JESUS ROJAS ROZO TERESA DE JESUS ROJAS ROZO GERMAN JOSE ASOCOIACION DE SUSCRIPTORES DEL PROACUEDUCTO SECTOR CAR JIMENEZ PINILLA JOSE DELASCAR	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO PUENTE DE TIERRA CARAPACHO VINCULO LAJITA MERCHAN MOYAVITA RESGUARDO MERCHAN MERCHAN MERCHAN MERCHAN MERCHAN MERCHAN TIBISTA SASA
TORRES ALFONSO ROJAS JIMENEZ ESTER JULIA PINEDA MARTINEZ LEOVIGILDO Y OTROS VALERO RODRIGUEZ JUANA IMELDA DOMINGUEZ CORTES YOLY Y OTROS ORTIZ LANCHEROS DIANA MARCELA PEÑA BURGOS CARMEN ROSA PEÑA AVILA LUIS FELIPE YOTRO PIÑARETE DE ROZO ANA TULIA ROJAS ROZO MARIA ANA ROSA CASTELLANOS CASTELLANOS PABLO EMILIO Y OTRO COBOS MORALES SIERVO JOSE ROJAS ROZO MARIA ANA ROSA ROJAS ROZO TERESA DE JESUS ROJAS DE VILLAMIL MARIA ADELA ROJAS ROZO GERMAN JOSE ASOCOIACION DE SUSCRIPTORES DEL PROACUEDUCTO SECTOR CAP	SASA MOYAVITA SASA VINCULO PUENTE DE TIERRA RESGUARDO PUENTE DE TIERRA CARAPACHO VINCULO LAJITA MERCHAN MOYAVITA RESGUARDO MERCHAN MERCHAN MERCHAN MERCHAN MERCHAN MERCHAN MERCHAN TIBISTA

PINEDA FABIOLA DEL ROSARIO	PEÑA BLANCA
VEGA FORERO FLAVIO ARMANDO Y OTRO	PEÑA BLANCA
MENJURA CASTLLANOS ORLANDO CIVEL Y OTRO	MERCHAN
ROZO RUIZ MISAEL ANTONIO	LA LAJITA
TORRES JUAN ISIDRO	MERCHAN
AVENDAÑO DE TORRES RITA EMMA	MOYAVITA
GUERRERO DE GUERRERO MERY	RESGUARDO
JOSE AURELIO SANCHEZ HURTADO	MOLINO
RODRIGUEZ ROMERO LUIS ARMANDO Y OTRO	RESGUARDO
MARCOS IVAN GIL VALBUENA	MOYAVITA
CASAS DIAZ ANA FLORINDA	CARAPACHO
LEON SANCHEZ LUIS GREGORIO	SASA
PADILLA ALVARADO JORGE ISIDRO	ESCOBAL
ABRIL COY JAIRO ENRIQUE	RESGUARDO
MARTINEZ LOZANO WILLIAM HERNANDO	RESGUARDO
BECERRA NEIRA CARLOS JULIO	MOLINO
CORTES DE PEÑA LILIA STELLA	MOLINO
ROJAS DE JIMENEZ BLANCA ADELIA	CARAPACHO
OMAIRA PAEZ GONZALEZ	MOYAVITA
JOSE IGNACIO COCA CASTILLO	SASA
RONCANCIO PAEZ VICTOR MANUELY OTRO	CARAPACHO
BURGOS ORTEGON JOSE HUMBERTO	SASA
MARIELA TERESA PADILLA ALVARADO	ESCOBAL
GLORIA NILCE PINILLA SANCHEZ	SASA
JAC PIRE JUNTA DE AACION COMUNAL VRD EL PIRE	EL PIRE
SEGUNDO FELIPE SANCHEZ MARTINEZ	CULO SECTOR ANTON
J A C TIBISTA	VRD TIBIATA
MARIA DEL ROSARIO VELA	VRD PEÑA BLANCA
MUNICIPIO DE SABOYA (Acueducto urbano)	MATA DE MORA SAB
ANA ELVIA PERALTA DE DIAZ	VRD SASA
SERGIO ANIBAL CASTELLANOS MENJURA	VRD SASA
ACUEDUCTO EL CHARCO	VRD EL CHARCO
MARIA DIOSELINA CELIS	MOYABITA
LUIS EDUARDO ROJAS POVEDA	MERCHAN
LELIO CASTRO FAJARDO	PTE DE TIERRA
FLOR MARINA VELANDIA RONCANCIO	VRD VINCULO
MARIA VIRGELINA GIL DE MENDIETA	VRD HATO VIEJO
ASOCIACION ACUEDUCTO CAMPOALEGRE	VRD MOLINO
MARIA ODALINDA TORRES	SABANECA MERCHAN
ALVARO VILLAMIL PIÑARETE	LAJITAS
JOSE AGUSTIN GOMEZ MORA	RESGUARDO ORIENTE
RITA JULIA CASTELLANOS DE ROJAS	EL VINCULO
LUIS ENRIQUE CASAS	EL VINCULO
MARIA MARGARITA HUERTAS GALINDO	SASA
LUZ NELIDA VARGAS REYES	PTE DE TIERRA
JULIO VICENTE CAÑON	SABANECA
JOLIO VICEIVIE CAINOIV	JADANECA

HUMBERTO SANCHEZ SANCHEZ	VRD HATO VIEJO
JOSE DEL CARMEN DOMINGUEZ AVENDAÑO	RESGUARDO ORIENTE
ALCIDES FORERO PINEDA	HATO VIEJO
EDUARDO RODRIGUEZ SOTELO	VELANDIA
EDUARDO RODRIGUEZ SOTELO	VELANDIA
MARTIN DIAZ JIMENEZ	SASA
ASOCIACION PROACUEDUCTO CARRIZAL	RESGUARDO
ACUEDUCTO LA ESPERANZA	SABANECA
LUIS TIRSO GARCIA BONILLA	BALSA
ACUEDUCTO LA CAPILLA	MOYABITA
EUCLIDES CASTILLO	SASA
J A C VEREDA SANTA RITA	VINCULO
ERNESTINA DE LAS MERCEDES CASTILLANOS DE B	ESCOBAL
BALTAZAR CORTES VALERO	ESCOBAL
MARIA HILDA CASTILLO BURGOS	SASA
MARDOQUEO PEÑA BONILLA	VINCULO
ISMENIA RODRIGUEZ	ESCOBAL
RAQUEL JIMENEZ PINEDA	CARAPACHO
CRISTOBAL CARDENAS VELANDIA	EL CHARCO
LUIS ALFREDO CASTRO MORENO	VRD CHARCO
ASOCIACION DE SUSCRIPTORES DEL ACUDUCTO DE LAS VEGAS MO	NO,CASA BLANCA LA
JOSE ELISEO PEÑA PINEDA	TIBISTA
LUIS ANTONIO VELANDIA PACANCHIQUE	PTE TIERRA
JORGE ENRIQUE HERNANDEZ	EL CHARCO
CRICELIO HERNAN FORERO TORRES Y OTRA	MOLINO
LUIS FRANCISCO DOMINGUZ PEÑA	ESCOBAL
ANGEL MARIA CAÑON JIMENEZ	CARAPACHO
MARIA AMPARO SUAREZ	VELANDIA
MARIA GRACIELA JIMENEZ DE TORRES	LAJITAS
ASO USUARIOS PROACUEDUCTO LOS CERROS	CARAPACHO ALTO
ANA EVARISTA GUERRERO GUERRERO	TIBISTA
MARIA ISMENIA BURGOS Vda DE SIERRA	SASA
JORGE ANTONIO JIMENEZ RONCANCIO	ESCOBAL
RITO ALEJO VELASQUEZ PAEZ	MOYABITA
JOSE DEL CARMEN JIMENEZ	ESCOBAL
MARIA DEL TRANSITO BURGOS DE BURGOS	LAJITA
ASOCIACION DE SUSCRIPTORES DEL ACUEDUCTO LAS FLORES	PTE TIERRA
JOSE DE JESUS HERNANDEZ	HATO VIEJO
PEDRO PABLO CASTILLO CASTELLANOS	ESCOBAL
CLODOMIRO SUAREZ	VELANDIA
JAVIER IBANUMAÑA RAMIREZ	MOYABITA
ANGEL LUQUEIRO RODRIGUEZ	RESGAURDO
ANA ADELINA PERALTA CASTILLO	HATO VIEJO
UNION TEMPORAL CONCESION VIAL LOS COMUNEROS	LAJITA
ASOCIACION SAN JUDAS TADEO	MOYABITA
PROACUEDUCTO SECTOR PLACITAS	VINCULO
ASOCIACION DE SUSCRIPTORES ACUEDUCTO LA BALSA	BALSA

EDGAR HOMERO GONZALEZ GONZALEZ	SABANECA
ASOCIACION DE USUARIOS ACU MONTE LUZ	MONTE LUZ
LUZ STELLA CASTELLANOS PORRAS	LAJITA
JORGE ABEL GONZALEZ ORTIZ	LA LAJITA
SEGUNDO GONZALEZ	MOLINO
ASOCIACION DE SUBCRISTORES ACUEDUCTO VINCULO	VINCULO
ANGELITA VELANDIA DE PEÑA	VINCULO
BLANCA INES PEÑA GALINDO	RD PUENTE DE TIERR
JAQUELINE AVILA FORERO	VELANDIA
JULIA EDITH VELOZA Y OTRO	PTE DE TIERRA
SILVIA DEL ESPIRITU SANTO VEGA FORERO	HATO VIEJO
ASO ACU LA CABAÑA	PTE DE TIERRA
CELIO ANGEL AVILA RODRIGUEZ	ESCOBAL
BLANCA NELLY ZAPATA REYES	HATO VIEJO
VICTORIA PINZON	EL CHARCO
LUZ MARINA CASTELLANOS LAITON Y OTROS	MERCHAN
DANY EDILBERTO CASTELLANOS RUGE	MERCHAN
ASOCIACION DE USUARIOS DEL ACU DE LA VRD PTE DE TIERRA SEC	PTE DE TIERRA
SEGUNDO EMILIO AVILA SOTELO	RESGAURDO
TERESA DE JESUS TORRES DE BELTRAN	LAJITA
ACUEDUCTO PARA RIEGO EL MALVISCO	PTE DE TIERRA
FLOR ALBA GARCIA CASTIBLANCO	ESCOBAL
DEMETRIO VENEGAS	MOYABITA
LUIS EDUARDO CHACON MATALLANA	QUICHE
IRENE ROJAS ZAMBRANO	MERCHAN
JOSE DEL CARMEN DOMINGUEZ AVENDAÑO	ESCOBAL
ASOCIACION DE SUSCRIPTORES DE ACUEDUCTO Y ALCANTAR	PTE DE TIERRA
ACUEDUCTO EL REGAZO	MOLINO
GERARDO COY	ESCOBAL
ACUEDUCTO LA PLAYA SECTOR SAN ISIDRO	PTE DE TIERRA
JOSE ALEJANDRO SANTA MARIA	ESCOBAL
LUIS ANTONIO JIMENEZ CAMARGO	ESCOBAL
MARIA CANDELARIA JIMENEZ CAMARGO	ESCOBAL
CELIO RAMON SANTAMARIA CAMARGO	ESCOBAL
EDIER JESUS SANTAMARIA	LA LAJITA
GLADYS ELENA URREGO DE CORTES	MOYABITA
PEDRO ALFONSO TORRES	MERCHAN
VENACIO AVILA	PEÑA BLANCA
ACUEDUCTO LAS PALMAS	VELANDIA
ORLANDO CASTELLANOS S	VDA MONTE LUZ
GLORIA INES CORTES Y PABLO E JIMENEZ	VDA LA LAJITA
LUIS HERNANDO CORTES	VDA REPOLIANI
MARIA NIEVES HERNANDEZ DE CASTELLANOS	VDA MERCHAN
RUBEN DARIO CORTES GUERRERO	VDA SABANECA
MARIA CANDELARIA ROJAS	VDA PTE DE TIERRA
MARTHA CECILIA DURAN VILLAMIL	VDA MOYABITA
ALBA MARIELA PINILLA COCA	VDA MOYABITA


ROSA CECILIA BUITRAGO	VRD QUINTOQU
MRTHA CONSUELO CASTELLANOS	VDA MOYABITA
MARIA ALEJANDRA RIVERA CONZALEZ	VDA MOYABITA
JOSE ADRIAN RIVERA GONZALEZ	VDA MOYABITA
JORGE ARELY RIVERA GONZALEZ	VDA MOYABITA
ABEL PAEZ GONZALEZ	VDA MOYABITA
OSCAR FERNANDO GONZALEZ Y OTROS	VDA MOYABITA
EMPOCHIQUINQUIRA	VDA BALSA
ACUEDUCTO FUENTE DE ORO	VICULO
BELISARIO SIERRA S	VDA PEÑA BLANCA
JOSE RODRIGO CASTELLANOS RODRIGUEZ	<mark>VDA MATA DE MORA</mark>
ELBER ANDRES CORTES CASTELLANOS	VDA MOLINO
CLAUDINA CASTELLANOS VARGAS	MOYABITA
CARLOS ARTURO CASTELLANOS BURGOS	VDA SASA
CUSTODIA LAYTON DE NUÑEZ	VRD PTE DE TIERRA
ELBA TERESA GONZALEZ	VDA TIBISTA
DORA OFELIA PINEDA MAYUZA	VDA PTE DE TIERRA
MIGUEL COCA JIMENEZ	VDA SASA
NOHEMA DE JESUS PEÑA DE GONZALEZ Y OTROS	VDA TIBISTA
CRISTOBAL FORERO TOLOSA	VDA MOYABITA
ANGEL MARIA CAÑON JIMENEZ	VDA CARAPACHO
PEDRO PABLO JIMENEZ PERALTA	VDA SASA
SANDRA MILENA TORRES GONZALEZ	VDA MOYABITA
JESUS ALBERTO AVILA	VDA CARAPACHO
LUCILA DE SOLANO	VDA CORDOBA
ORFILIA CANDELA DE AVILA	VDA CARAPACHO
ASOC USUARIOS ACUEDUCTO CORDOBA ALTO	VDA CORDOBA
GLORIA MARCELA RIVERA ACOSTA	VDA CARAPACHO
LUIS HERNANDO PEDRAZA URIBE	VDA CARAPACHO
NVERSIONES INMOBILIARIAS Y AGRICOLAS LTD INMOAGRI	VDA CARAPACHO
INVERSIONES CASTELLANOS VILLAMIL	VDA CARAPACHO
HERNANDO RUGE HERNANDEZ	VICULO
TRINO DE JESUS RUGE NIÑO	VDA MERCHAN
JUAN ESTEBAN ORTEGON	VDA SASA
JUAN ESTEBAN ORTEGON	VDA MOYABITA
JUAN AGUSTIN ORTEGON CASTELLANOS	VDA SASA
LELIO CASTRO FAJARDO	VDA PTE DE TIERRA
SILVINO CASAS TORRES	VDA MOYABITA
DORA ALICIA GONZALEZ DE GONZALEZ	VDA MERCHAN
LUZ INES CASTELLANOS RODRIGUEZ	VDA LA LAJITA
LUZ AMPARO BURGOS CASTILLO	VDA MERCHAN
PEDRO LEONEL GONZALEZ	VDA MOYABITA
OMAR RAFAEL GONZALEZ	VDA MOYABITA
OMAR RAFAEL GONZALEZ	VDA MOYABITA
LOURDES EMILCE COCA	VDA MOYABITA
JAVIER ALBERTO VILLATE FONSECA	VDA PTE DE TIERRA
JULIO CESAR ANTONIO CUBILLOS	VDA HATO VIEJO

PARROQUIA SAN VICENTE FERRER	VDA MERCHAN
JAIME DE JESUS SUAREZ PEÑA	LAJITA
MARTHA CECILIA DURAN VILLAMIL	VDA MOYABITA
HILDA MERY ROJAS DE ROZO	VDA MERCHAN
ANGELICO ROZO RUGE	VDA MERCHAN
JESUS ORLANDO GUERRERO SANCHEZ	VDA TIBISTA
JOSE VICENTE ROZO BURGOS	VDA LAJITA
MARIA ANITA ROJAS ROZO	VDA MERCHAN
MENJURA DE CASTELLANOS ANA HERMINIA	MOYAVITA
RONCACIO ROZO BASILIO	ESCOBAL
JESSICA DAJANA GONZALEZ PIÑARETE	RESGUARDO
ASOCIACION DE USUARIOS DEL ACUEDUCTO VRD MOLINO	MOLINO
POVEDA PINEDA JOSE ABRAHAM Y OTRO	MOYAVITA
FIGUEROA CIFUENTES EDUARDO LEON Y OTROS	ARBOLEDAS
BRAVO GILMA ELVIA Y OTRO	RESGUARDO
RODRÍGUEZ SÁNCHEZ MÁXIMO	CARAPACHO
CORTES SOTELO HUMBERTO	RESGUARDO
CORTES GOMEZ MARIA DEL ROSARIO	LAJITA
GOMEZ DE PEÑA FLOR CELMIRA Y OTRO	TIBISTÁ
DOMINGUEZ PUENTES BEATRIZ Y OTROS	TIBISTÁ
MEJIA HERRERA LINA MARIA	MOLINO
GONZALEZ DE CELIS MARIA ELISA	MOYAVITA
CASTILLO SIERRA VICTOR LEONEL	SABANECA
ROJAS FAJARDO ELENA DE JESUS	RESGUARDO
LOZANO QUIROGA TERESA DE JESUS	LAJITA
ROJAS DE CASTELLANOS RITA JULIA	LAJITA
MURCIA ABRIL JULIO HOMERO	ESCOBAL
GONZALEZ ORTEGON LUZ ADRIANA	SASA
ORTEGON ORTEGON LUIS ARMANDO Y OTROS	SASA
JOTA VARGAS MARIA ISABEL	PUENTE DE TIERRA
GONZALEZ DE POVEDA GUILLERMINA Y OTROS	MOYAVITA
CUBIDES ZAMBRANO MARIA DEL CARMEN	RESGUARDO
RUGE ROJAS MARIA ESTELLA	MERCHAN
PALACIOS ANA MERIDA Y OTROS	RESGUARDO
HERRERA RICARDO UMAÑA	EL CHARCO
CASAS CASTILLO HERNANDO	PUENTE DE TIERRA
ZAMBRANO RODRIGUEZ ITALO IVAN	TIBISTÁ
PAEZ CASAS ONOFRE	VÍNCULO
POVEDA NIÑO DORA INES	PUENTE DE TIERRA
COBOS DE RODRIGUEZ CARMEN MATILDE	RESGUARDO
SUAREZ TERESA	SASA
JOTA VARGAS MARIA ISABEL	PUENTE DE TIERRA
PINILLA JAIRO ALONSO	SASA
AVILA DIAZ VICENTE	RESGUARDO
GONZALEZ OBANDO ORLANDO ANTONIO	SASA
RAMIREZ BUITRAGO LUIS ALONSO	MOLINO
SUAREZ RODRIGUEZ VICENTE EBERARDO	ESCOBAL

20/5244150411744144	DUENTE DE TIEDDA
POVEDA NIÑO LUZ MILA	PUENTE DE TIERRA
POVEDA NIÑO AQUILINO MARIA	PUENTE DE TIERRA
BUITRAGO CASTELLANOS ELSA SOFIA Y OTRO	PUENTE DE TIERRA
FORERO SUAREZ JOSE VICENTE	PUENTE DE TIERRA
SIERRA JIMENEZ MIRYAM ESPERANZA	SABANECA
SOTELO DE TORRES ROSALBA	MATA DE MORA
FORERO SUAREZ JOSE VICENTE	PUENTE DE TIERRA
RIVERA CAÑON MARIA ELSA	MOYAVITA
CASTELLANOS MERCHAN ANA BRICEIDA	MATA DE MORA
AVENDAÑO DE MENJURA GLORIA INES Y OTRO	MOYAVITA
BERNAL GERARDO	LAJITA
RUIZ TINJACA JOSE ANTONIO	SABANECA
RUGE JORGE ARTURO	PUENTE DE TIERRA
ALVARADO ARJONA PAOLA ANDREA	PUENTE DE TIERRA
CASTELLANOS CASTELLANOS LUZ MARIA	PUENTE DE TIERRA
TORRES RONCANCIO RUBEN	VÍNCULO
PINEDA RODRIGUEZ ELVIRA ESTHER Y OTRO	PUENTE DE TIERRA
ORTIZ ORTIZ MILINEIDEN	ESCOBAL
CASTRO PACHON LUIS ANTONIO	ESCOBAL
NAVAS DE SALINAS BERTA INES	CARAPACHO
JIMENEZ CAMARGO BLANCA EMITA	ESCOBAL
FORERO CUBIDES VICTOR ZENON Y OTROS	PUENTE DE TIERRA
AVILA ORTEGON MARIBEL Y OTRO	SASA
OLVAR ANTONIO SALINAS ARBOLEDA	SABANECA
POVEDA DE NIÑO CARMEN ELISA	PUENTE DE TIERRA
JIMENEZ CAMARGO LIBARDO	ESCOBAL
RODRIGUEZ SANCHEZ SILVIA LEONOR Y OTRO	SABANECA
RAMIREZ BUITRAGO EFRAIN	PUENTE DE TIERRA
AVILA DE ALARCÓN ENCARNACIÓN Y OTRO	RESGUARDO
VARGAS CELIO ALFONSO	SASA
RODRIGUEZ DE GUERRERO SARA JULIA Y OTRO	LAJITA
GONZALEZ GARZÓN EPIMENIO	VÍNCULO
NIÑO DE ROMERO LINA ROSA	PUENTE DE TIERRA
SIERRA SIERRA ROSA	HATO VIEJO
CASAS GARCIA AIDE Y OTRO	SASA
CASTELLANOS ROJAS LUIS HUMBERTO	LAJITA
CAÑON DE CORTES MARIA STELLA	ESCOBAL
CASTILLO MARTINEZ MARIA DE LOURDES	MOYAVITA
COCA JOSE NAPOLEON	CARAPACHO
VILLAMIL GONZALEZ CARMEN ESTELA	VÍNCULO
ALFONSO ALFONSO JOSE SOLIS	RESGUARDO
REYES NEIZA MANUEL RENEIRO	PUENTE DE TIERRA
RONCANCIO AVILA SILVIA NELLY	MOYAVITA
SOTELO MERCHAN TIMOLEON	PIRE
CASTELLANOS ROJAS GUSTAVO ANTONIO	LAJITA
CORTES DE MURCIA CARMELITA Y OTRO	ESCOBAL
PASTRANA SILVIA ADELINA	RESGUARDO
I ASTRAINA SILVIA ADELINA	NESGUANDO

CARO LANDEROS ROSA ELVIRA	SABANECA
JIMENEZ CAMARGO LUCRECIA	ESCOBAL
POVEDA NIÑO ANA BELSU	PUENTE DE TIERRA
ORTEGA CASTILLO ELVIA	SASA
AGUILERA SIERRA MARGARITA	PUENTE DE TIERRA
POVEDA NIÑO LUIS JOSE	PUENTE DE TIERRA
PEÑA PEÑARETE JOSE IVAN	SABANECA
ASOCIACION DE SUSCRIPTORES DEL PRO ACUEDUCTO EL TRIUNFO	VDA SASA
CASTILLO HERNANDEZ JOSE HOMERO	HATO VIEJO
JUNTA PROACUEDUCTO EL CHUSCAL	HATO DE SUSA
FRIGORIFICO CHIQUINQUIRA	LA BALSA
HUGO ARMANDO SOLANO GUECHA	CORDOBA
ASOC ACUEDUCTO CORDOBA BAJO	VRD CORDOBA
	REDA CORDOBA ABA
GLADYS LILIANA PEÑA BLANCO	SABANECA
J.A.C. TIBISTA	TIBISTÁ
ALCALDIA SAN MIGUEL DE SEMA	ARBOLEDAS
JOSÉ RUMALDO RODRÍGUEZ	QUINTOQUE
JOSÉ ALIRIO SUAREZ	MOYAVITA
GERMAN MORALES CASTILLO	PUENTE DE TIERRA
ASOCIACIÓN DE USUARIOS ACUEDUCTO PEÑA BLANCA	PEÑA BLANCA
HERNANDO ABRIL	VÍNCULO
JORGE ARTURO VAN -ARCKEN CORREDOR	MOYAVITA
CESAR GIRALDO SANCHEZ MOYA	HATO VIEJO
MARIA ROSANA CASTELLANOS DE HERNANDEZ	MOYAVITA
JOSÉ VICENTE PEÑA TORRES	ESCOBAL
YONH ALEXANDER MESA PINILLA	RESGUARDO
MANUEL IGNACIO GARCIA VARGAS	SASA
FREDY HUMBERTO PEÑA CORTES	MOLINO
JOSE DOMINGO SOTELO CASTILLO	MOYAVITA
LUIS HUMBERTO CASTELLANOS ROJAS	LAJITA
GLORIA MILAY GONZALEZ PACHON	LAJITA
JESUS ORLANDO GUERRERO SANCHEZ	TIBISTÁ
JOSE MIGUEL MENJURA PINEDA	CARAPACHO
LUCINIO CASTELLANOS PEÑA	TIBISTÁ
ALONSO CORTES CASTELLANOS	TIBISTÁ
ALONSO CORTES CASTELLANOS	TIBISTÁ
MARIA LUCILA CASTELLANOS PEÑA	TIBISTÁ
LUCINIO CASTELLANOS PEÑA	TIBISTÁ
FERMIN CASTELLANOS	TIBISTÁ
BLANCA EMMA PEÑA	TIBISTÁ
LUIS ALEJANDRO POVEDA	VÍNCULO
MARCO FIDEL SUAREZ	LAJITA
ROSA INES PEÑARETE DE COY	LAJITA
VIRGILIO TRIANA ROMERO	MOLINO
ANA FLORINDAARIAS DE VELOZA	LAJITA
PEDRO MARTIN LAYTON GONZALEZ	MERCHAN

ALCIBIADES GONZALEZ CASTILLO	MERCHAN
MABEL ALEXANDRA POVEDA PEÑA	ESCOBAL
JAIRO ALONSO PINILLA BURGOS	ARBOLEDAS
MARIA DEL ROSARIO CORTES GOMEZ	LAJITA
JOSE ISIDRO PEREZ	LAJITA
RUBY FABIOLA LOAIZA CORTES	QUICHE
DORA ENELSA CORTES CAÑON	RESGUARDO
ANA BERTILDE CASTELLANOS DE ROJAS	PUENTE DE TIERRA
MARCO AVELINO TORRES ORTIZ	RESGUARDO
MARIA DEL ROSARIO VILLAMIL DE ARIZA	RESGUARDO
LUIS GUILLERMO POVEDA PARRA	LAJITA
GERMAN HUMEBRTO MONSALVE ZAMBRANO	RESGUARDO
MARIA BALVINA ARIAS RODRIGUEZ	LAJITA
FENIX ORTEGON DE JIMENEZ	SASA
WILSON LEONARD HERNANDEZ RODRIGUEZ	VÍNCULO
NELLY YANETH PINEDA UMAÑA	SABANECA
AMPARO IBAÑEZ VILLAMIL	SABANECA
LUCRECIA JIMENEZ CAMARGO	ESCOBAL
MIGUEL COCA JIMENEZ	SASA
TERESA DEL CARMEN FERRER DE GONZALEZ	RESGUARDO
GUSTAVO SOTELO SOTELO	ESCOBAL
PABLO JIMENEZ	ESCOBAL
JOSE ARNULFO GONZALEZ	ESCOBAL
ISMAEL OBANDO LOPEZ	ESCOBAL
JOSE IGNACIO LAITON GONZALEZ	MOYAVITA
RAMON RICARDO ROZO	LAJITA
RAMON RICARDO ROZO	LAJITA
MERY STELLA PINEDA ARIAS	LAJITA
MARIA DE LOS DOLORES SUAREZ REYES	RESGUARDO
CARLOS EDUARDO FRANKLIN CRUZ	ARBOLEDAS
NANCY LUDOVINA PÁEZ PINILLA	BALSA

MUNICIPIO	EXPEDIENTE	COORD_X	X CORREGIDA	COORD_Y	Y CORREGIDA
SABOYA	42169	1034523	1035597	1126076	1126550
CHIQUINQUIRA	40329	1038238		1109474	
SABOYA	42095	1043141		1115403	
SABOYA	41594	1042734		1116270	
SABOYA	42091	1036553		1126125	
SABOYA	42094	1036613		1126098	
SABOYA	42096	1037084		1129303	
SABOYA	42474	1033515		1123040	
SABOYA	41858	1038197		1122289	
SABOYA	42093	1036310		1126241	
CHIQUINQUIRA	40818	1030140	1030340	1111714	1111502
CHIQUINQUIRA	41344	1041757		1113700	
SABOYA	41347	1042490	1042477	1121484	1121490
CHIQUINQUIRA	41511	1042409		1113509	
CHIQUINQUIRA	41524	1039196		1112285	
SABOYA	41597	1042658		1115971	
SABOYA	41598	1043042		1116210	
SABOYA	41608	1042033		1116204	
SABOYA	41610	1043391		1116087	
SABOYA	41611	1043240		1116126	
CHIQUINQUIRA	41699	1042464	1042338	1113710	1113655
SABOYA	32576	1037975		1116580.27	
SABOYA	31808	1038080		1116677	
SABOYA	29034	1036089		1116805	
SABOYA	26532	1037861	1037881	1129010	1128844
SAN MIGUEL DE SEMA	31566	1038429		1108218	
SAN MIGUEL DE SEMA	32310	1036728		1106165	
SAN MIGUEL DE SEMA	15734	1038993		1106568	
SABOYA	28660	1028277	1028259	1118250	1118267
SABOYA	37384	1029027		1118372	
CHIQUINQUIRA	32116	1040244	1040387	1111686	1111791
SABOYA	22192	1031903		1117380	
SAN MIGUEL DE SEMA	35558	1036350		1101400	
CHIQUINQUIRA	30843	1041219	1041136	1112590	1112417
CHIQUINQUIRA	24209	1037335	1037272	1114079	1112927
SABOYA	30344	1036214	1036282	1129498	1129932
SABOYA	35763	1037906		1120751	
SABOYA	37233	1035166	1035885	1126242	1126008
CHIQUINQUIRA	27436	1039949	1039782	1111386	1111118
CHIQUINQUIRA	36310	1039713		1111445	
SAN MIGUEL DE SEMA	29870	1036722	1036523	1106034	1106059
CHIQUINQUIRA	33317	1039732	1039558	1112245	1112336
CHIQUINQUIRA	32004	1039620	1039554	1114705	1114684
CHIQUINQUIRA	37388	1039503		1109149	

CHIQUINQUIRA	31684	1037522	1037025	1108819	1109150
CHIQUINQUIRA	30323	1039625	1040375	1111037	1111990
SAN MIGUEL DE SEMA	34204	1037592	1037532	1106576	1106996
SABOYA	30717	1039433		1117327	
CHIQUINQUIRA	29440	1027731	1027661	1117264	1117300
SAN MIGUEL DE SEMA	33318	1036772		1101957	
SAN MIGUEL DE SEMA	28165	1035342	1034864	1100703	1101002
SABOYA	36481	1041068		1115659	
SABOYA	32119	1035632		1121876	
CHIQUINQUIRA	30988	1038076	1037520	1112638	1112523
CHIQUINQUIRA	30987	1036111		1113456	
SABOYA	33754	1037279		1128542	
CHIQUINQUIRA	29705	1027731		1117264	
SABOYA	7602	1038560		1126500	
SABOYA	28805	1034415	1034245	1123905	1123277
SABOYA	36024	1037812		1128978	
SABOYA	35306	1042957		1117748	
SABOYA	29829	1036538	1036607	1124505	1124508
SABOYA	28184	1042535	1042577	1118545	1110612
SABOYA	30092	1037487		1116384	
SABOYA	28725	1039996	1036607	1117448	1124508
SABOYA	36022	1040039		1120089	
SABOYA	36523	1042904	1042664	1117313	1117445
CHIQUINQUIRA	31682	1037522	1037255	1108819	1109247
SABOYA	28323	1033519		1119065	
SABOYA	28714	1028819	1029789	1116706	1116384
CHIQUINQUIRA	35520	1037603		1113967	
SABOYA	29065	1034364	1039220	1117364	1116868
SABOYA	27065	1034393	1001000	1117364	1122210
SABOYA	32802	1031319	1031330	1123419	1123349
SAN MIGUEL DE SEMA	27453	1036583	1036576	1106484	1106469
CHIQUINQUIRA	29532	1038340		1113053	
SABOYA	28713 33222	1039975		1117458	
SABOYA	<u> </u>	1031860	1024621	1123065	1122200
SABOYA CHIQUINQUIRA	28562 19653	1034387 1039843	1034631	1123101 1111570	1123280
SABOYA	26930	1039843	1037967	1111370	1128365
CHIQUINQUIRA	27497	1037633	103/30/	1109910	1128303
CHIQUINQUIRA	27768	1037343		1112500	
SABOYA	30780	1041615	1042564	1112500	1125049
SABOYA	33888	1035137	1042304	1122280	1123043
CHIQUINQUIRA	39316	1038337		1114304	
CHIQUINQUIRA	38668	1038337		1109047	
SABOYA	39531	1043263		1127123	
SABOYA	38253	1034491	1034520	1122767	1122507
SABOYA	39445	1042193		1114990	
CHIQUINQUIRA	39392	1039912		1114390	

SABOYA	39717	1031148		1122580	
SABOYA	39214	1041048		1115645	
SABOYA	39391	1034971	1022689	1126173	1107490
CHIQUINQUIRA	39242	1034971	1022089	11111867	1107430
SABOYA	41399	1040207		1126130	
CHIQUINQUIRA	42944	1037105		1112786	
SABOYA	42859	1037203		1112780	
CHIQUINQUIRA	42858	1037660		1110612	
SABOYA	43233	1034654		1122857	
SABOYA	42843	1036029		1126584	
SABOYA	42860	1035029		1123674	
SABOYA	42946	1035023		1122638	
SABOYA	41566	1043024		1116100	
CHIQUINQUIRA	42001	1040107		1111580	
CHIQUINQUIRA	43412	1037053	1037185	1113214.26	1126181
SABOYA	42615	1037244		1126059	
SABOYA	40059	1031138		1122568	
CHIQUINQUIRA	42658	1042117		1114036	
CHIQUINQUIRA	42990	1037581		1115593	
SABOYA	42544	1037185		1126181	
SABOYA	42349	1034477		1124142	
SABOYA	42659	1035020		1122743	
SABOYA	42254	1030390		1117735	
SABOYA	42170	1043124		1118222	
SABOYA	42955	1028371		1120173	
SABOYA	43286	1044230		1123210	
CHIQUINQUIRA	43289	1039230		1114631	
CHIQUINQUIRA	43499	1039670		1112584	
CHIQUINQUIRA	43741	1037276	1037138	1113495	1113238
SABOYA	43819	1041720.6		1115219.73	
SABOYA	44098	1028992	1028993	1117538	1117516
SABOYA	44206	1035523		1122085	
SABOYA	44272	1028626		1117413	
CHIQUINQUIRA	44344	1037465		1115620	
SABOYA	44373	1039221		1117649	
SABOYA	44500	1036699		1125670	
SABOYA	44523	1038325		1120963	
CHIQUINQUIRA	44573	1039677		1112263	
SABOYA	44578	1033261		1122934	
SABOYA	44607	1038301		1121001	
SABOYA	44609	1038333		1120946	
SABOYA	44610	1038307		1120981	
SABOYA	44611	1038338		1120993	
SABOYA	44738	1030774	1030774	1124519	1102451
CHIQUINQUIRA	44614	1037332	1037153	1113540	1113466
SABOYA	44613	1038713	1038353	1120918	1120919
SAN MIGUEL DE SEMA	45012	1037754	1036952	1103223	1103490

SAN MIGUEL DE SEMA	45007	1037754	1030375	1103223	1103282
SAN MIGUEL DE SEMA	45008	1037754	1036953	1103223	1103506
SABOYA	44617	1043687		1119616	
SABOYA	44498	1036913	1036836	1126186	1125766
SABOYA	45119	1041144		1118906	
CHIQUINQUIRA	45014	1040311	1040135	1112779	1112508
SABOYA	44963	1034634		1122881	
CHIQUINQUIRA	43984	1027438.22		1117946.75	
CHIQUINQUIRA	44497	1036842		1114825	
CHIQUINQUIRA	44575	1039566		1112169	
CHIQUINQUIRA	45118	1036156		1113719	
CHIQUINQUIRA	45145	1036874		1113451	
SABOYA	45297	1035733	1035737	1124291	1123965
SABOYA	45298	1034034		1122795	
SABOYA	45300	1033544		1123293	
SABOYA	45303	1031480		1118901	
SABOYA	45305	1031480		1118901	
CHIQUINQUIRA	45356	1037780	1037117	1115681	115448
CHIQUINQUIRA	45358	1039406		1112097	
CHIQUINQUIRA	45415	1040411		1114518	
CHIQUINQUIRA	45420	1036981		1115578	
CHIQUINQUIRA	45421	1037696	1037433	1113242	1113189
SABOYA	45422	1035609		1123803	
CHIQUINQUIRA	45546	1037313		1113000	
SABOYA	2235	1036876		1121186	
SABOYA	10646	1036687		1118130	
SABOYA	12817	1031146	1026424	1122567	110111
SAN MIGUEL DE SEMA	14007	1036441	1036421	1104432	1104414
SABOYA	14179	1033480	1042294	1121907	1122291
CHIQUINQUIRA CHIQUINQUIRA	20254 20481	1036777 1041318	1036895	1113832 1114331	1113991
SAN MIGUEL DE SEMA	22227	1041318		1114551	
CHIQUINQUIRA	25472	1037330	1039092	1112470	1112476
SABOYA	26932	1039104	1039092	1112470	1112470
SABOYA	27030	1028668	1028695	1118993	1118986
SABOYA	27353	1040079	1020000	1118014	1113300
SAN MIGUEL DE SEMA	27384	1034276		1100097	
SABOYA	27443	1031510	1031482	1118905	1118897
SAN MIGUEL DE SEMA	28019	1036481	1036426	1106540	1106568
SABOYA	28231	1042537		1118589	
SABOYA	28233	1037336		1126638	
SABOYA	28305	1034525	1034371	1123325	1123497
SABOYA	28403	1040739		1117005	
SABOYA	28472	1039213		1117046	
CHIQUINQUIRA	28473	1038389		1113035	
SABOYA	28565	1118128		1028118	
SAN MIGUEL DE SEMA	28659	1036530	1036578	1107276	1107167

SAN MIGUEL DE SEMA	28684	1035325		1100738	
SABOYA	28716	1034387	1034428	1123101	1124243
SAN MIGUEL DE SEMA	28742	1034762		1102925	
SABOYA	28801	1038901		1125925	
SABOYA	28802	1038901		1125925	
CHIQUINQUIRA	28804	1036410	1036307	1113615	1113481
SABOYA	28806	1030000	1030980	1123333	1124623
SAN MIGUEL DE SEMA	29090	1036471		1106532	
CHIQUINQUIRA	29438	1033442	1033460	1113268	1113258
CHIQUINQUIRA	29504	1039835		1112600	
CHIQUINQUIRA	29537	1038388		1113041	
SABOYA	29678	1036857	1029664	1116386	1119651
SABOYA	29818	1033861	1034816	1125848	1126041
SABOYA	29912	1035643		1124643	
CHIQUINQUIRA	29922	1041517		1114660	
SABOYA	30052	1038890	1039007	1116960	1116907
SABOYA	30497	1034585	1034621	1125516	1125590
CHIQUINQUIRA	30813	1037548		1114736	
SAN MIGUEL DE SEMA	30822	1037736	1037693	1107187	1107158
SAN MIGUEL DE SEMA	30824	1037294		1107401	
CHIQUINQUIRA	30826	1026744	1026765	1118170	1118907
SABOYA	30864	1031192	1031206	1120665	1120656
SABOYA	30876	1029680	1030158	1115873	1115782
SAN MIGUEL DE SEMA	31037	1037799	1038897	1107016	1106865
SABOYA	31336	1031987		1118326	
SABOYA	31386	1035648		1124645	
CHIQUINQUIRA	31568	1037605		1114372	
SABOYA	31683	1040008		1126122	
SABOYA	31719	1036382		1125849	
CHIQUINQUIRA	31861	1039286		1114560	
SABOYA	31863	1033038	1033006	1119085	1119092
CHIQUINQUIRA	31897	1040127	1039876	1114664	1114600
SABOYA	32003	1035622	1035767	1124638	1124517
CHIQUINQUIRA	32118	1039805		1111974	
SABOYA	32139	1035886		1124419	
SABOYA	32141	1037984	1036900	1128550	1120455
SABOYA	32799	1026916.07	1026899	1120462.08	1120455
SAN MIGUEL DE SEMA SABOYA	32809 33112	1034031 1033490		1099707 1123998	
SABOYA	33112	1033490		1123998	
CHIQUINQUIRA	33119	1038975	1039663	11124217	1112057
SABOYA	33219	1039777	1033003	1112374	1112037
SAN MIGUEL DE SEMA	33316	1031391		1101959	
SABOYA	33320	1030772	1037675	1101939	1126733
CHIQUINQUIRA	33429	1037621	1069633	1111790	1111794
SABOYA	33458	1037096	1000000	1111730	1111/34
CHIQUINQUIRA	33628	1037030		1110775	
CINQUINQUINA	33020	1032423		11100/0	

SAN MIGUEL DE SEMA	33886	1037540	1037553	1106716	1106549
SABOYA	33894	1036729		1116495	
SABOYA	34188	1037045		1120992	
SABOYA	34208	1037045		1120992	
SABOYA	34380	1028685		1121778	
SABOYA	34465	1041784		1115379	
SABOYA	35173	1039426		1117325	
SABOYA	35176	1027964		1118230	
SABOYA	35184	1038329	1038290	1125838	1125860
SABOYA	35417	1028002		1118949	
SAN MIGUEL DE SEMA	35421	1036355		1101489	
SABOYA	35551	1028014		1118951	
SABOYA	35552	1037152	1036696	1123629	1123311
SAN MIGUEL DE SEMA	35765	1034878		1099757	
SAN MIGUEL DE SEMA	35930	1038307		1108167	
SABOYA	35963	1042845		1117323	
SABOYA	36023	1040390		1120089	
SABOYA	36155	1027401.14	1031625	1118099.82	1124509
SABOYA	36212	1031620	1031625	1124503	1124509
SABOYA	36213	1037888		1128966	
SABOYA	36214	1029612	1029627	1119627	1119601
SABOYA	36232	1033834	1034571	1125854	1125758
CHIQUINQUIRA	36235	1039623	1040199	1111393	1111863
CHIQUINQUIRA	36311	1038629	E 1038757	1109344	1108985
SABOYA	36385	1038460	1030260	1120660	1120503
SABOYA	36713	1032116		1125923	
SABOYA	36929	1027874.21	1027867	1117617.75	1117608
SABOYA	37017	1030939	1031005	1118354	1118526
SABOYA	37020	1034570		1125501	
SABOYA	37060	1027526		1117944	
SABOYA	37139	1036237		1125654	
SABOYA	37163	1036120		1125606	
SABOYA	37234	1036173	1036170	1125149	1125152
SABOYA	37381	1035166		1126242	
SABOYA	37382	1036155	1035649	1122565	1126059
CHIQUINQUIRA	37488	1039684	1039632	1112256	1112297
SABOYA	37585	1040654	1040856	1119286	1119183
SAN MIGUEL DE SEMA	37597	1036000	1036010	1104135	1104133
SABOYA	37645	1040856		1119183	
SABOYA	37646	1039370	1035885	1127411	1126008
SABOYA	37647	1037435		1126047	
SABOYA	37699	1036353	1036352	1125616	1125614
SABOYA	37912	1039986	1040254	1120109	1120168
SAN MIGUEL DE SEMA	37932	1037736	1036814	1106930	1112436
SABOYA	37999	1030794		1115808	
CHIQUINQUIRA	38067	1038873		1110743	
CHIQUINQUIRA	38312	1039430	1039635	1111365	1111507

CANIMACHEL DE CENAA	20242	1020000	1040030	1101725	1100200
SAN MIGUEL DE SEMA	38313	1036000	1040628	1101725	1100268
CHIQUINQUIRA	38316	1039466	1039465	1111411	1111408
CHIQUINQUIRA	38896	1111052		1039142	
CHIQUINQUIRA	38897	1039097		1111030	
CHIQUINQUIRA	38898	1039093		1111062	
CHIQUINQUIRA	38902	1040056	1040046	1111628	1111686
CHIQUINQUIRA	38961	1039474		1111475	
CHIQUINQUIRA	39085	1031745		1113680	
SABOYA	39244	1037221		1116644	
SAN MIGUEL DE SEMA	39318	1030222		1102661	
SABOYA	39540	1039702		1123463	
SABOYA	39542	1029741		1119476	
CHIQUINQUIRA	39668	1040392		1111808	
CHIQUINQUIRA	39794	1039516		1114384	
SABOYA	39853	1028826		1116644	
SABOYA	39936	1034008		1120929	
SABOYA	39959	1028870.66	1028864	1116596.93	1116595
CHIQUINQUIRA	40005	1036652		1113704	
SABOYA	40132	1033975		1121044	
CHIQUINQUIRA	40269	1040665		1113928	
CHIQUINQUIRA	40274	1038232		1114611	
CHIQUINQUIRA	40362	1036751		1113056	
CHIQUINQUIRA	40578	1040349	1039736	1111939	1112279
			1059750		11122/9
CHIQUINQUIRA	40603	1037933	4000447	1114573	4444704
CHIQUINQUIRA	40666	1030140	1030147	1111714	1111724
CHIQUINQUIRA	40953	1038232	1038266	1114611	1114610
CHIQUINQUIRA	41044	1028636		1109769	
CHIQUINQUIRA	41045	1035201		1113715	
CHIQUINQUIRA	41149	1034103	1035314	1114070	1113860
CHIQUINQUIRA	41150	1034266	1034559	1114182	1113681
CHIQUINQUIRA	41181	1035995		1113584	
SABOYA	41182	1030046		1118263	
SABOYA	41183	1030345		1120702	
CHIQUINQUIRA	41209	1040259		1114506	
CHIQUINQUIRA	41211	1041981		1113899	
CHIQUINQUIRA	41264	1041381		1114529	
SABOYA	41306	1040724		1114329	
			1020225		1111763
CHIQUINQUIRA	41315	1038534	1038225	1111768	1111/03
SABOYA	41509	1042218		1114825	
SABOYA	41523	1036177		1126137	
SABOYA	41592	1042403		1115953	
CHIQUINQUIRA	41711	1042460	1042516	1113712	1113700
CHIQUINQUIRA	41720	1041896	1041933	1113814	1113801
CHIQUINQUIRA	41736	1041939		1113700	
CHIQUINQUIRA	41737	1041997		1113866	
SABOYA	41743	1029567		1117394	
SAN MIGUEL DE SEMA	41769	1034670		1102872	
C COLL DE OLIVIT	. 1. 33				

SABOYA	41862	1043031		1116061	
SABOYA	41876	1037261		1125835	
CHIQUINQUIRA	41993	1037201		1111035	
SABOYA	41996	1039397		11116555	
SABOYA	41990	1043182	1042967	1116333	1116571
SABOYA	41997		1042907		11103/1
		1031846		1121333	
SABOYA	42000	1036524		1126048	
SABOYA	44612	1038390		1120900	
CHIQUINQUIRA	41728	1042248		1114016	
SABOYA	41734	1036383		1123588	
SABOYA	44864	1034782		1122778	
SABOYA	32005	1028777		1121562	
CHIQUINQUIRA	45765	1041058		1113002	
CHIQUINQUIRA	46307	1037982		1110262	
CHIQUINQUIRA	46669	1034268		1122755	
CHIQUINQUIRA	46809	1037391		1115598	
SABOYA	46865	1035647		1121390	
SABOYA	47053	1035641	1035830	1127034	1127347
SABOYA	47321	1032337		1119218	
SABOYA	47488	1031883		1119449	
SABOYA	47508	1030374	1030611	1120515	1120394
CHIQUINQUIRA	47509	1040874	1040474	1111824	1111393
SAN MIGUEL DE SEMA	47510	1036349		1105806	
SABOYA	47700	1035881		1121958	
SABOYA	47707	1036412		1126583	
SABOYA	47726	1035837	1036256	1126682	1126581
SABOYA	47938	1036165		1125156	
CHIQUINQUIRA	47943	1036790		1112667	
CHIQUINQUIRA	47944	1036833		1113263	
SABOYA	47946	1026878.05	1026400	1118481.75	1116375
CHIQUINQUIRA	47975	1042197		1113527	
SABOYA	48113	1034052		1123143	
SABOYA	48116	1040019		1120385	
SABOYA	48168	1034750		1122707	
SAN MIGUEL DE SEMA	47318	1038802	1038618	1107694	1107427
SABOYA	48736	1028823	1030681	1116642	1115948
SABOYA	50308	1032947		1121173	
SABOYA	50704	1040316	1036120	1116455	1125160
SABOYA	49344	1028822.58	1030060	1116637.5	1115757
SABOYA	50223	1033036	1033351	1122290	1123102
CHIQUINQUIRA	50287	1036663		1113124	
SABOYA	48782	1028823	1030092	1116642	1116092
CHIQUINQUIRA	50225	1040746	1040539	1114633	1114536
SABOYA	50934	1030881	1031798	1124482	1123653
CHIQUINQUIRA	50312	1039737	1038770	1114746	1114598
CHIQUINQUIRA	47709	1026479	1031976	1118862	1118568
SABOYA	49143	1036200	1036148	1123727	1123678

SABOYA	49343	1028822.58	1030105	1116637.5	1115787
SABOYA	48666	1028823	1030135	1116642	1115789
SABOYA	48729	1028823	1030135	1116642	1115789
SABOYA	48731	1028823	1030331	1116642	1115783
SAN MIGUEL DE SEMA	50473	1036969	1036675	1106230	1106250
SABOYA	48435	1039572	1039569	1122773	1122838
SABOYA	48669	1028823	1030499	1116642	1116171
CHIQUINQUIRA	50570	1038982	1038958	1112962	1112912
SABOYA	49390	1038805	1038675	1122648	1122598
CHIQUINQUIRA	49975	1038984	200007	1112961	
SABOYA	49127	1037365	1037624	1126103	1126374
SAN MIGUEL DE SEMA	50476	1036871	1036582	1106182	1106237
SABOYA	48709	1028823	1030262	1116642	1115845
SABOYA	48726	1028823	1030631	1116642	1115820
SABOYA	49144	1028822.58	1029990	1116637.5	1115942
SABOYA	49976	1039430	1039158	1117329	1116753
SABOYA	48671	1028823	1030281	1116642	1115963
SABOYA	48350	1033852	1034103	1125846	1125572
SABOYA	49145	1033078	103415	1126171	1126012
CHIQUINQUIRA	49971	1036995	1036371	1114964	1115197
SABOYA	50656	1035876	1036028	1125422	1125036
SABOYA	48903	1028822.58	1030340	1116637.5	1115827
CHIQUINQUIRA	50304	1037725	1037328	1112483	1112352
SAN MIGUEL DE SEMA	50571	1036583		1106209	
SABOYA	48725	1028822.58	1030172	1116637.5	1115839
SABOYA	50658	1035876	1036120	1125422	1125160
SAN MIGUEL DE SEMA	50572	1036872		1106235	
SABOYA	48732	1028822.58	1030557	1116637.5	1116392
SABOYA	49970	1034862		1122727	
CHIQUINQUIRA	50689	1039737	1038843	1114746	1114622
SABOYA	47933	1037891		1129120	
SABOYA	47941	1039426	1038311	1117334	1116746
SABOYA	48780	1028822.58	1029949	1116637.5	1115738
SAN MIGUEL DE SEMA	47711	1033195		1102337	
CHIQUINQUIRA	49328	1039989	1039088	1114585	1114257
SABOYA	47706	1035821	1036287	1126677	1126553
SABOYA	50143	1034165	1034523	1125521	1125249
CHIQUINQUIRA	49546	1038891	1038933	1112548	1112565
CHIQUINQUIRA	50477	1036995	1036431	1114964	1115022
SABOYA	49973	1039218	1039180	1117650	1117703
SABOYA	50307	1033332		1123125	
SABOYA	48707	1028823	1030538	1116642	1115881
CHIQUINQUIRA	50472	1040745	1040657	1112245	1112030
SABOYA	50702	1036747	1036876	1122937	1122881
SABOYA	47710	1035802	1036215	1126698	1126497
SABOYA	50141	1034165	1034610	1125521	1125337
SABOYA	50305	1033332	1123098	1123125	1033365

SAN MIGUEL DE SEMA	50478	1036969	1036565	1106230	1106242
SABOYA	50655	1035876	1036022	1125422	1125428
SABOYA	48703	1028822.58	1030159	1116637.5	1115831
CHIQUINQUIRA	50657	1036721	1036562	1113157	1113027
SABOYA	48734	1028822.58	1030306	1116637.5	1115986
SABOYA	49395	1028822.58	1030128	1116637.5	1115790
SAN MIGUEL DE SEMA	46390	1033635		1108280	
CHIQUINQUIRA	29495	1037688		1112443	
SAN MIGUEL DE SEMA	30740	1032766		1102631	
CHIQUINQUIRA	17013	1030105		1108771	
CHIQUINQUIRA	26891	1031484		1114052	
CHIQUINQUIRA	26991	1030899		1110387	
CHIQUINQUIRA	36308	1030087		1111003	
CHIQUINQUIRA	37643	1029960		1110099	
SAN MIGUEL DE SEMA	39388	1034850		1108050	
SABOYA	12817	1031146		1122567	
SAN MIGUEL DE SEMA	15734	1038610		1105203	
SAN MIGUEL DE SEMA	15735	1036805		1104101	
CHIQUINQUIRA	19653	1039843		1111570	
SABOYA	22192	1031838		1117404	
SAN MIGUEL DE SEMA	29679	1038947		1103791	
SABOYA	29938	1039438		1117326	
CHIQUINQUIRA	30401	1039665		1111161	
SAN MIGUEL DE SEMA	31069	1035391	1035383	1101559	1101569
CHIQUINQUIRA	38346	1039515	1039508	1112260	1112246
SABOYA	39393	1029559		1119650	
SABOYA	45112	1034289		1124577	
CHIQUINQUIRA	45419	1037294		1112605	
SABOYA	45423	1031787		1118890	
CHIQUINQUIRA	45542	1042529		1114066	
SABOYA	45640	1042833		1114854	
SABOYA	45756	1037936		1128948	
SABOYA	45762	1031848		1121323	
CHIQUINQUIRA	45838	1037795		1114686	
SABOYA	46027	1032376		1122261	
SABOYA	46030	1032364		1122291	
SABOYA	46032	1032693		1121985	
SABOYA	46033	1032610	1022264	1122170	1122201
SABOYA	46034	1032383	1032364	1122121	1122291
SABOYA	46035	1032498		1121977	
SABOYA	46203 46240	1032124 1039862		1122375 1117703	
SABOYA SABOYA	46245			1117703	
SABOYA	46306	1036876 1037567		1125850	
CHIQUINQUIRA	46308	1037567		1119126	
SABOYA	46562	1026434		1119126	
SABOYA		1037633		1114747	
SADUTA	46671	1042/83		1114/4/	

SABOYA	46712	1042833		1114854	
SABOYA	46806	1042833	1032992	1114854	1125412
CHIQUINQUIRA	47024	1037495		1110244	
SABOYA	47056	1036349		1127449	
SABOYA	47192	1037275		1129197	
CHIQUINQUIRA	47247	1038649		1108802	
SABOYA	47320	1032154		1123050	
SABOYA	48728	1029884		1115912	
SABOYA	49909	1034771		1122867	
SABOYA	50654	1034745		1122755	
SABOYA	50805	1037313		1127602	
SABOYA	50876	1031602		1123468	
SABOYA	50877	1037188		1127434	
CHIQUINQUIRA	50879	1036262		1113258	
SABOYA	50948	1038626		1117465	
SAN MIGUEL DE SEMA	50951	1036782		1106246	
SAN MIGUEL DE SEMA	50955	1037246		1105675	
SABOYA	51037	1036213		1125169	
CHIQUINQUIRA	51039	1037434		1113753	
SABOYA	51040	1034576	1034591	1123681	1123660
SABOYA	51070	1036212		1124899	
SABOYA	51071	1036145		1124911	
SABOYA	51072	1033004		1126085	
SABOYA	51073	1035890		1126003	
CHIQUINQUIRA	51161	1040777		1113623	
SABOYA	51186	1034326		1129027	
SABOYA	51187	1034531		1129143	
SABOYA	51376	1037482		1127578	
SABOYA	51378	1034443		1122935	
CHIQUINQUIRA	51395	1038140		1109502	
CHIQUINQUIRA	32980	1032191		1113727	

NVENCIONES

DATOS SIRH

DATOS SAE

COORDENADAS CORREGIDAS

CLASE	CAUDAL_I_s	OBSERVACIONES
S	0.02	Las coordenadas no coinciden con EL SIRH
S	0.26	coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	Las coordenadas vereda y municipio coinciden con el SIRH
S	0.01	Cinciden coordenadas con SIRH pero esta en el municipio de chiquinquira
S	0.02	Coinciden coordenadas con SIRH pero se encuentra en el municipio de chiquir
S	0.01	El expediente no esta en el SIRH
S	0.02	Coinciden coordenadas, municipio y vereda con el SIR
S	0.02	El expediente no esta en el SIRH
S	0.02	Coinciden coordenadas, municipio y vereda con el SIRH
S	0.02	Las coordenadas no coinciden con el SIRH
S	0.02	Coinciden coordenadas, vereda y municipio con el SIRH
S	0.02	Las coordenadas no coinciden con el SIRH
S	0.01	Coinciden coordenadas, vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	Coinciden coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas, vereda y municipio con el SIRH
S	0.0197	Coinciden coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas, vereda y municipio con el SIRH
S	0.01	No coinciden coordenadas con el SIRH
S	0.01	Coinciden coordenadas, vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas, vereda y municipio con el SIRH
S	0.71	No coinciden coordenadas con el SIRH
S	0.4	Coinciden coordenadas, vereda y municipio con el SIRH
S	0.14	Coinciden coordenadas, vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	No coinciden coordenadas con el SIR
S	0.13	Coinciden coordenadas, vereda y municipio en el SIRH
S	0.01	No coinciden coordenadas con el SIRH
S	0.2	El expediente no esta en el SIRH
S	0.01	Coinciden coordenadas con el SIRH
S	0.01	No coinciden coordenadas con el SIRH
S	0.008	No coinciden coordenadas con el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S	0.01	Coinciden coordenadas, vereda y municipio con el SIRH
S	0.02	No coinciden coordenadas con el SIRH
S	0.07	No coinciden coordenadas con el SIRH
S	0.02	Coinciden coordenadas, vereda y municipio en el SIRH
S	0.04	No coinciden coordenadas con el SIRH
S	0.01	No coinciden coordenadas con el SIRH
S	0.04	No coinciden coordenadas con el SIRH
S	0.01	Coinciden coordenadas, vereda y municipio con el SIRH

S	0.03	No coinciden coordenadas con el SIRH
S	0.01	No coinciden coordenadas con el SIRH
S	0.02	No coinciden coordenadas con el SIRH
S	0.01	Coinciden coordenadas, vereda y municipio con el SIRH
S	0.02	No coinciden coordenadas con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	No coinciden coordenadas con el SIRH
S	0.01	Coinciden coordenadas, municipio y vereda con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	No coinciden coordenadas con el SIRH
S	0.01	Coinciden coordenadas, municipio y vereda con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.33	El expediente no esta en el SIRH
S	0.02	No coinciden coordenadas con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.15	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	No coinciden coordenadas con el SIRH
S	0.01	No coinciden coordenadas con el SIRH
S	0.01	El expediente no esta en el SIRH
S	0.02	No coinciden coordenadas con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	No coinciden coordenadas con el SIRH
S	0.02	No coinciden coordenadas con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.05	No coinciden coordenadas con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.025	No coinciden coordenadas con el SIRH
S	0.025	El expediente no esta en el SIRH
S	0.03	No coinciden coordenadas con el SIRH
S	0.48	No coinciden coordenadas con el SIRH
S	0.01	El expediente no esta en el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.03	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.04	No coinciden coordenadas con el SIRH
S	0.015	coinciden las coordenadas, vereda y municipio con el SIRH
S	0.008	No coinciden las coordenadas con el SIRH
S	0.27	coinciden las coordenadas, vereda y municipio con el SIRH
S	0.5	coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.04	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.95	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.73	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.1	No coinciden las coordenadas con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.01	El expediente no esta en el SIRH

S	0.07	El expediente no esta en el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.03	No coinciden las coordenadas con el SIRH
S	0.03	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.1	El expediente no esta en el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.13	El expediente no esta en el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S		
	0.01	El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH
S S		
	0.02 0.05	Coinciden las coordenadas, vereda y municipio con el SIRH
S		Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.22	El expediente no esta en el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	2.34	El expediente no esta en el SIRH
_	0.02	Coincides les condenades verede y reversionis con el CIDII
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.055	Coinciden las coordenadas, vereda y municipio con el SIRH
S S	0.055 0.02	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
S S S	0.055 0.02 0.07	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
S S S	0.055 0.02 0.07 0.02	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH
S S S S	0.055 0.02 0.07 0.02 0.04	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH
S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.055 0.02 0.07 0.02 0.04 0.02 0.01	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH
S S S S S S S S S S S S S S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02 0.01 0.02	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
S S S S S S S S S S S S S S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02 0.01 0.02 0.02	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
S S S S S S S S S S S S S S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02 0.01 0.02 0.02 0.02	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH
S S S S S S S S S S S S S S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02 0.01 0.02 0.02 0.01 0.02	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
S S S S S S S S S S S S S S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02 0.01 0.02 0.02 0.01 0.02 0.07	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
S S S S S S S S S S S S S S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02 0.01 0.02 0.01 0.02 0.1 0.02 0.07 0.02	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
S S S S S S S S S S S S S S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
S S S S S S S S S S S S S S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.07 0.02 0.07	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
S S S S S S S S S S S S S S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02 0.01 0.02 0.02 0.1 0.02 0.07 0.02 0.07 0.02	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
S S S S S S S S S S S S S S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02 0.01 0.02 0.02 0.01 0.02 0.07 0.02 0.07 0.02 0.07 0.07	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH Rie expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
S S S S S S S S S S S S S S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02 0.01 0.02 0.1 0.02 0.07 0.02 0.07 0.07 0.07 0.07	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
S S S S S S S S S S S S S S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02 0.01 0.02 0.02 0.01 0.02 0.07 0.002 0.07 0.007 0.07 0.07 0.	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
S S S S S S S S S S S S S S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02 0.01 0.02 0.1 0.02 0.07 0.02 0.07 0.07 0.07 0.07 0.53 0.01	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (resguardo) con el SIRH No coinciden las coordenadas con el SIRH
S S S S S S S S S S S S S S S S S S S	0.055 0.02 0.07 0.02 0.04 0.02 0.01 0.02 0.02 0.01 0.02 0.07 0.002 0.07 0.007 0.07 0.07 0.	Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH No coinciden las coordenadas ni la vereda (Moyavita)con el SIRH El expediente no esta en el SIRH No coinciden las coordenadas con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH

S	0.01	No coinciden las coordenadas con el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	No coinciden las coordenadas con el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.24	No coinciden las coordenadas con el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.04	El expediente no esta en el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.04	No coinciden las coordenadas con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.24	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	No coinciden las coordenadas 1 con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	El expediente no esta en el SIRH
S	0.01	El expediente no esta en el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S	0.04	El expediente no esta en el SIRH
S	0.03	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.37	El expediente no esta en el SIRH
S	0.09	El expediente no esta en el SIRH
S	0.78	El expediente no esta en el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S	2.17	No coinciden las coordenadas con el SIRH
S	0.02	No coinciden las coordenadas con el SIRH
S	0.01	El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
	0.4	No coinciden las coordenadas, vereda y municipio con el Sikh
S S	0.02	El expediente no esta en el SIRH
<u> </u>	0.24	No coinciden las coordenadas con el SIRH
S	0.03	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.04	No coinciden las coordenadas con el SIRH
S	0.06	No coinciden las coordenadas con el SIRH
S	0.03	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.03	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S	0.06	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.05	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	No coinciden las coordenadas con el SIRH

S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.04	No coinciden las coordenadas con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.05	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	No coinciden las coordenadas con el SIRH
S	0.76	No coinciden las coordenadas con el SIRH
S	0.16	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.04	No coinciden las coordenadas con el SIRH
S	0.51	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	El expediente no esta en el SIRH
S	0.09	No coinciden las coordenadas con el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	4.03	No coinciden las coordenadas con el SIRH
S	0.03	No coinciden las coordenadas con el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.67	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S S	0.01	No coinciden las coordenadas con el SIRH
S	0.04	El expediente no esta en el SIRH Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	2.97	No coinciden las coordenadas, vereda y manicipio con el SIRH
S	0.03	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.05	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	No coinciden las coordenadas con el SIRH
S	0.03	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.01	No coinciden las coordenadas con el SIRH
S	0.06	No coinciden las coordenadas con el SIRH
S	0.09	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.57	Coinciden las coordenadas, vereda y municipio con el SIRH

S	0.02	No coinciden las coordenadas con el SIRH
S	0.91	Coinciden las coordenadas, vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.67	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.69	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	No coinciden coordenadas con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.21	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	No coinciden coordenadas con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.15	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.1	No coinciden las coordenadas en el SIRH
S	0.03	No coinciden las coordenadas ni la vereda (Tibista) en el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.53	No coinciden las coordenadas en el SIRH
S	0.14	No coinciden las coordenadas en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.15	No coinciden las coordenadas en el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.18	No coinciden las coordenadas en el SIRH
S	0.99	No coinciden las coordenadas en el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.19	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.03	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.15	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.09	No coinciden las coordenadas en el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.1	No coinciden las coordenadas en el SIRH
S	0.05	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.74	No coinciden las coordenadas en el SIRH
S	0.1	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.07	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.08	El expediente no esta en el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.2	No coinciden las coordenadas en el SIRH

S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.02	El expediente no esta en el SIRH
S	100.38	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.93	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.28	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S S	0.01	No coinciden las coordenadas en el SIRH El expediente no esta en el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	El expediente no esta en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.03	El expediente no esta en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.03	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.05	No coinciden las coordenadas en el SIRH
S	0.05	No coinciden las coordenadas en el SIRH
S	0.03	El expediente no esta en el SIRH
S	0.18	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH El expediente no esta en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.04	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.03	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH

S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.13	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.07	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.09	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	1.04	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.87	El expediente no esta en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.029	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.011	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.03	El expediente no esta en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.01	El expediente no esta en el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.22	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S S	0.07	Coinciden coordenadas , vereda y municipio con el SIRH No coinciden las coordenadas en el SIRH
S	0.02 0.01	No coinciden las coordenadas en el SIRH
<u> </u>	0.01	No coinciden las coordenadas en el SIRH
<u> </u>	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.0296	No coinciden las coordenadas en el SIRH
S	0.0230	No coinciden las coordenadas en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
	0.02	The Committee Tool Activities of the Committee of the Com

S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH ni el municipio (chiquinquira)
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	El expediente no esta en el SIRH
<u> </u>	0.01	No coinciden las coordenadas en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
		No coinciden las coordenadas en el SIRH
S S	0.02	No coinciden las coordenadas en el SIRH No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH ni la vereda (chiquinquira)
S	0.02	No coinciden las coordenadas en el SIRH No coinciden las coordenadas en el SIRH
S	0.07	
S	0.02	No coinciden las coordenadas en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.01	El expediente no esta en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.02	El expediente no esta en el SIRH No coinciden las coordenadas en el SIRH
S	0.02	
S	0.01	El expediente no esta en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S S	0.48 0.02	Coinciden coordenadas , vereda y municipio con el SIRH No coinciden las coordenadas en el SIRH
<u> </u>	0.02	No coinciden las coordenadas en el SIRH No coinciden las coordenadas en el SIRH
<u> </u>	0.02	No coinciden las coordenadas en el SIRH No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH No coinciden las coordenadas en el SIRH
<u> </u>		No coinciden las coordenadas en el SIRH
	0.02	No coinciden las coordenadas en el SIRH No coinciden las coordenadas en el SIRH
S S	0.02 0.01	
<u> </u>	0.01	Coinciden coordenadas , vereda y municipio con el SIRH No coinciden las coordenadas en el SIRH
		No coinciden las coordenadas en el SIRH No coinciden las coordenadas en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH No coinciden las coordenadas en el SIRH
S S	0.06	No coinciden las coordenadas en el SIRH No coinciden las coordenadas en el SIRH
	0.01	
S	0.01	No coinciden las coordenadas en el SIRH
S	0.02	No coinciden las coordenadas en el SIRH

S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
T	0.01	El expediente no esta en el SIRH
T	0.62	El expediente no esta en el SIRH
T	0.01	El expediente no esta en el SIRH
T	1.02	El expediente no esta en el SIRH
T	1.45	El expediente no esta en el SIRH
T	0.24	El expediente no esta en el SIRH
T	0.03	El expediente no esta en el SIRH
T	0.38	El expediente no esta en el SIRH
T	0.02	El expediente no esta en el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.009	El expediente no esta en el SIRH
S	0.015	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.04	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.01	No coinciden las coordenadas en el SIRH
S	0.42	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.0164	El expediente no esta en el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.04	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.03	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.03	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.03	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.03	No coinciden las coordenadas en el SIRH NI EL MUNICIPIO (CHIQUINQUIRA)
S S	0.02 0.02	No coincide el municipio (CHIQUINQUIRA) con el SIRH Coinciden coordenadas , vereda y municipio con el SIRH
<u>S</u>	0.02	El expediente no esta en el SIRH
<u> </u>	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
3	0.03	Teometaen coordenadas, vereda y municipio con er sinti

S	0.04	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	No coinciden las coordenadas en el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	El expediente no esta en el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.01	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.48	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	No coincide el municipio (CHIQUINQUIRA) con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.12	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	El expediente no esta en el SIRH
S	0	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.01	No coincide el municipio (CHIQUINQUIRA) con el SIRH
S	0.01	El expediente no esta en el SIRH
S	0.38	No coinciden las coordenadas en el SIRH
S	0.02	No coincide el municipio (CHIQUINQUIRA) con el SIRH
S	0.18	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	No coincide el municipio (CHIQUINQUIRA) con el SIRH
S	0.02	El expediente no esta en el SIRH
S	0.02	Coinciden coordenadas , vereda y municipio con el SIRH
S	0.06	Coinciden coordenadas , vereda y municipio con el SIRH
S	1.03	El expediente no esta en el SIRH

nquira	

DIRECCION REGIONAL	NOMBRE O RAZON SOCIAL	VEREDA D PD	VEREDA CORREGIDA	CLASE SUBT - T SUPERF - S
UBATÉ	ASOCIACION DE USUARIOS DEL SERVICIO DE ACUEDUCTO DE LA VDA. DON LOPE SECTOR CHATA DEL MUNICIPIO DE SIMIJACA	DON LOPE SECTOR CHATA		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	OSPINA BERMUDEZ MARIA BEATRIZ Y OTRA	TAQUIRA		CONCESION DE AGUAS SUBTERRANEAS
UBATÉ	ACUEDUCTO QDA. COLORADA PAUNITA APOSENTOS	COLORADA	APOSENTOS	CONCESION DE AGUAS SUPERFICIALES
UBATÉ	JUNTA DE ACCION COMUNAL DE LA VEREDA APOSENTOS SECTOR LA LAJA	APOSENTOS		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	ASOCIACION DE USUARIOS DEL ACUEDUCTO DE LA VDA. APOSENTOS DEL MUNICIPIO DE SUSA Y LUIS FRANCISCO PINILLA	APOSENTOS		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	ALCALDIA MUNICIPAL DE SIMIJACA	CENTRO	APOSENTOS	CONCESION DE AGUAS SUPERFICIALES
UBATÉ	MOYA DE FERRERO OLGA LUCIA	LLANO GRANDE		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	MANRIQUE DE MOYA OLGA	LLANO GRANDE		CONCESION DE AGUAS SUBTERRANEAS
UBATÉ	MORATO RODRIGUEZ GABRIEL ANTONIO Y OTRA	TAQUIRA		CONCESION DE AGUAS SUBTERRANEAS

				CONCESION DE
UBATÉ	JULIO ALFONSO ALARCÓN ROBAYO	CARUPA		AGUAS SUPERFICIALES
UBATÉ	JOSE LEONARDO GUZMAN Y OTROS	PAUNITA		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	ALIMENTOS DEL VALLE S.A ALIVAL S.A.	CENTRO		CONCESION DE AGUAS SUBTERRANEAS
UBATÉ	ASOCIACION GREMIAL AGROPECUARIA PROACUEDUCTO INTERVEREDAL JOSE MARIA ESCRIVA DE BALAGUER	LA GLORIETA	TAQUIRA	CONCESION DE AGUAS SUPERFICIALES
UBATÉ	RINCON JUAN DE JESUS Y OTRA	APOSENTOS		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	RODRIGUEZ BECERRA PEDRO MARIO Y OTRO	DON LOPE		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	JOSÉ SALVADOR PINILLA	CENTRO		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	ASOCIACION COMUNITARIA DE USUARIOS - CONCESION LAS LAJASRIO SIMIJACA - ASOLAJAS	APOSENTOS		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	ACUEDUCTO COMUNAL INTERVEREDAL CENTRO LA ESTACION LLANO GRANDE PUNTA DE CRUZ SUSA	LA ESTACION	LA FRAGUA	CONCESION DE AGUAS SUPERFICIALES
UBATÉ	ASOCIACION DE USUARIOS DEL SERVICIO DEL ACUEDUCTO DE NUTRIAS DEL MUNICIPIO DE SUSA	NUTRIAS		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	SOCIEDAD ALPINA PRODUCTOS ALIMENTICIOS S.A.	CENTRO		CONCESION DE AGUAS SUBTERRANEAS
UBATÉ	INDUSTRIA COLOMBIANA DE LACTEOS LTDA - INCOLACTEOS LTDA	CENTRO	HATO CHICO	CONCESION DE AGUAS SUBTERRANEAS
UBATÉ	PIZANO MALLARINO CARLOS	TAQUIRA		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	VARGAS ARANGO JORGE ANTONIO	APOSENTOS		CONCESION DE AGUAS SUPERFICIALES

UBATÉ	DORA GENITH RODRIGUEZ RODRIGUEZ Y OTROS	APOSENTOS		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	ASOCIACION DE USUARIOS DEL ACUEDUCTO VEREDA EL SALITRE DEL MUNICIPIO DE SIMIJACA	EL SALITRE		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	BALLEN DE SABOGAL MARIA ISABEL	APOSENTOS		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	JAIME MARTINEZ ROBAYO	CASCADAS		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	ASOCIACION DE USUARIOS DEL SERVICIO DE ACUEDUCTO COMUNITARIO LAS HUERTAS DEL MUNICIPIO DE SUSA	MATARREDONDA		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	GUSTAVO AUGUSTO VARGAS AVENDAÑO	NUTRIAS		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	ACUEDUCTO COMUNAL INTERVEREDAL CENTRO LA ESTACION LLANO GRANDE PUNTA DE CRUZ SUSA	CENTRO	LA FRAGUA	CONCESION DE AGUAS SUPERFICIALES
UBATÉ	ALARCON ROBAYO JOSE DE JESUS	CHURNICA		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	PIZANO MALLARINO CARLOS	TAQUIRA		CONCESION DE AGUAS SUPERFICIALES
UBATÉ	LEÓN RAMIREZ ORLANDO	HATO CHICO		CONCESION DE AGUAS SUBTERRANEAS

CONVENCIONES		
	VEREDAS	
	CORREGIDAS	
	COORDENADAS	
	CORREGIDAS	
	DATOS SAE	
	USUARIO DENTRO DE	
	LA UNIDAD	

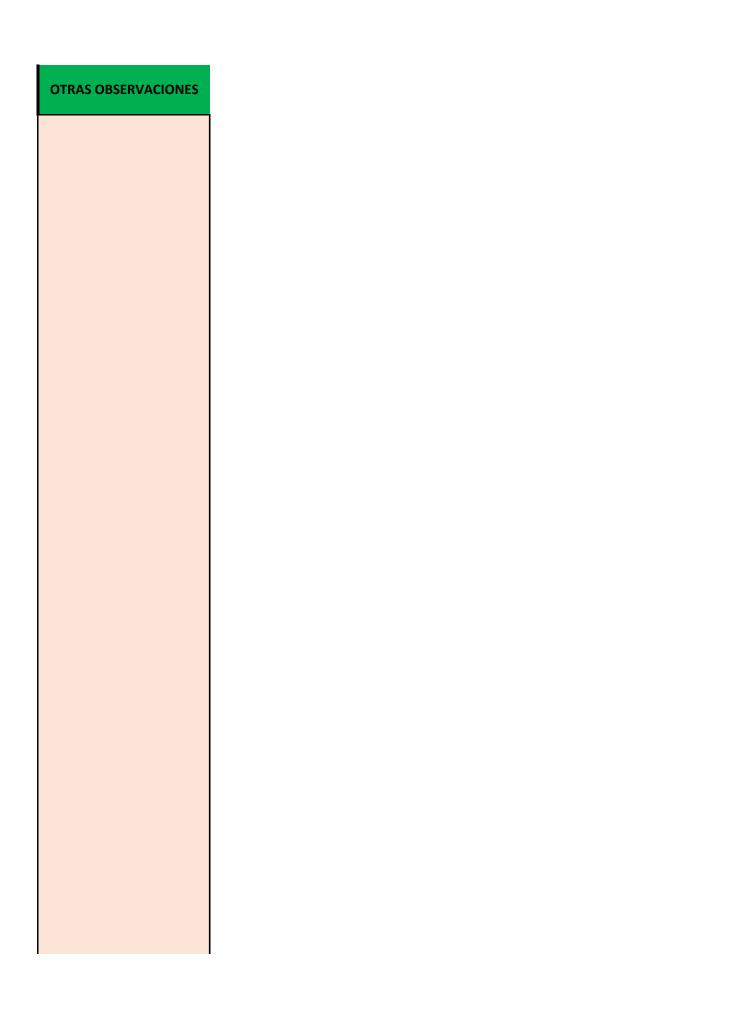
MUNICIPIO D PD	EXPEDIENTE	COORDENADA X	COORDENADA X CORREGIDA	COORDENADA Y
SIMIJACA	1802	1095593	1023082	1023082
SIMIJACA	3640	1100830	1100832	1027770
SUSA	5512	1087852	1027882	1027882
SIMIJACA	10933	1096188	1023327	1023297
SUSA	15117	1092798	1026428	1026428
SIMIJACA	15345	1096294	1023347	1023347
SUSA	19343	1095100	1030947	1030950
SUSA	19345	1096400		1030700
SIMIJACA	19430	1099620	1027483	1027486

SUSA	24193	1094470	1024759	126125
SUSA	24751	1086828	1025326	1025982
SIMIJACA	25219	1100672	1025501	1025501
SUSA	26194	1096009	1023216	1023216
SIMIJACA	27217	1098693	1020625	1019978
SIMIJACA	27227	1095767	1023290	1023290
SIMIJACA	27437	1099748	1024633	1024626
SIMIJACA	28023	1096928	1023966	1023966
SUSA	28315	1091618	1028628	1028628
SUSA	28461	1091901	1023957	1024048
SIMIJACA	28769	1100852	1025368	1025277
SIMIJACA	29011	1101399	1026289	1026300
SIMIJACA	29816	1099278	1025731	1025723
SIMIJACA	30300	1095593	1023014	1023082

SIMIJACA	33643	1095687	1023356	1023205
SIMIJACA	34381	1100373	1019884	1019751
SIMIJACA	34539	1098086	1022287	1022287
SUSA	35067	1092793	1029436	1029436
SUSA	38447	1087734	1023735	1023711
SUSA	39924	1092978	1021141	1021028
SUSA	40735	1089924	1027655	1027655
SIMIJACA	43135	1098731	1021771	1021854
SIMIJACA	43847	1099202	1025028	1025028
SIMIJACA	45558	1102830	1027933	1027933

COORDENADA Y CORREGIDA	CAUDAL CONCEDIDO (I/s)	USO DOMESTICO (I/s)	USO AGRICOLA (I/s)	USO PECUARIO (I/s)
1095593	0.50			
1027737	0.45			
1087852	0.38			
1096165	0.29			
1092798	0.41			
1096294	29.71			
1095114	0.04			
	0.03			
1099625	0.26			

1092230			
1087594	0.04		
1100672	0.69		
1096009	6.04		
1098695	0.04		
1095767	0.37		
1099750	0.20		
1096928	15.52		
1091618	2.01		
1093923	0.67		
1100787	0.625		
1101291	2.45		
1099258	0.67		
1096932	0.03		


1098284	0.44		
1100524	0.43		
1098086	0.12		
1092793	0.070		
1087746	0.36		
1092949	0.22		
1089924	2.01		
1098793	0.01		
1099202	4.2		
1102830	0.30		

USO INDUSTRIAL (I/s)	OTROS USOS (I/s)

OBSERVACIONES
Se revisa en SAE y se corrigen coordenadas
Se revisa en SAE y se corrigen coordenadas
Se revisa en SAE y se corrigen las coordenadas y vereda
Se verifica en SAE y se corrigen coordenadas
Se verifica en SAE y se corrigen coordenadas
Se verifica en SAE y se corrigen coordenadas y vereda
Se verifica en SAE y se corrigen coordenadas
Se verifica en SAE y coinciden coordenadas y vereda
se verifica en SAE y se corrigen coordenadas (esta dentro de la unidad hidrografica)

Se verifica en SAE y se corrigen coordenadas Se verifica en SAE y se corrigen coordenadas Se verifica en SAE y se corrigen coordenadas Se verifica en SAE y se corrigen la vereda y las coordenadas Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se corrigen coordenadas (hay dos fincas) Se verifica en SAE y se corrigen coordenadas Se verifica en SAE y se rectifican coordenadas	
Se verifica en SAE y se corrigen coordenadas Se verifica en SAE y se corrigen la vereda y las coordenadas Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se corrigen coordenadas (hay dos fincas) Se verifica en SAE y se corrigen coordenadas Se verifica en SAE y se rectifican coordenadas	Se verifica en SAE y se corrigen coordenadas
Se verifica en SAE y se corrigen la vereda y las coordenadas Se verifica ern SAE y se rectifican coordenadas Se verifica en SAE y se corrigen coordenadas (hay dos fincas) Se verifica en SAE y se corrigen coordenadas Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas y vereda Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas y vereda	Se verifica en SAE y se corrigen coordenadas
Se verifica ern SAE y se rectifican coordenadas Se verifica en SAE y se corrigen coordenadas (hay dos fincas) Se verifica en SAE y se corrigen coordenadas Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas y vereda Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas y vereda	Se verifica en SAE y se corrigen coordenadas
Se verifica en SAE y se corrigen coordenadas Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas y vereda Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas y vereda	Se verifica en SAE y se corrigen la vereda y las coordenadas
Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas y vereda Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas y vereda	Se verifica ern SAE y se rectifican coordenadas
Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas y vereda Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se corrigen coordenadas y vereda Se verifica en SAE y se rectifican coordenadas	Se verifica en SAE y se corrigen coordenadas (hay dos fincas)
Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se corrigen coordenadas y vereda Se verifica en SAE y se rectifican coordenadas	Se verifica en SAE y se corrigen coordenadas
Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se corrigen coordenadas y vereda Se verifica en SAE y se rectifican coordenadas	Se verifica en SAE y se rectifican coordenadas
Se verifica en SAE y se rectifican coordenadas Se verifica en SAE y se corrigen coordenadas y vereda Se verifica en SAE y se rectifican coordenadas	Se verifica en SAE y se rectifican coordenadas y vereda
Se verifica en SAE y se corrigen coordenadas y vereda Se verifica en SAE y se rectifican coordenadas	Se verifica en SAE y se rectifican coordenadas
Se verifica en SAE y se rectifican coordenadas	Se verifica en SAE y se rectifican coordenadas
	Se verifica en SAE y se corrigen coordenadas y vereda
Se verifica en SAE y se rectifican coordenadas	Se verifica en SAE y se rectifican coordenadas
	Se verifica en SAE y se rectifican coordenadas

Se verifica en SAE y se rectifican coordenadas
Se verifica en SAE y se rectifican coordenadas
Se verifica en SAE y se rectifican coordenadas
Se verifica en SAE y se rectifican coordenadas
Se verifica en SAE y se rectifican coordenadas
Se verifica en SAE y se rectifican coordenadas
Se revisa en SAE y se corrigen las coordenadas y vereda
Se verifica en SAE y se rectifican coordenadas
Se verifica en SAE y se rectifican coordenadas
Se verifica en SAE y se rectifican coordenadas

Ningun expediente se encuentran en el SIRH, es decir que todos pertenecen al SAE

