

# CURSO DE PROFUNDIZACION CISCO (DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES INTEGRADAS LAN – WAN) CCNA 1 Y CCNA 2 EXPLORATION: FUNDAMENTOS DE NETWORKING Y PRINCIPIOS DE ENRUTAMIENTO

HENRY ALBERTO ROSERO MÓNICA KATHERINE ANGULO PALACIOS

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNAD-PASTO ESCUELA DE CIENCIAS BASICAS TECNOLOGIA E INGENIERIA INGENIERIA DE SISTEMAS SAN JUAN DE PASTO 2012



# CURSO DE PROFUNDIZACION CISCO (DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES INTEGRADAS LAN – WAN) CCNA 1 Y CCNA 2 EXPLORATION: FUNDAMENTOS DE NETWORKING Y PRINCIPIOS DE ENRUTAMIENTO

PRESENTADO POR:
HENRY ALBERTO ROSERO
COD: 98428549
GRUPO: 38
MÓNICA KATHERINE ANGULO PALACIOS
CODIGO: 59686881
GRUPO: 22

Monografía de grado para obtener el título de Ingeniero de Sistemas.

ASESOR: GERARDO GRANADOS INGENIERO DE SISTEMAS.

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNAD-PASTO ESCUELA DE CIENCIAS BASICAS TECNOLOGIA E INGENIERIA INGENIERIA DE SISTEMAS SAN JUAN DE PASTO 2012



| Nota de aceptación.              |
|----------------------------------|
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
| Firma del Presidente del Jurado. |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
| Firma del Jurado.                |
| r iiiia sor sarassi              |
|                                  |
|                                  |
|                                  |
|                                  |
| <del></del>                      |
| Firma del Jurado.                |



#### **DEDICATORIA**

"Agradezco a Dios por la esperanza que me mueve, el amor que me da felicidad y me ha permitido ver la luz para prepararme y cumplir la misión que me encomendó.

A mis padres Luís German Rosero y Alicia Araujo de Rosero, por su amor, comprensión, paciencia, apoyo incondicional y por enseñarme a luchar en esta vida llena de adversidades.

A mis abuelos, tíos y primos por su apoyo y consejos"

A mis hermanos Jackeline, Mercedes, Luís Antonio, Freddy y Jimmy, por sus ánimos, lealtad y serenidad que me abentan a la vida.

A mi gran amor María Isabel Córdoba, por su amor y adorable compañía en mi afán por alcanzar mi sueños.

A mi bebe SashaIsabella, mil bendiciones.

A mis amigos por sus consejos y orientación

A mi lucha, perseverancia, esfuerzo y constancia, pues sin ellas no hubiese hoy un logro alcanzado en esta hermosa trayectoria de la vida."

HENRY ALBERTO ROSERO



#### **DEDICATORIAS**

Son muchas las personas especiales a las que me gustaría agradecer su amistad, animo y compañía en las diferentes etapas de mi vida, algunas están aquí conmigo y otras en mi corazón, sin importar en donde estén les quiero dedicar y darle las gracias por formar parte de mí.

A dios que me dio la oportunidad de vivir y regalarme una familia maravillosa.

A mi madre que me dio la vida y ha estado conmigo en todo momento, aunque hemos pasado momentos difíciles siempre ha estado apoyándome y brindándome todo su amor.

A mi hija Katherin Yarleidy que es la luz y la fuerza fundamental para lograr todos mis éxitos y avanzar en la vida.

A mis hermanos y amigos que de una u otra forma estuvieron allí apoyándome en los momentos buenos y malos.

MÓNICA K, ANGULO PALACIOS



#### **AGRADECIMIENTOS**

Expreso mis más sinceros agradecimientos a:

UNAD Universidad Nacional Abierta y a Distancia por su compromiso con la población Colombiana menos favorecida.

A todos los Tutores que a lo largo de nuestro proceso nos han brindado su Colaboración compartiendo y enriqueciendo cada uno de nuestros quehaceres y compromisos en tan importante labor.

Ingeniera Adriana Aguirre e Ingeniera Especialista Miriam Benavides Ruano Coordinadora Escuela de Ciencias Básicas Tecnología e Ingeniería, por su motivación permanente encaminada a mejorar la calidad educativa y por ende la calidad de vida.

Gerardo Granados Especialista en Telecomunicaciones, Instructor Cisco CCNA, por su asesoría constante y orientación en tan difícil labor.

A todos mis compañeros por el compartir, aceptar y apoyar cada una de las actividades propuestas.



#### **CONTENIDO**

|                                                        | Pág. |
|--------------------------------------------------------|------|
| INTRODUCCION                                           | 19   |
| 1. JUSTIFICACIÓN                                       | 21   |
| 2. OBJETIVOS                                           | 22   |
| 2.1 OBJETIVO GENERAL                                   | 22   |
| 2.2 OBJETIVOS ESPECÍFICO                               | 23   |
| 3. CASO DE ESTUDIO CCNA1: FUNDAMENTOS DE NETWORKING    | 23   |
| 3.1 ASPECTOS GENERALES PARA LA SOLUCIÓN, PLANIFICACIÓN |      |
| DISEÑO E INSTALACIÓN DE LA RED WAN DE LA EMPRESA       |      |
| COMERCIANTES                                           | 25   |
| 3.2 CONFIGURACIÓN DE ROUTERS DESDE LA LÍNEA DE         |      |
| COMANDO (CLI)                                          | 27   |
| 3.3 RESULTADOS CASO DE ESTUDIO 1                       | 39   |
| 4. CCNA 2 EXPLORATION: PRINCIPIOS DE ENRUTAMIENTO      | 40   |
| 4.1 ASPECTOS GENERALES DE CASO DE ESTUDIO CCNA2        | 40   |
| 4.2 DESARROLLO DE LAS ACTIVIDADES TOPOLOGIA DE LA RED  | 43   |
| 4.3 CONFIGURACIONES DE LA RED                          | 64   |
| 4.4 CONFIGURACION DE EIGRP EN LA PRINCIPAL PASTO       | 66   |
| 4.5 CONFIGURACION DE RIP V2 EN LAS SUCURSALES          | 66   |
| 5. RESULTADOS CASO DE ESTUDIO 2                        | 67   |
| CONSLUSIONES                                           | 68   |
| BIBLIOGRAFIA                                           | 70   |



#### **LISTA DE CUADROS**

### CCNA 1 EXPLORATION FUNDAMENTOS DE NETWORKING Pág. Cuadro 2 26 **CCNA 2 PRINCIPIOS DE ENRUTAMIENTO** Cuadro 5 44 Cuadro 9. ......45



| Cuadro 20. | 49 |
|------------|----|
| Cuadro 21  | 49 |
| Cuadro 22  | 50 |
| Cuadro 23  | 50 |
| Cuadro 24. | 50 |
| Cuadro 25. | 51 |
| Cuadro 26. | 51 |
| Cuadro 27  | 51 |
| Cuadro 28. | 52 |
| Cuadro 29. | 52 |
| Cuadro 30. | 52 |
| Cuadro 31  | 53 |
| Cuadro 32. | 53 |
| Cuadro 33. | 53 |
| Cuadro 34  | 54 |
| Cuadro 35  | 54 |
| Cuadro 36. | 54 |
| Cuadro 37  | 55 |
| Cuadro 38  | 55 |
| Cuadro 39. | 55 |
| Cuadro 40. | 56 |
| Cuadro 41  | 56 |
| Cuadro 42  | 56 |
| Cuadro 43  | 57 |
| Cuadro 44. | 57 |
| Cuadro 45  | 58 |



| Cuadro 46  | 58 |
|------------|----|
| Cuadro 47  | 58 |
| Cuadro 48  | 59 |
| Cuadro 49. | 59 |
| Cuadro 50. | 59 |
| Cuadro 51. | 60 |
| Cuadro 52. | 60 |
| Cuadro 53. | 60 |
| Cuadro 54. | 61 |
| Cuadro 55. | 61 |
| Cuadro 56. | 61 |
| Cuadro 57. | 62 |
| Cuadro 58. | 62 |
| Cuadro 59. | 62 |
| Cuadro 60  | 63 |
| Cuadro 61  | 63 |
| Cuadro 62  | 63 |



#### **LISTA DE FIGURAS**

| CCNA 1 EXPLORATION FUNDAMENTOS DE NETWORKING | pág. |
|----------------------------------------------|------|
| Figura 1                                     | 26   |
| Figura 2                                     | 36   |
| Figura 3                                     | 37   |
| Figura 4                                     | 37   |
|                                              |      |
|                                              |      |
| CCNA 2 PRINCIPIOS DE ENRUTAMIENTO            |      |
|                                              |      |
| Figura 5                                     | 42   |



#### **GLOSARIO**

En esta sección se relacionan todos los conceptos dejando claro la teoría que se siguió como modelo de la realidad de los estudios de caso de redes que son el tema de investigación en este trabajo.

**Cable coaxial**: utilizado para transportar señales eléctricas de frecuencia que posee dos conductores concéntricos, uno central, llamado positivo o vivo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla o blindaje, que sirve como referencia de tierra y retorno de las corrientes.

Cable de fibra óptica: un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir.

**Cable de par trenzado:** es una forma de conexión en la que dos conductores son entrelazados para cancelar las interferencias electromagnéticas (IEM) de fuentes externas y la diafonía de los cables adyacentes.

Configuración: es un conjunto de datos que determina el valor de algunas variables de un programa o sistema de software, estás opciones generalmente son cargadas en su inicio y en algunos casos se deberá reiniciar para poder ver los cambios, ya que el programa no podrá cargarlos mientras se esté ejecutando, si la configuración aún no ha sido definida por el usuario (personalizada), el programa o sistema cargara la configuración por defecto (predeterminada).

Direcciones IP: es un número que identifica de manera lógica y jerárquica a una



interfaz de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo IP (Internet Protocol), que corresponde al nivel de red del protocolo TCP/IP. Dicho número no se ha de confundir con la dirección MAC que es un número hexadecimal fijo que es asignado a la tarjeta o dispositivo de red por el fabricante, mientras que la dirección IP se puede cambiar.

**Dirección IP dinámica:** es una IP asignada mediante un servidor DHCP (Dynamic Host ConfigurationProtocol) al usuario.

Dirección IP fija: es una IP asignada por el usuario de manera manual.

**DNS server**: consiste en un conjunto jerárquico de servidores DNS. Cada dominio o subdominio tiene una o más zonas de autoridad que publican la información acerca del dominio y los nombres de servicios de cualquier dominio incluido.

**Ethernet:** El nombre Ethernet viene del concepto físico de *ether*. En su momento el prefijo fast se le agregó para diferenciarla de la versión original Ethernet de 10 Mbps.

Fastethernet: es el nombre de una serie de estándares de IEEE de redes.

**Gateway:** (puerta de enlace) es un dispositivo, con frecuencia un ordenador, que permite interconectar redes con protocolos y arquitecturas diferentes a todos los niveles de comunicación. Su propósito es traducir la información del protocolo utilizado en una red al protocolo usado en la red de destino.

**Host:** Un host o anfitrión es un ordenador que funciona como el punto de inicio y final de las transferencias de datos. Más comúnmente descrito como el lugar donde reside un sitio web.



**IOS:** son las siglas de InternetworkOperatingSystem, (Sistema Operativo de Interconexión de Redes) sistema operativo creado por Cisco Systems para programar y mantener equipos de interconexión de redes informáticas como switches (conmutadores) y routers (enrutadores).

LAN: Una red de área local, red local o LAN (del inglés Local Área Network) es la interconexión de varios ordenadores y periféricos. Su extensión esta limitada físicamente a un edificio o a un entorno de 200 metros o con repetidores podríamos llegar a la distancia de un campo de 1 kilómetro. Su aplicación más extendida es la interconexión de ordenadores personales y estaciones de trabajo en oficinas, fábricas, etc., para compartir Recursos e intercambiar datos y aplicaciones.

**Loopback:** es un interfaz de red virtual que siempre representa al propio dispositivo independientemente de la dirección IP que se le haya asignado. El valor en IPv4 es 127.0.0.1 y :: 1 para el caso de IPv6.

**Mascara de subred:** La máscara permite distinguir los bits que identifican la red y los que identifican el host de una dirección IP.

**Modelo OSI:** es un lineamiento funcional para tareas de comunicaciones y, por consiguiente, no especifica un estándar de comunicación para dichas tareas. Sin embargo, muchos estándares y protocolos cumplen con los lineamientos del Modelo OSI.

**Modo de interfaz:** para configurar una de las interfaces de red (Fa0/0, S0/0/0, etc.)

Modo de router: para configurar los parámetros de uno de los protocolos de



enrutamiento.

OSPF: (Open ShortestPathFirst) frecuentemente abreviado OSPF es un protocolo de enrutamiento jerárquico de pasarela interior o IGP (Interior Gateway Protocol), que usa el algoritmo Dijkstra enlace-estado (LSA - Link StateAlgorithm) para calcular la ruta más corta posible. Usa cost como su medida de métrica. Además, construye una base de datos enlace-estado (link-statedatabase, LSDB) idéntica en todos los enrutadores de la zona.

**Packettracer:** es la herramienta de aprendizaje y simulación de redes interactiva para los instructores y alumnos de Cisco CCNA. Esta herramienta les permite a los usuarios crear topologías de red, configurar dispositivos, insertar paquetes y simular una red con múltiples representaciones visuales. PacketTracer se enfoca en apoyar mejor los protocolos de redes que se enseñan en el currículum de CCNA.

**Ping:** La utilidad ping comprueba el estado de la conexión con uno o varios equipos remotos por medio de los paquetes de solicitud de eco y de respuesta de eco (ambos definidos en el protocolo de red ICMP) para determinar si un sistema IP específico es accesible en una red. Es útil para diagnosticar los errores en redes o enrutadores IP.

**Protocolos**: es un conjunto de reglas usadas por computadoras para comunicarse unas con otras a través de una red. Un protocolo es una convención o estándar que controla o permite la conexión, comunicación, y transferencia de datos entre dos puntos finales.

**Red:** Una Red es un conjunto de computadores conectados entre sí, compartiendo sus recursos e información, entre las cuales se mantiene una comunicación constante.



**RIP**: son las siglas de RoutingInformationProtocol (Protocolo deencaminamiento de información). Es un protocolo de puerta de enlace interna o IGP (Internal Gateway Protocol) utilizado por los routers, (enrutadores), aunque también pueden actuar en equipos, para intercambiar información acerca de redes IP.

**Router:** dispositivo intermediario en las redes que se asegura de que la información no va a donde no es necesario; la labor principal de un Router es disipar y coordinar la información perteneciente a las direcciones lógicas de Red en un sistema.

**Show arp:** Muestra la tabla ARP del dispositivo.

Show mac-address-table: (sólo switch) Muestra la tabla MAC de un switch.

**Show startup-config:** Muestra la configuración guardada que se ubica en la NVRAM.

**Show running-config:** Muestra el contenido del archivo de configuración actualmente en ejecución o la configuración para una interfaz específica o información de clase de mapa.

**Show ip interfaces:** Muestra las estadísticas IPv4 para todas las interfaces de un router. Para ver las estadísticas de una interfaz específica, ejecute el comando **show ip interfaces** seguido del número de puerto/ranura de la interfaz específica. Otro formato importante de este comando es **show ip interface brief.** Es útil para obtener un resumen rápido de las interfaces y su estado operativo.

**Simulación:** es la experimentación con un modelo de una hipótesis o un conjunto de hipótesis de trabajo.



**Subred:** En redes de computadoras, una subred es un rango de direcciones lógicas. Cuando una red de computadoras se vuelve muy grande, conviene dividirla en subredes, por los siguientes motivos: Reducir el tamaño de los dominios de broadcast.

**Switch:** es un dispositivo de red que funciona como un repartidor y sirve para segmentar una red en diferentes dominios de difusión.

**Trama de red:** En redes una trama es una unidad de envío de datos. Viene a ser sinónimo de paquete de datos o Paquete de red, aunque se aplica principalmente en los niveles OSI más bajos, especialmente en el Nivel de enlace de datos.

**VLSM:** Las máscaras de subred de tamaño variable (variable lengthsubnetmask, (VLSM) representan otra de las tantas soluciones que se implementaron para el agotamiento de direcciones ip (1987) y otras como la división en subredes (1985), el enrutamiento de interdominio CIDR (1993), NAT y las direcciones ipprivadas.

**WAN:** Una Red de Área Amplia (Wide Área Network o WAN, del inglés), es un tipo de red de computadoras capaz de cubrir distancias desde unos 100km hasta unos 1000 km, dando el servicio a un país o un continente.



#### RESUMEN

En este curso, hemos aprendió las habilidades prácticas y conceptuales que constituyen la base para entender lo básico de las redes. Nos hemos familiarizo con los distintos dispositivos de red, esquemas de direccionamiento y finalmente con los tipos de medios que se usan para transmitir datos a través de la red. Adquirimos experiencia usando las herramientas y utilidades de redes como el PacketTracer, que nos ayudo a poner en práctica los conocimientos que se iban adquiriendo, lo cual nos facilitó nuestra experiencia ya en un caso real.

En los laboratorios que realizamos las actividades de PacketTracer, nos permitió que exploremos la interacción de los diferentes protocolos, servicios y aplicaciones que operan en cada una de las capas de los diferentes modelos, tanto OSI como TCP/IP. Se mostraron los conceptos de direccionamiento y enrutamiento, aprendimos cómo usar la MASCARA DE RED para determinar la cantidad de subredes y hosts de una red y evitar el desperdicio de direcciones.

Se presentaron una serie de comandos y opciones a seguir en caso de que algún inconveniente se presente en el funcionamiento de la red y así podamos encontrar soluciones rápidas y eficientes a estos inconvenientes.

En lo que se refiere a la configuración de los diferentes dispositivos CISCO cabe aclarar que se utilizó los comandos IOS de Cisco para routers y switches.



#### INTRODUCCION

En la actualidad existe una gran importancia en relación a todo lo que tenga que ver con las redes de datos, ya que se han convertido en partes esencial dentro de la interacción entre diferentes usuarios que comparten una serie de recursos que de otra manera sería difícil hacer.

Este trabajo hace referencia al diseño e implementación de soluciones integradas LAN – WAN, el cual consta de dos practicas, en la primera parte se desarrolla la práctica relacionada con CCNA 1 FUNDAMENTOS DE NETWORKING, trabajo que tiene como objetivo desarrollar un caso de estudio en el cual se pondrá en práctica gran parte de los conocimientos y aptitudes desarrolladas durante el transcurso del curso CCNA1, se toma como base para el desarrollo del mismo la empresa **COMERCIANTES S.A.** sobre la cual se diseñará tanto la red LAN como la WAN que interconectará las diferentes ciudades sobre las cuales se tiene sucursales. Además de lo anterior, simularemos el funcionamiento de la misma a través de una herramienta muy útil para estos casos "PACKET TRACER", que nos ayudará a verificar el funcionamiento y la configuración "direccionamiento" de esta.

Debemos establecer criterios como el protocolo de enrutamiento, puertos seriales, puertos FastEthernet, tablas de direcciones IP, por cada LAN, conexión serial y configuración de Router, creando la topología de la red, asignando esquema de direcciones, construyendo la tabla de información de subredes y de direccionamiento, así como realizar las pruebas de conectividad utilizando comandos como "ping y Tracer".

En la segunda parte se desarrolla la práctica correspondiente al caso de estudio 2 relacionada con CCNA 2 PRINCIPIOS DE ENRUTAMIENTO en donde se



diseña el diagrama de topología como el enlace de comunicación entre ordenadores, Router, switch, con las estaciones de trabajo o hosts, documentando el esquema de direccionamiento configurando el enrutamiento OSPF, haciendo uso de la topología lógica mediante el programa del PacketTracer realizando la simulación interactiva del caso de estudio 2, teniendo en cuenta los requisitos solicitados, según el nombre de host, interfaz y cantidad de host. Además, de las direcciones IP que corresponden a la interfaz Fa0/0 en los Router R1, R2, R3 y R4 cada una con su máscara de red.



#### 1. JUSTIFICACIÓN.

Durante el transcurso de la vida de cualquier profesional y en nuestro caso dentro de la ingeniería de sistemas, es de vital importancia que se maneje a la perfección todas las temáticas dentro de cada una de las áreas. Por ende debemos estar conscientes de lo amplio y lo apasionante de las temáticas relacionadas con la configuración de los equipos utilizados dentro de las redes computacionales. Es trascendental que pongamos en práctica todo lo aprendido en este curso, y que mejor manera sino a través del desarrollo de unos CASOS DE ESTUDIO por medio del cual logremos profundizar todos nuestros conocimientos, diseñando, simulando casos reales de empresas reales.



#### 2. OBJETIVOS

#### 2.1 Objetivo general

Analizar y resolver los casos de estudio CCNA 1 y CCNA 2 Exploration mediante la utilización de la herramienta de simulación de redes PacketTracer proporcionando una excelente conectividad entre todos los dispositivos de las redes.

#### 2.2 Objetivos Específico

- ✓ Demostrar que el proceso de estudio autónomo, es un beneficio para aquellas personas que no cuentan con tiempo suficiente para ampliar sus conocimientos.
- ✓ Aprender a través de los trabajos colaborativos, la importancia de trabajar en grupo, y conocer diferentes puntos de vista respecto a un CASO DE ESTUDIO.
- ✓ Conocer el manejo de la herramienta de simulación de redes Packettracer.
- ✓ Configurar los dispositivos finales e intermediarios en las redes.
- ✓ Conocer los diferentes protocolos de enrutamiento y envío de paquetes entre redes, teniendo en cuenta el uso y administración adecuado del Sistema Operativo de Internetworking (IOS).



# 3. CASO DE ESTUDIO CCNA1 EXPLORATION: FUNDAMENTOS DE NETWORKING

La Universidad Nacional Abierta y a Distancia – UNAD-, desea implementar en las cedes de Bogotá, Bucaramanga y pasto una red, que cumpla con los requerimientos que se especifican a continuación:

La UNAD tiene tres sedes: Bogota, Bucaramanga y Pasto. Para ello es necesario configurar 3 routers, (1 en cada sede), a la cual se encuentran conectados Switches de acuerdo a la siguiente distribución:

Bogotá: Switch1: Ingenieria

Switch2: R y C

Pasto: Switch1: SPasto

Bucaramanga: Switch1: Biblioteca

Switch2: Administración

El router de Bogotá será quien maneje la sincronización (adicionar clockrate). La cantidad de host requeridos por cada una de las LAN es la siguiente:

Bogotá: 10 Pasto: 5 Bucaramanga: 15

#### Se desea establecer cada uno de los siguientes criterios:

Diseñar el esquema de la anterior descripción Protocolo de enrutamiento: RIP Versión 2 Todos los puertos seriales 0 (S0) son terminales DCE Todos los puertos seriales 0 (S1) son terminales DTE

### Definir la tabla de direcciones IP indicando por cada subred los siguientes elementos por cada LAN:

Dirección de Red.
Dirección IP de Gateway.
Dirección IP del Primer PC.
Dirección IP del último PC.
Dirección de Broadcast.
Máscara de Subred



#### Por cada conexión serial:

Dirección de Red.
Dirección IP Serial 0 (Indicar a qué Router pertenece).
Dirección IP Serial 1 (Indicar a qué Router pertenece).
Dirección de Broadcast.
Máscara de Subred

#### En cada Router configurar:

Nombre del Router (Hostname). Direcciones IP de las Interfaces a utilizar.

Por cada interface utilizada, hacer uso del comando DESCRIPTION con el fin de indicar la función que cumple cada interface. Ej. Interfaz de conexión con la red LAN Mercadeo.

Establecer contraseñas para: CON 0, VTY, ENABLE SECRET. Todas con el Password: CISCO.

#### Protocolo de enrutamiento a utilizar: RIP Versión 2

Se debe realizar la configuración de la misma mediante el uso de PacketTracer, los routers deben ser de referencia 1841 y los Switches 2950. Por cada subred se deben dibujar solamente dos Host identificados con las direcciones IP correspondientes al primer y último PC acorde con la cantidad de equipos establecidos por subred.

El trabajo debe incluir toda la documentación correspondiente al diseño, copiar las configuraciones finales de cada router mediante el uso del comando Show Runningconfig, archivo de simulación en PacketTracer y verificación de funcionamiento de la red mediante el uso de comandos: Ping y Traceroute.



# 3.1. ASPECTOS GENERALES PARA LA SOLUCIÓN, PLANIFICACIÓN DISEÑO E INSTALACIÓN DE LA RED WAN DE LA EMPRESA COMERCIANTES.

Para la solución del caso de estudio, se diseña un esquema de 3 redes LAN, donde se representa su conexión a través de los router.

Nota: el programa PacketTracer ha sido utilizado para el desarrollo de éste trabajo y realizar la simulación.

#### Configurando el router:

Para configurar los routers se deben conocer sus direcciones IP, son conocidas como Puerta de enlace.

Los Switches, son los encargados de gestionar la distribución de la información a las Estaciones de Trabajo y/o viceversa. Los equipos de Red envían la dirección del recepto, que conecta directamente los ordenadores emisor y receptor para el envío de información.

El caso de estudio implica en primer lugar un direccionamiento, por lo que se hace necesario contar un espacio de red asignado, el cual es 192.168.1.0/25 cumpliendo con los requisitos.

#### Para el desarrollo del trabajo, se establecen las subredes, así:

Para iniciar con la creación del diseño de direccionamiento adecuado, es recomendable indicar con la de mayor demanda. En este caso, la sede Bucaramanga con 15 host por LAN tiene mayor demanda.

#### Para Bucaramanga que da así.

**Cuadro 1**. Tabla de direccionamiento Bucaramanga.

|                        | IP           | MASCARA         |
|------------------------|--------------|-----------------|
| IP de la red 0         | 192.168.1.0  | 255.255.255.224 |
| IP de la red 1° subred | 192.168.1.28 | 255.255.255.224 |
| IP de la red 2° subred | 192.168.1.54 | 255.255.255.224 |
| IP de la red 3° subred | 192.168.1.86 | 255.255.255.224 |



Cuadro 2. Tabla de direccionamiento de Subred Bucaramanga.

|                        | IP           | MASCARA         |
|------------------------|--------------|-----------------|
| IP de la red 0         | 192.168.1.60 | 255.255.255.224 |
| IP de la red 1° subred | 192.168.1.28 | 255.255.255.224 |

- Subred 192.168.1.0/27 a la LAN de BIBLIOTECA BUCARAMANGA
- Subred 192.168.1.30/27 a la LAN de ADMINISTRACIÓN BUCARAMANGA

#### Para Bogotá quedaría así:

Cuadro 3. Tabla de direccionamiento Bogotá.

|                        | IP            | MASCARA         |
|------------------------|---------------|-----------------|
| IP de la red 0         | 192.168.1.96  | 255.255.255.248 |
| IP de la red 1° subred | 192.168.1.104 | 255.255.255.248 |
| IP de la red 2° subred | 192.168.1.112 | 255.255.255.248 |
| IP de la red 3° subred | 192.168.1.120 | 255.255.255.248 |

Subred 192.168.1.66 /28 a INGENIERÍA BOGOTÁ Subred 192.168.1.82/28 a R Y C BOGOTÁ

#### Para Pasto que daría así:

Cuadro 4. Tabla de direccionamiento Pasto.

|                        | IP            | MASCARA         |
|------------------------|---------------|-----------------|
| IP de la red 0         | 192.168.1.102 | 255.255.255.252 |
| IP de la red 1° subred | 192.168.1.108 | 255.255.255.252 |



#### Diseño de la topología

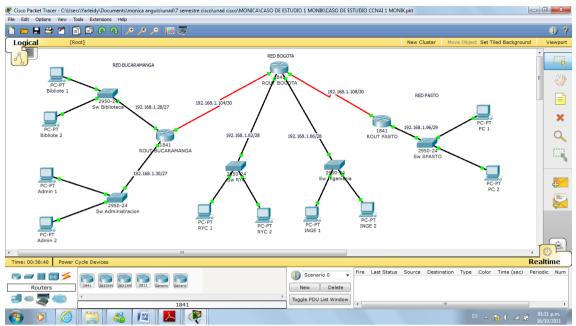



Figura 1. Diseño de la red

# 3.2. CONFIGURACIÓN DE ROUTERS DESDE LA LÍNEA DE COMANDO (CLI).

#### **DIRECCIONES IP DE LAS INTERFACES**

#### Bucaramanga

BUCARAMANGA #configure terminal

BUCARAMANGA (config)#interface FastEthernet0/0

BUCARAMANGA (config-if)#ip address 192.168.1.30 255.255.255.224

BUCARAMANGA (config-if)#description CONECTADO CON LAN BIBLIOTECA DE

**BUCARAMANGA** 

BUCARAMANGA (config-if)#no shutdown

**BUCARAMANGA** #configure terminal

BUCARAMANGA (config)#interface FastEthernet0/1

BUCARAMANGA (config-if)#ip address 192.168.1.62 255.255.255.224

BUCARAMANGA (config-if)#description SE CONECTA CON LAN

ADMINISTRACION DE BUCARAMANGA

BUCARAMANGA (config-if)#no shutdown

BUCARAMANGA (config)#interface Serial0/0/1



BUCARAMANGA (config-if)#ipaddress 192.168.1.110 255.255.252 BUCARAMANGA (config-if)#description SE CONECTA CON WAN BUCARAMANGA BOGOTA BUCARAMANGA (config-if)# no shutdown

#### ♣ Bogotá

**BOGOTA** #configure terminal

BOGOTA (config)#interface FastEthernet0/0

BOGOTA (config-if)# ip address 192.168.1.78 255.255.255.240

BOGOTA (config-if)# description SE CONECTA CON LAN INGENIERIA DE

**BOGOTA** 

BOGOTA (config-if)#no shutdown

**BOGOTA** #configure terminal

BOGOTA (config)#interface FastEthernet0/1

BOGOTA (config-if)# ip address 192.168.194 255.255.255.240

BOGOTA (config-if)# description ISE CONECTA CON LAN RYC DE BOGOTA.

BOGOTA (config-if)#no shutdown

BOGOTA (config)#interface Serial0/0/0

BOGOTA (config-if)# ip address 192.168.1.106 255.255.255.252

BOGOTA (config-if)# description SE CONECTA CON WAN BOGOTA PASTO

BOGOTA (config-if)#clock rate 56000

BOGOTA (config-if)# no shutdown

BOGOTA (config)#interface Serial0/0/1

BOGOTA (config-if)# ip address 192.168.1.109 255.255.255.252

BOGOTA (config-if)# description SE CONECTA CON WAN BUCARAMANGA

**BOGOTA** 

BOGOTA (config-if)#clock rate 56000

BOGOTA (config-if)# no shutdown

#### Pasto

PASTO #configure terminal

PASTO (config)#interface FastEthernet0/0

PASTO (config-if)#ip address 192.168.1.102 255.255.255.248

PASTO (config-if)#description SE CONECTA CON LAN PASTO (config-if)#no shutdown

PASTO (config)#interface Serial0/0/0

PASTO (config-if)#ip address 192.168.1.105 255.255.255.252

PASTO (config-if)#description SE CONECTA CON WAN BOGOTA PASTO



#### PASTO (config-if)# no shutdown

#### **ESTABLECECIENDO CONTRASEÑAS**

Para proporcionar una mayor seguridad, utilice el comando enablepassword o el Comando enablesecret. Puede usarse cualquiera de estos comandos para establecer la autenticación antes de acceder al modo EXEC privilegiado (enable).

El comando enablepassword se ejecutaría si el dispositivo usa una versión anterior del software IOS de Cisco que no reconoce el comando enablesecret.

#### Bucaramanga

BUCARAMANGA (config)#enablesecret CISCO BUCARAMANGA (config)#no enablepassword

BUCARAMANGA (config)#line console 0

BUCARAMANGA (config-line)#password CSICO

BUCARAMANGA (config-line)#login

BUCARAMANGA (config-line)#exit

BUCARAMANGA (config)#

BUCARAMANGA (config)#line vty 0 4

BUCARAMANGA (config-line)#password CISCO

BUCARAMANGA (config-line)#login

BUCARAMANGA (config-line)#exit

BUCARAMANGA (config)#

#### 🖶 Bogotá

BOGOTA (config)#enable secret CISCO

BOGOTA (config)#no enable password

BOGOTA (config)#line console 0

BOGOTA (config-line)#password CISCO

BOGOTA (config-line)#login

BOGOTA (config-line)#exit

BOGOTA (config)#

BOGOTA (config)#line vty 0 4

BOGOTA (config-line)#password CISCO

BOGOTA (config-line)#login

BOGOTA (config-line)#exit

BOGOTA (config)#



#### Pasto

PASTO (config)#enable secret CISCO

PASTO (config)#no enable password

PASTO (config)#line console 0

PASTO (config-line)#password CSICO

PASTO (config-line)#login

PASTO (config-line)#exit

PASTO (config)#

PASTO (config)#line vty 0 4

PASTO (config-line)#password CISCO

PASTO (config-line)#login

PASTO (config-line)#exit

PASTO (config)#

#### ESTABLECIENDO PROTOCOLO DE ENRUTAMIENTO

#### Bucaramanga

BUCARAMANGA(config)#router rip

BUCARAMANGA(config-router)#version 2

BUCARAMANGA(config-router)#network 192.168.1.0

BUCARAMANGA(config-router)#network 192.168.1.32

BUCARAMANGA(config-router)#network 192.168.1.108

BUCARAMANGA(config-router)#passive-interface fastEthernet 0/0

BUCARAMANGA(config-router)#passive-interface fastEthernet 0/1

#### Bogotá

BOGOTA(config)#router rip

BOGOTA(config-router)#version 2

BOGOTA(config-router)#network 192.168.1.64

BOGOTA(config-router)#network 192.168.1.80

BOGOTA(config-router)#network 192.168.1.108

BOGOTA(config-router)#network 192.168.1.104

BOGOTA(config-router)#passive-interface fastEthernet 0/0

BOGOTA(config-router)#passive-interface fastEthernet 0/1

#### Pasto

PASTO(config-router)#version 2

PASTO(config-router)#network

PASTO(config-router)#network 192.168.1.96



PASTO(config-router)#network 192.168.1.8.104 PASTO(config-router)#passive-interface fastEthernet 0/0

#### **DOCUMENTACIÓN DE LA RED**

Se usan los correspondientes comandos show para verificar la operación del dispositivo. Se utiliza el comando show running-config para ver un archivo de configuración:

```
show running-config BUCARAMANGA
version 12.4
no service password-encryption
hostname BUCARAMANGA
enable secret 5 $1$mERr$NJdjwh5wX8la/X8aC4Rlu.
ipssh version 1
no ip domain-lookup
interface FastEthernet0/0
description CONECTADO CON LAN BIBLIOTECA DE BUCARAMANGA
mac-address 1452.1478.7482
ip address 192.168.1.30 255.255.255.224
duplex auto
speed auto
interface FastEthernet0/1
description SE CONECTA CON LAN ADMINISTRACION DE
BUCARAMANGA
mac-address 7455.1122.7800
ip address 192.168.1.62 255.255.255.224
duplex auto
speed auto
interface Serial0/0/0
no ip address
```



```
shutdown
interface Serial0/0/1
description SE CONECTA CON WAN BUCARAMANGA BOGOTA
ip address 192.168.1.110 255.255.255.252
interface Vlan1
no ip address
shutdown
router rip
version 2
passive-interface FastEthernet0/0
passive-interface FastEthernet0/1
network 192.168.1.0
ip classless
line con 0
password CISCO
login
line vty 04
password CISCO
login
End
```

#### show ip interface brief \_BUCARAMANGA

BUCARAMANGA>show ip interface brief
Interface IP-Address OK? Method Status Protocol
FastEthernet0/0 192.168.1.30 YES manual up up
FastEthernet0/1 192.168.1.62 YES manual up up
Serial0/0/0 unassigned YES manual administratively down down
Serial0/0/1 192.168.1.110 YES manual up up
Vlan1 unassigned YES manual administratively down down
BUCARAMANGA>



```
show running-config_BOGOTA
version 12.4
no service password-encryption
hostname BOGOTA
enable secret 5 $1$mERr$NJdjwh5wX8Ia/X8aC4RIu.
ipssh version 1
no ip domain-lookup
interface FastEthernet0/0
description SE CONECTA CON LAN INGENIERIA DE BOGOTA
mac-address 0000.2bd7.7412
ip address 192.168.1.78 255.255.255.240
duplex auto
speed auto
interface FastEthernet0/1
description SE CONECTA CON LAN RYC DE BOGOTA
mac-address 7845.2369.0123
ip address 192.168.1.94 255.255.255.240
duplex auto
speed auto
interface Serial0/0/0
description SE CONECTA CON WAN BOGOTA PASTO
ip address 192.168.1.106 255.255.255.252
clock rate 56000
interface Serial0/0/1
description SE CONECTA CON WAN BUCARAMANGA BOGOTA
ip address 192.168.1.109 255.255.255.252
clock rate 56000
interface Vlan1
```



```
no ip address
shutdown
router rip
version 2
passive-interface FastEthernet0/0
passive-interface FastEthernet0/1
network 192.168.1.0
ip classless
line con 0
password CISCO
login
line vty 0 4
32
password CISCO
login
1
End
```

#### show ip route \_BOGOTA

BOGOTA>show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF externaltype 1, E2 - OSPF externaltype 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area \* - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route Gateway of last resort is not set 192.168.1.0/24 is variably subnetted, 7 subnets, 4 masks R 192.168.1.0/27 [120/1] via 192.168.1.110, 00:00:20, Serial0/0/1 R 192.168.1.32/27 [120/1] via 192.168.1.110, 00:00:20, Serial0/0/1 C 192.168.1.64/28 is directly connected, FastEthernet0/0 C 192.168.1.96/29 [120/1] via 192.168.1.105, 00:00:19, Serial0/0/0 C 192.168.1.104/30 is directly connected, Serial0/0/0



## C 192.168.1.108/30 is directly connected, Serial0/0/1 BOGOTA>

```
show running-config_PASTO
version 12.4
no service password-encryption
hostname PASTO
enable secret 5 $1$mERr$NJdjwh5wX8Ia/X8aC4RIu.
ipssh version 1
no ip domain-lookup
interface FastEthernet0/0
description SE CONECTA CON LAN PASTO
mac-address 0005.5e95.7845
ip address 192.168.1.102 255.255.255.248
duplex auto
speed auto
interface FastEthernet0/1
mac-address 0005.5e78.7845
no ip address
duplex auto
speed auto
shutdown
interface Serial0/0/0
description SE CONECTA CON WAN BOGORA PASTO
ip address 192.168.1.105 255.255.255.252
interface Serial0/0/1
no ip address
shutdown
```



```
interface Vlan1
no ip address
shutdown
!
router rip
version 2
passive-interface FastEthernet0/0
network 192.168.1.0
ip classless
line con 0
password CISCO
login
line vty 04
password CISCO
login
1
End
```

#### show ip route \_PASTO

PASTO>show ip route

34

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF externaltype 1, E2 - OSPF externaltype 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area \* - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route Gateway of last resort is not set 192.168.1.0/24 is variably subnetted, 7 subnets, 4 masks R 192.168.1.0/27 [120/2] via 192.168.1.106, 00:00:21, Serial0/0/0 R 192.168.1.32/27 [120/2] via 192.168.1.106, 00:00:21, Serial0/0/0 R 192.168.1.64/28 [120/1] via 192.168.1.106, 00:00:21, Serial0/0/0 R 192.168.1.80/28 [120/1] via 192.168.1.106, 00:00:21, Serial0/0/0



C 192.168.1.96/29 is directly connected, FastEthernet0/0 C 192.168.1.104/30 is directly connected, Serial0/0/0 R 192.168.1.108/30 [120/1] via 192.168.1.106, 00:00:21, Serial0/0/0 PASTO>

#### **PING DE PRUEBA**

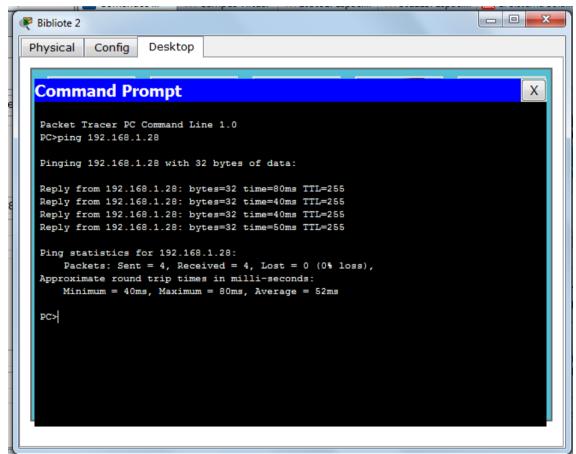
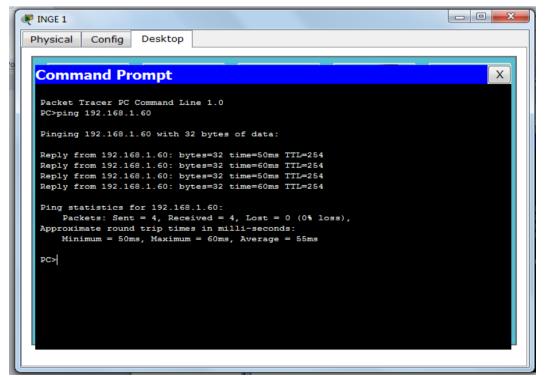




Figura 2. Ping de Pruebas 1.



```
RYC 2
                                                                                                   _ O X
 Physical
              Config
                           Desktop
                                                                                                             X
   Command Prompt
    Packet Tracer PC Command Line 1.0
    PC>ping 192.168.1.102
    Pinging 192.168.1.102 with 32 bytes of data:
   Reply from 192.168.1.102: bytes=32 time=50ms TTL=254 Reply from 192.168.1.102: bytes=32 time=42ms TTL=254 Reply from 192.168.1.102: bytes=32 time=70ms TTL=254
    Reply from 192.168.1.102: bytes=32 time=70ms TTL=254
    Ping statistics for 192.168.1.102:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
        Minimum = 42ms, Maximum = 70ms, Average = 58ms
    PC>
```

Figura 3. Ping de Pruebas 2.



Fiigura 4. Ping de Pruebas 3.



#### 3.3. RESULTADOS CASO DE ESTUDIO 1

- Con la elaboración de este estudio de caso, pude llevar a la práctica los temas vistos durante el transcurso del primer modulo y a la vez he cumplido con las metas planteadas en el desarrollo de la topología requerida y su funcionamiento.
- Se logro aplicar los conocimientos adquiridos, en la realización de este trabajo con la utilización de simulador como lo es el Packet Tracer5.
- Fue necesario Incluir toda la documentación correspondiente al diseño, copiando las configuraciones finales de cada router mediante el uso del comando Show Running-config, archivo de simulación en PacketTracer.
- Se Dibujo dos Host identificados con las direcciones IP correspondientes al primer y último PC acorde con la cantidad de equipos establecidos por subred y Verificamos el funcionamiento de la red mediante el uso de comandos: Ping y Traceroute.



#### 4. CCNA 2 EXPLORATION: PRINCIPIOS DE ENRUTAMIENTO.

- Con la elaboración de este estudio de caso, pude llevar a la práctica los temas vistos durante el transcurso del primer modulo y a la vez he cumplido con las metas planteadas en el desarrollo de la topología requerida y su funcionamiento.
- Se logro aplicar los conocimientos adquiridos, en la realización de este trabajo con la utilización de simulador como lo es el Packet Tracer5.
- Fue necesario Incluir toda la documentación correspondiente al diseño, copiando las configuraciones finales de cada router mediante el uso del comando Show Running-config, archivo de simulación en PacketTracer.
- Se Dibujo dos Host identificados con las direcciones IP correspondientes al primer y último PC acorde con la cantidad de equipos establecidos por subred y Verificamos el funcionamiento de la red mediante el uso de comandos: Ping y Traceroute.

#### 4.1. ASPECTOS GENERALES DE CASO DE ESTUDIO CCNA2

Una empresa con varias sucursales en diferentes ciudades del país desea modernizar el manejo de la red de datos que actualmente tiene y se describe a continuación:

Nombre empresa: CHALVER

**Objeto social:** Empresa dedicada a la exportación e importación de equipos de cómputo.

#### Sedes:

\*Principal: Pasto

#### Sucursales:

- Bogotá
- Medellín
- Pereira
- Cali
- Cartagena
- Ibagué
- Cúcuta



- Bucaramanga
- Barranquilla
- Villavicencio

#### Descripción Sede Principal:

Se cuenta con un edificio que tiene 3 pisos, en el primero están los cuartos de equipos que permiten la conexión con todo el país, allí se tiene:

- 3 Enrutadores CISCO principales, uno para el enlace nacional, otro para la administración de la red interna en los pisos 1 y 2 y otro para el tercer piso.
- 3 SwitchesCatalyst CISCO, uno para cada piso del edificio con soporte de 24 equipos cada uno, actualmente se está al 95% de la capacidad.
- Un canal dedicado con tecnología ATM que se ha contratado con ISP nacional de capacidad de 2048 Kbps.
- El direccionamiento a nivel local es clase C. Se cuenta con 70 equipos en tres pisos, se tienelas oficinas de Sistemas (15 equipos, primer piso), Gerencia (5 Equipos, primer piso), Ventas (30 equipos, segundo piso), Importaciones (10 Equipos, tercer piso), Mercadeo (5 Equipos, tercer piso) y Contabilidad (5 Equipos,tercer piso)
- El direccionamiento a nivel nacional es Clase A privada, se tiene un IP pública al ISP para el servicio de Internet la cual es: 200.21.85.93 Mascara: 255.255.240.0.
- Actualmente el Enrutamiento se hace con RIP versión 1, tanto para la parte local como para la parte nacional.

#### **DESCRIPCIONES SUCURSALES:**

Cada sucursal se compone de oficinas arrendadas en un piso de un edificio y compone de los siguientes elementos:

- Dos Routers por sucursal: Uno para el enlace nacional y otro para la administración de la red interna.
- Un SwitchCatalyst para 24 equipos, actualmente se utilizan 20 puertos.



- Los 20 equipos se utilizan así: 10 para ventas, 5 para sistemas, 2 para importaciones y 3 para contabilidad.
- Un canal dedicado con tecnología ATM para conectarse a la sede principal de 512Kbps.
- El direccionamiento a nivel local es Clase C privado y a nivel nacional B como se había dicho en la descripción de la sede principal.
- El enrutamiento también es RIP.

#### **ACTIVIDADES A DESARROLLAR**

- Realizar el diseño de la sede principal y sucursales con las especificaciones actuales, un archivo PKT para la sede principal y para una sucursal.
- 2. Realizar un diseño a nivel de Routers y Switch para todo el país con PacketTracert.
- 3. Aplicar el direccionamiento especificado en el diseño del punto anterior.
- 4. Aplicar el enrutamiento actual en el diseño del punto 2.
- 5. Cambiar las especificaciones de direccionamiento y enrutamiento según las siguientes condiciones:
- ♣ Aplicar VLSM en la sede principal y sucursales
- Aplicar VLSM para la conexión nacional
- Aplicar Enrutamiento OSPF en la conexión Nacional
- 4 Aplicar Enrutamiento EIGRP para la conexión interna en la sede principal
- Aplicar Enrutamiento RIPv2 para todas las sucursales
- Permitir el acceso a la IP Publica para: Pasto, Barranquilla, Bogotá, Medellín y Bucaramanga.



# 4.2. DESARROLLO DE LAS ACTIVIDADES TOPOLOGIA DE LA RED

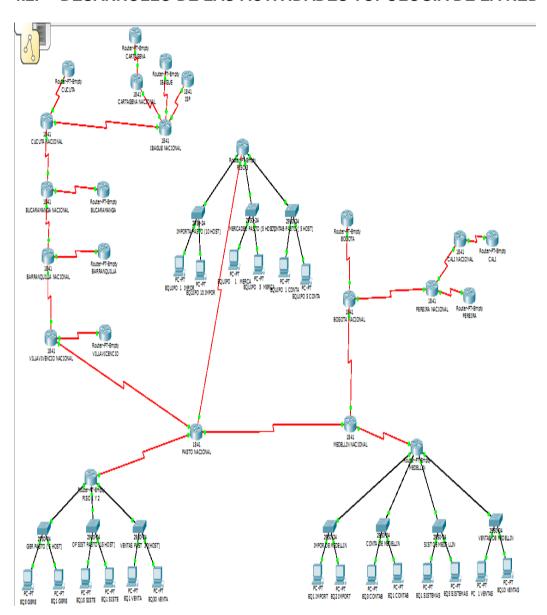



Figura 5. Topología De La Red



#### **RED PRINCIPAL PASTO**

#### TABLA DE DIRECCIONES IP PRINCIPAL PASTO

# Se parte de la porción de red clase C 192.168. 200.0/24

Cuadro 5. Direcciones Ip Principal Pasto

| RED                                  | Número de host | Red asignada      |
|--------------------------------------|----------------|-------------------|
| LAN ventas pasto                     | 30             | 192.168.34.0/26   |
| LAN of sistemas pasto                | 15             | 192.168.34.64/27  |
| LAN importaciones pasto              | 10             | 192.168.34.96/28  |
| LAN gerencia pasto                   | 5              | 192.168.34.112/29 |
| LAN mercado pasto                    | 5              | 192.168.34.120/29 |
| LAN contabilidad pasto               | 5              | 192.168.34.128/29 |
| WAN r piso 3-pasto NACIONAL          | 2 direcciones  | 192.168.34.136/30 |
| WAN r piso 1 y 2 – pasto<br>NACIONAL | 2 direcciones  | 92.168.34.140/30  |

# LAN VENTAS PASTO (30 HOST)

#### Cuadro 6. Direcciones Ventas Pasto

| 1 | Dirección de red               | 192.168. 34.0/26 |
|---|--------------------------------|------------------|
| 2 | Dirección IP de Gateway        | 192.168. 34.62   |
| 3 | Dirección IP del primer EQUIPO | 192.168. 34.1    |
| 4 | Dirección IP del último EQUIPO | 192.168. 34.30   |
| 5 | Dirección de broadcast         | 192.168. 34.63   |
| 6 | Máscara de subred              | 255.255.255.192  |



Cuadro 7. Direcciones Ip Ventas Pasto

| =                    |          |                |                      |                     |
|----------------------|----------|----------------|----------------------|---------------------|
| Dispositivo          | Interfaz | Dirección IP   | Máscara de<br>subred | Gateway por defecto |
| ROUTER<br>PISO 1 Y 2 | Fa0/0    | 192.168. 34.62 | 255.255.255.192      | No aplicable        |
| EQUIPO 1<br>VENT     | NIC      | 192.168. 34.1  | 255.255.255.192      | 192.168.34.62       |
| EQUIPO 30<br>VENT    | NIC      | 192.168. 34.30 | 255.255.255.192      | 192.168.34.62       |

# LAN OFICINA SISTEMAS PASTO (15 HOST)

Cuadro 8. Lan Oficina Sistemas Pasto

| 1 | Dirección de red               | 192.168. 34.64/27 |
|---|--------------------------------|-------------------|
| 2 | Dirección IP de Gateway        | 192.168. 34.94    |
| 3 | Dirección IP del primer EQUIPO | 192.168. 34.65    |
| 4 | Dirección IP del último EQUIPO | 192.168. 34.79    |
| 5 | Dirección de broadcast         | 192.168. 34.95    |
| 6 | Máscara de subred              | 255.255.255.224   |

## Cuadro 9. Direcciones Ip Sistemas Pasto

| Dispositivo          | Interfaz | Dirección IP    | Máscara de<br>subred | Gateway por defecto |
|----------------------|----------|-----------------|----------------------|---------------------|
| ROUTER<br>PISO 1 Y 2 | Fa0/0    | 192.168. 34. 94 | 255.255.255.224      | No aplicable        |
| EQUIPO 1<br>VENT     | NIC      | 192.168. 34. 65 | 255.255.255.224      | 192.168.34.94       |
| EQUIPO 15<br>VENT    | NIC      | 192.168. 34. 79 | 255.255.255.224      | 192.168.34.94       |



# LAN IMPORTACIONES PASTO (10 HOST)

Cuadro 10. Direcciones IP Importaciones Pasto

|   | •                              |                   |
|---|--------------------------------|-------------------|
| 1 | Dirección de red               | 192.168. 34.96/28 |
| 2 | Dirección IP de Gateway        | 192.168. 34.110   |
| 3 | Dirección IP del primer EQUIPO | 192.168. 34.97    |
| 4 | Dirección IP del último EQUIPO | 192.168. 34.106   |
| 5 | Dirección de broadcast         | 192.168. 34.111   |
| 6 | Máscara de subred              | 255.255.255.240   |

Cuadro 11. Descripciones IP Importaciones Pasto

| Dispositivo        | Interfaz | Dirección IP    | Máscara de<br>subred | Gateway por defecto |
|--------------------|----------|-----------------|----------------------|---------------------|
| ROUTER<br>PISO 3   | Fa0/0    | 192.168. 34.110 | 255.255.255.240      | No aplicable        |
| EQUIPO 1<br>IMPOR  | NIC      | 192.168. 34.97  | 255.255.255.240      | 192.168.34.110      |
| EQUIPO 10<br>IMPOR | NIC      | 192.168. 34.106 | 255.255.255.240      | 192.168.34.110      |

# **LAN GERENCIA PASTO (5 HOST)**

Cuadro 12. Direcciones IP Gerencia Pasto

| 1 | Dirección de red               | 192.168. 34.112/29 |
|---|--------------------------------|--------------------|
| 2 | Dirección IP de Gateway        | 192.168. 34.118    |
| 3 | Dirección IP del primer EQUIPO | 192.168. 34.113    |
| 4 | Dirección IP del último EQUIPO | 192.168. 34.117    |
| 5 | Dirección de broadcast         | 192.168. 34.119    |
| 6 | Máscara de subred              | 255.255.255.248    |



Cuadro 13. Descripciones IP Gerencia Pasto

| Dispositivo          | Interfaz | Dirección IP     | Máscara de<br>subred | Gateway por defecto |
|----------------------|----------|------------------|----------------------|---------------------|
| ROUTER<br>PISO 1 Y 2 | Fa 2/0   | 192.168. 34. 118 | 255.255.255.248      | No aplicable        |
| EQUIPO 1<br>GERE     | NIC      | 192.168. 34. 113 | 255.255.255.248      | 192.168.34.118      |
| EQUIPO 5<br>GERE     | NIC      | 192.168. 34. 117 | 255.255.255.248      | 192.168.34.118      |

# LAN MERCADEO PASTO (5 HOST)

Cuadro 14. Direcciones IP Mercadeo Pasto

| 1 | Dirección de red               | 192.168. 34.120/29 |
|---|--------------------------------|--------------------|
| 2 | Dirección IP de Gateway        | 192.168. 34.126    |
| 3 | Dirección IP del primer EQUIPO | 192.168. 34. 121   |
| 4 | Dirección IP del último EQUIPO | 192.168. 34.125    |
| 5 | Dirección de broadcast         | 192.168. 34.127    |
| 6 | Máscara de subred              | 255.255.255.248    |

Cuadro 15. Descripción IP mercado Pasto

| Dispositivo       | Interfaz | Dirección IP   | Máscara de<br>subred | Gateway por defecto |
|-------------------|----------|----------------|----------------------|---------------------|
| ROUTER<br>PISO 3  | Fa 1/0   | 192.168.34.126 | 255.255.255.248      | No aplicable        |
| EQUIPO 1<br>MERCA | NIC      | 192.168.34.121 | 255.255.255.248      | 192.168.34.126      |
| EQUIPO 5<br>MERCA | NIC      | 192.168.34.125 | 255.255.255.248      | 192.168.34.126      |



# **LAN CONTABILIDAD PASTO (5 HOST)**

Cuadro 16. Direcciones IP Contabilidad Pasto

| 1 | Dirección de red               | 192.168.34.128/29 |
|---|--------------------------------|-------------------|
| 2 | Dirección IP de Gateway        | 192.168.34.134    |
| 3 | Dirección IP del primer EQUIPO | 192.168.34.129    |
| 4 | Dirección IP del último EQUIPO | 192.168.34.133    |
| 5 | Dirección de broadcast         | 192.168.34.135    |
| 6 | Máscara de subred              | 255.255.255.248   |

Cuadro 17. Descripción IP Contabilidad Pasto

| Dispositivo       | Interfaz | Dirección IP   | Máscara de<br>subred | Gateway por defecto |
|-------------------|----------|----------------|----------------------|---------------------|
| ROUTER<br>PISO 3  | Fa 2/0   | 192.168.34.134 | 255.255.255.248      | No aplicable        |
| EQUIPO 1<br>CONTA | NIC      | 192.168.34.129 | 255.255.255.248      | 192.168.34.134      |
| EQUIPO 5<br>CONTA | NIC      | 192.168.34.133 | 255.255.255.248      | 192.168.34.134      |

# WAN R PISO 3-PASTO NACIONAL (2 DIRECCIONES)

Cuadro 18. Wan R Piso 3-Pasto Nacional

| 1 | Dirección de red                                     | 192.168. 34.136/30                                 |
|---|------------------------------------------------------|----------------------------------------------------|
| 2 | Direción IP Serial (Indicar a que router pertenece)  | 192.168. 34.137 Pertenece al router R PISO 3       |
| 3 | Dirección IP Serial (Indicar a que router pertenece) | 192.168. 34.138 Pertenece al router PASTO NACIONAL |
| 4 | Dirección de broadcast                               | 192.168. 34.139                                    |
| 5 | Máscara de subred                                    | 255.255.255.252                                    |



Cuadro 19. Descripción Wan R Piso 3-Pasto Nacional

| Dispositivo                 | Interfaz | Dirección IP   | Máscara de<br>subred | Gateway por defecto |
|-----------------------------|----------|----------------|----------------------|---------------------|
| ROUTER<br>PISO 3            | S4/0     | 192.168.34.137 | 255.255.255.252      | No aplicable        |
| ROUTER<br>PASTO<br>NACIONAL | S0/0/0   | 192.168.34.138 | 255.255.255.252      | No aplicable        |

# WAN R PISO 1 Y 2 - PASTO NACIONAL (2 DIRECCIONES)

## Cuadro 20. Wan R Piso 1 Y 2 – Pasto Nacional

| 1 | Dirección de red                                     | 192.168. 34.140/30                                |
|---|------------------------------------------------------|---------------------------------------------------|
| 2 | Direción IP Serial (Indicar a que router pertenece)  | 192.168. 34.141 Pertenece al router R PISO 1 Y 2  |
| 3 | Dirección IP Serial (Indicar a que router pertenece) | 192.168.34.142 Pertenece al router PASTO NACIONAL |
| 4 | Dirección de broadcast                               | 192.168.34.143                                    |
| 5 | Máscara de subred                                    | 255.255.255.252                                   |

# Cuadro 21. Descripción Wan R Piso 1 Y 2 – Pasto Nacional

| Dispositivo                 | Interfaz | Dirección IP   | Máscara de<br>subred | Gateway por defecto |
|-----------------------------|----------|----------------|----------------------|---------------------|
| ROUTER<br>PISO 1 Y 2        | S4/0     | 192.168.34.141 | 255.255.255.252      | No aplicable        |
| ROUTER<br>PASTO<br>NACIONAL | S0/0/1   | 192.168.34.142 | 255.255.255.252      | No aplicable        |



## **CONFIGURACION DE LAS SUCURSALES**

## **SUCURSAL CARTAGENA**

Cuadro 22. Sucursal Cartagena

| RED                                     | Número de host | Red asignada     |
|-----------------------------------------|----------------|------------------|
| LAN ventas Cartagena                    | 10             | 192.168.35.0/28  |
| LAN sistemas Cartagena                  | 5              | 192.168.35.16/29 |
| LAN contabilidad Cartagena              | 3              | 192.168.35.24/29 |
| LAN importaciones Cartagena             | 2              | 192.168.35.32/29 |
| WAN r Cartagena r Cartagena<br>NACIONAL | 2 direcciones  | 192.168.35.40/30 |

#### **SUCURSAL IBAGUÉ**

Cuadro 23. Sucursal Ibaqué

| Gudai Gudai Gudai Bagac           |                |                  |  |
|-----------------------------------|----------------|------------------|--|
| RED                               | Número de host | Red asignada     |  |
| LAN ventas Ibagué                 | 10             | 192.168.36.0/28  |  |
| LAN sistemas Ibagué               | 5              | 192.168.36.16/29 |  |
| LAN contabilidad Ibagué           | 3              | 192.168.36.24/29 |  |
| LAN importaciones Ibagué          | 2              | 192.168.36.32/29 |  |
| WAN r Ibagué r Ibagué<br>NACIONAL | 2 direcciones  | 192.168.36.36/30 |  |

# **SUCURSAL CÚCUTA**

Cuadro 24. Sucursal Cúcuta

| RED                                 | Número de host | Red asignada     |
|-------------------------------------|----------------|------------------|
| LAN ventas Cúcuta                   | 10             | 192.168.37.0/28  |
| LAN sistemas Cúcuta                 | 5              | 192.168.37.16/29 |
| LAN contabilidad Cúcuta             | 3              | 192.168.37.24/29 |
| LAN importaciones Cúcuta            | 2              | 192.168.37.32/29 |
| WAN r Cúcuta r I Cúcuta<br>NACIONAL | 2 direcciones  | 192.168.37.40/30 |



#### **SUCURSAL BUCARAMANGA**

Cuadro 25. Sucursal Bucaramanga

| RED                                         | Número de host | Red asignada     |
|---------------------------------------------|----------------|------------------|
| LAN ventas Bucaramanga                      | 10             | 192.168.38.0/28  |
| LAN sistemas Bucaramanga                    | 5              | 192.168.38.16/29 |
| LAN contabilidad<br>Bucaramanga             | 3              | 192.168.38.24/29 |
| LAN importaciones<br>Bucaramanga            | 2              | 192.168.38.32/29 |
| WAN r Bucaramanga r<br>Bucaramanga NACIONAL | 2 direcciones  | 192.168.38.40/30 |

#### **SUCURSAL BARRANQUILLA**

Cuadro 26. Sucursal Barranquilla

| RED                                           | Número de host | Red asignada     |
|-----------------------------------------------|----------------|------------------|
| LAN ventas barranquilla                       | 10             | 192.168.39.0/28  |
| LAN sistemas barranquilla                     | 5              | 192.168.39.16/29 |
| LAN contabilidad barranquilla                 | 3              | 192.168.39.24/29 |
| LAN importaciones barranquilla                | 2              | 192.168.39.32/29 |
| WAN r barranquilla r<br>barranquilla NACIONAL | 2 direcciones  | 192.168.39.40/30 |

#### **SUCURSAL VILLAVICENCIO**

Cuadro 27. Sucursal Villavicencio

| RED                                             | Número de host | Red asignada     |
|-------------------------------------------------|----------------|------------------|
| LAN ventas Villavicencio                        | 10             | 192.168.40.0/28  |
| LAN sistemas Villavicencio                      | 5              | 192.168.40.16/29 |
| LAN contabilidad Villavicencio                  | 3              | 192.168.40.24/29 |
| LAN importaciones<br>Villavicencio              | 2              | 192.168.40.32/29 |
| WAN r Villavicencio r<br>Villavicencio NACIONAL | 2 direcciones  | 192.168.40.40/30 |



# **SUCURSAL MEDELLIN**

Cuadro 28. Sucursal Medellín

| RED                                   | Número de host | Red asignada     |
|---------------------------------------|----------------|------------------|
| LAN ventas Medellín                   | 10             | 192.168.41.0/28  |
| LAN sistemas Medellín                 | 5              | 192.168.41.16/29 |
| LAN contabilidad Medellín             | 3              | 192.168.41.24/29 |
| LAN importaciones Medellín            | 2              | 192.168.41.32/29 |
| WAN r Medellín r Medellín<br>NACIONAL | 2 direcciones  | 192.168.41.40/30 |

# **SUCURSAL BOGOTÁ**

Cuadro 29. Sucursal Bogotá

| RED                               | Número de host | Red asignada     |
|-----------------------------------|----------------|------------------|
| LAN ventas Bogotá                 | 10             | 192.168.42.0/28  |
| LAN sistemas Bogotá               | 5              | 192.168.42.16/29 |
| LAN contabilidad Bogotá           | 3              | 192.168.42.24/29 |
| LAN importaciones Bogotá          | 2              | 192.168.42.32/29 |
| WAN r Bogotá r Bogotá<br>NACIONAL | 2 direcciones  | 192.168.42.40/30 |

## **SUCURSAL PEREIRA**

## Cuadro 30. Sucursal Pereira

| RED                               | Número de host | Red asignada     |
|-----------------------------------|----------------|------------------|
| LAN ventas Pereira                | 10             | 192.168.43.0/28  |
| LAN sistemas Pereira              | 5              | 192.168.43.16/29 |
| LAN contabilidadPereira           | 3              | 192.168.43.24/29 |
| LAN importaciones Pereira         | 2              | 192.168.43.32/29 |
| WAN Pereira r Pereira<br>NACIONAL | 2 direcciones  | 192.168.43.40/30 |



#### **SUCURSAL CALI**

#### Cuadro 31Sucursal Cali

| RED                               | Número de host | Red asignada     |
|-----------------------------------|----------------|------------------|
| LAN ventas Pereira                | 10             | 192.168.43.0/28  |
| LAN sistemas Pereira              | 5              | 192.168.43.16/29 |
| LAN contabilidadPereira           | 3              | 192.168.43.24/29 |
| LAN importaciones Pereira         | 2              | 192.168.43.32/29 |
| WAN Pereira r Pereira<br>NACIONAL | 2 direcciones  | 192.168.43.40/30 |

# TABLA DE DIRECCIONES IP DE LAS SUCURSALES SUCURSAL PEREIRA

# Se parte de la porción de red

Cuadro 32. Porción de red

| RED                               | Número de host | Red asignada     |
|-----------------------------------|----------------|------------------|
| LAN ventas Pereira                | 10             | 192.168.43.0/28  |
| LAN sistemas Pereira              | 5              | 192.168.43.16/29 |
| LAN contabilidadPereira           | 3              | 192.168.43.24/29 |
| LAN importaciones Pereira         | 2              | 192.168.43.32/29 |
| WAN Pereira r Pereira<br>NACIONAL | 2 direcciones  | 192.168.43.40/30 |

# **LAN VENTAS PEREIRA (10 HOST)**

Cuadro 33. Lan Ventas Pereira

| 1 | Dirección de red               | 192.168. 43.0/28 |
|---|--------------------------------|------------------|
| 2 | Dirección IP de Gateway        | 192.168. 43.14   |
| 3 | Dirección IP del primer EQUIPO | 192.168. 43.1    |
| 4 | Dirección IP del último EQUIPO | 192.168. 43.10   |
| 5 | Dirección de broadcast         | 192.168. 43.15   |
| 6 | Máscara de subred              | 255.255.255.240  |



Cuadro 34. Descripción Ventas Pereira

| Dispositivo         | Interfaz | Dirección IP   | Máscara de<br>subred | Gateway por defecto |
|---------------------|----------|----------------|----------------------|---------------------|
| ROUTER<br>PEREIRA   | Fa0/0    | 192.168. 43.14 | 255.255.255.240      | No aplicable        |
| EQUIPO 1<br>VENTAS  | NIC      | 192.168. 43.1  | 255.255.255.240      | 192.168.<br>43.14   |
| EQUIPO 10<br>VENTAS | NIC      | 192.168. 43.10 | 255.255.255.240      | 192.168.<br>43.14   |

# LAN SISTEMAS PEREIRA (5 HOST)

Cuadro 35. Lan Sistemas Pereira

| 1 | Dirección de red               | 192.168. 43.16/29 |
|---|--------------------------------|-------------------|
| 2 | Dirección IP de Gateway        | 192.168. 43.22    |
| 3 | Dirección IP del primer EQUIPO | 192.168. 43.17    |
| 4 | Dirección IP del último EQUIPO | 192.168. 43.21    |
| 5 | Dirección de broadcast         | 192.168. 43.23    |
| 6 | Máscara de subred              | 255.255.255.248   |

Cuadro 36. Descripción Lan Sistemas Pereira

| Dispositivo          | Interfaz | Dirección IP   | Máscara de<br>subred | Gateway por defecto |
|----------------------|----------|----------------|----------------------|---------------------|
| ROUTER<br>PEREIRA    | Fa1/0    | 192.168. 43.22 | 255.255.255.240      | No aplicable        |
| EQUIPO 1<br>SISTEMAS | NIC      | 192.168. 43.17 | 255.255.255.248      | 192.168.43.22       |
| EQUIPO 5<br>SISTEMAS | NIC      | 192.168. 43.21 | 255.255.255.248      | 192.168.43.22       |



# LAN CONTABILIDAD PEREIRA (3 HOST)

Cuadro 37. LAN contabilidad Pereira

| 1 | Dirección de red               | 192.168. 43.24/29 |
|---|--------------------------------|-------------------|
| 2 | Dirección IP de Gateway        | 192.168. 43.30    |
| 3 | Dirección IP del primer EQUIPO | 192.168. 43.25    |
| 4 | Dirección IP del último EQUIPO | 192.168. 43.27    |
| 5 | Dirección de broadcast         | 192.168. 43.31    |
| 6 | Máscara de subred              | 255.255.255.248   |

Cuadro 38. Descripción LAN Contabilidad Pereira

| Cada Col Boson Bolon Entre Contabilidad Forona |          |                |                      |                     |
|------------------------------------------------|----------|----------------|----------------------|---------------------|
| Dispositivo                                    | Interfaz | Dirección IP   | Máscara de<br>subred | Gateway por defecto |
| ROUTER<br>PEREIRA                              | Fa2/0    | 192.168. 43.30 | 255.255.255.248      | No aplicable        |
| EQUIPO 1<br>CONTABILID<br>AD                   | NIC      | 192.168. 43.25 | 255.255.255.248      | 192.168.43.30       |
| EQUIPO 3<br>CONTABILID<br>AD                   | NIC      | 192.168. 43.27 | 255.255.255.248      | 192.168.43.30       |

# LAN IMPORTACIONES PEREIRA (2 HOST)

Cuadro 39.LAN importaciones Pereira

| 1 | Dirección de red               | 192.168. 43.32/29 |
|---|--------------------------------|-------------------|
| 2 | Dirección IP de Gateway        | 192.168. 43.38    |
| 3 | Dirección IP del primer EQUIPO | 192.168. 43.33    |
| 4 | Dirección IP del último EQUIPO | 192.168. 43.34    |
| 5 | Dirección de broadcast         | 192.168. 43.39    |
| 6 | Máscara de subred              | 255.255.255.248   |



Cuadro 40. Descripción LAN Contabilidad Pereira

| Dispositivo                   | Interfaz | Dirección IP   | Máscara de<br>subred | Gateway por defecto |
|-------------------------------|----------|----------------|----------------------|---------------------|
| ROUTER<br>PEREIRA             | Fa 3/0   | 192.168. 43.38 | 255.255.255.248      | No aplicable        |
| EQUIPO 1<br>IMPORTACI<br>ONES | NIC      | 192.168. 43.33 | 255.255.255.248      | 192.168.43.38       |
| EQUIPO 3<br>IMPORTACI<br>ONES | NIC      | 192.168. 43.34 | 255.255.255.248      | 192.168.43.38       |

# WAN R PEREIRA - R PEREIRA NACIONAL (2 DIRECCIONES)

Cuadro 41.WAN r Pereira - r Pereira nacional

| Dirección de red                                     | 192.168.43.40/30                                                                                                                  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Direción IP Serial (Indicar a que router pertenece)  | 192.168. 43.41<br>Pertenece al router<br>PEREIRA                                                                                  |
| Dirección IP Serial (Indicar a que router pertenece) | 192.168.43.42 Pertenece al router PEREIRA NACIONAL                                                                                |
| Dirección de broadcast                               | 192.168.43.43                                                                                                                     |
| Máscara de subred                                    | 255.255.255.252                                                                                                                   |
|                                                      | Direción IP Serial (Indicar a que router pertenece)  Dirección IP Serial (Indicar a que router pertenece)  Dirección de broadcast |

Cuadro 42. Descripción WAN r Pereira - r Pereira nacional

| Dispositivo                   | Interfaz | Dirección IP  | Máscara de<br>subred | Gateway por defecto |
|-------------------------------|----------|---------------|----------------------|---------------------|
| ROUTER<br>PEREIRA             | S4/0     | 192.168.43.41 | 255.255.255.252      | No aplicable        |
| ROUTERPE<br>REIRA<br>NACIONAL | S0/0/0   | 192.168.43.42 | 255.255.255.252      | No aplicable        |



#### **SUCURSAL MEDELLIN**

#### **DIRECCIONAMIENTO A NIVEL NACIONAL**

A nivel nacional se asignan las direcciones de red a las diferentes redes WAN:

| WAN PEREIRA – CALI               | 10. 13.14.9/30 |
|----------------------------------|----------------|
| WAN BOGOTÁ – PEREIRA.            | 10. 13.14.8/30 |
| WAN MEDELLÍN – BOGOTA            | 10. 13.14.7/30 |
| WAN PASTO – MEDELLIN             | 10. 13.14.6/30 |
| WAN VILLAVICENCIO – PASTO        | 10. 13.14.5/30 |
| WAN BARRANQUILLA – VILLAVICENCIO | 10. 13.14.4/30 |
| WAN BUCARAMANGA – BARRANQUILLA   | 10. 13.14.3/30 |
| WAN CÚCUTA – BUCARAMANGA         | 10. 13.14.2/30 |
| WAN IBAGUÉ – CÚCUTA              | 10. 13.14.1/30 |
| WAN CARTAGENA – IBAGUÉ           | 10. 13.14.0/30 |

#### **WAN PEREIRA - CALI**

## Cuadro 43.WAN Pereira - Cali

| 1 | Dirección de red                                     | 10. 13.14.36/30                                   |
|---|------------------------------------------------------|---------------------------------------------------|
| 2 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.37 Pertenece al router PEREIRA NACIONAL |
| 3 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.38 Pertenece al router CALI             |
| 4 | Dirección de broadcast                               | 10. 13.14.39                                      |
| 5 | Máscara de subred                                    | 255.255.255.252                                   |

# Cuadro 44. Descripción WAN Pereira - Cali

| Dispositivo                   | Interfaz | Dirección IP | Máscara de<br>subred |
|-------------------------------|----------|--------------|----------------------|
| ROUTER<br>PEREIRA<br>NACIONAL | S0/0/1   | 10.13.14.37  | 255.255.255.252      |
| ROUTER CALI<br>NACIONAL       | S0/0/0   | 10.13.14.38  | 255.255.255.252      |



# WAN BOGOTÁ – PEREIRA

# Cuadro 45.WAN Bogotá - Pereira

| 1 | Dirección de red                                     | 10. 13.14.32/30                                         |
|---|------------------------------------------------------|---------------------------------------------------------|
| 2 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.33 Pertenece al router BOGOTA NACIONAL        |
| 3 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.34 Pertenece<br>al router PEREIRA<br>NACIONAL |
| 4 | Dirección de broadcast                               | 10. 13.14.35                                            |
| 5 | Máscara de subred                                    | 255.255.255.252                                         |

# Cuadro 46. Descripción WAN Bogotá - Pereira

| Dispositivo                   | Interfaz | Dirección IP | Máscara de<br>subred |
|-------------------------------|----------|--------------|----------------------|
| ROUTER<br>BOGOTA<br>NACIONAL  | S0/0/1   | 10.13.14.33  | 255.255.255.252      |
| ROUTER<br>PEREIRA<br>NACIONAL | S0/0/0   | 10.13.14.34  | 255.255.255.252      |

# **WAN MEDELLIN - BOGOTA**

# Cuadro 47.WAN Medellín - Bogotá

| 1 | Dirección de red                                     | 10. 13.14.28/30                                          |
|---|------------------------------------------------------|----------------------------------------------------------|
| 2 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.29 Pertenece<br>al router MEDELLÍN<br>NACIONAL |
| 3 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.30 Pertenece<br>al router BOGOTA<br>NACIONAL   |
| 4 | Dirección de broadcast                               | 10. 13.14.31                                             |
| 5 | Máscara de subred                                    | 255.255.255.252                                          |



Cuadro 48. DescripciónWAN Medellín - Bogotá

| Dispositivo                    | Interfaz | Dirección IP | Máscara de<br>subred |
|--------------------------------|----------|--------------|----------------------|
| ROUTER<br>MEDELLÍN<br>NACIONAL | S0/0/1   | 10.13.14.29  | 255.255.255.252      |
| ROUTER<br>BOGOTA<br>NACIONAL   | S0/0/0   | 10.13.14.30  | 255.255.255.252      |

## **WAN PASTO - MEDELLÍN**

# Cuadro 49.WAN Pasto - Medellín

| 1 | Dirección de red                                     | 10. 13.14.24/30                                          |
|---|------------------------------------------------------|----------------------------------------------------------|
| 2 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.25 Pertenece<br>al router PASTO<br>NACIONAL    |
| 3 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.26 Pertenece<br>al router MEDELLÍN<br>NACIONAL |
| 4 | Dirección de broadcast                               | 10. 13.14.27                                             |
| 5 | Máscara de subred                                    | 255.255.255.252                                          |

Cuadro 50. DescripciónWAN Pasto - Medellín

| Dispositivo                    | Interfaz | Dirección IP | Máscara de<br>subred |
|--------------------------------|----------|--------------|----------------------|
| ROUTER<br>PASTO<br>NACIONAL    | S0/1/1   | 10.13.14.25  | 255.255.255.252      |
| ROUTER<br>MEDELLÍN<br>NACIONAL | S0/0/0   | 10.13.14.26  | 255.255.255.252      |



#### **WAN VILLAVICENCIO - PASTO**

## Cuadro 51.WAN Villavicencio - Pasto

| 1 | Dirección de red                                     | 10. 13.14.20/30                                                   |
|---|------------------------------------------------------|-------------------------------------------------------------------|
| 2 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14. 21 Pertenece<br>al router<br>VILLAVICENCIO<br>NACIONAL |
| 3 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.22 Pertenece<br>al router PASTO<br>NACIONAL             |
| 4 | Dirección de broadcast                               | 10. 13.14.23                                                      |
| 5 | Máscara de subred                                    | 255.255.255.252                                                   |

Cuadro 52. DescripciónWAN Villavicencio - Pasto

| Dispositivo                    | Interfaz | Dirección IP | Máscara de<br>subred |
|--------------------------------|----------|--------------|----------------------|
| ROUTER VILLAVICENCI O NACIONAL | S0/0/1   | 10.13.14.21  | 255.255.255.252      |
| ROUTER<br>PASTO<br>NACIONAL    | S0/1/0   | 10.13.14.22  | 255.255.255.252      |

## WAN BARRANQUILLA - VILLAVICENCIO

# Cuadro 53.WAN Barranquilla – Villavicencio

| 1 | Dirección de red                                     | 10. 13.14.16/30                                                  |
|---|------------------------------------------------------|------------------------------------------------------------------|
| 2 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.17Pertenece al router BARRANQUILLA NACIONAL            |
| 3 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.18 Pertenece<br>al router<br>VILLAVICENCIO<br>NACIONAL |
| 4 | Dirección de broadcast                               | 10. 13.14.19                                                     |
| 5 | Máscara de subred                                    | 255.255.255.252                                                  |



Cuadro 54. Descripción WAN Barranquilla – Villavicencio

| Dispositivo                         | Interfaz | Dirección IP | Máscara de<br>subred |
|-------------------------------------|----------|--------------|----------------------|
| ROUTER<br>BARRANQUILL<br>A NACIONAL | S0/0/1   | 10.13.14.17  | 255.255.255.252      |
| ROUTER VILLAVICENCI O NACIONAL      | S0/0/0   | 10.13.14.18  | 255.255.255.252      |

## **WAN BUCARAMANGA - BARRANQUILLA**

Cuadro 55.WAN Bucaramanga - Barranquilla

|   | ga - Darranquilla                                    |                                                                 |
|---|------------------------------------------------------|-----------------------------------------------------------------|
| 1 | Dirección de red                                     | 10. 13.14.12/30                                                 |
| 2 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.13 Pertenece<br>al router<br>BUCARAMANGA<br>NACIONAL  |
| 3 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.14 Pertenece<br>al router<br>BARRANQUILLA<br>NACIONAL |
| 4 | Dirección de broadcast                               | 10. 13.14.15                                                    |
| 5 | Máscara de subred                                    | 255.255.255.252                                                 |

Cuadro 56. DescripciónWAN Bucaramanga - Barranquilla

| Dispositivo                         | Interfaz | Dirección IP | Máscara de<br>subred |
|-------------------------------------|----------|--------------|----------------------|
| ROUTER<br>BUCARAMAN<br>GA NACIONAL  | S0/0/1   | 10.13.14.13  | 255.255.255.252      |
| ROUTER<br>BARRANQUILL<br>A NACIONAL | S0/0/0   | 10.13.14.14  | 255.255.255.252      |



# WAN CÚCUTA – BUCARAMANGA

Cuadro 57.WAN Cúcuta - Bucaramanga

|   |                                                      | <u> </u>                                                       |
|---|------------------------------------------------------|----------------------------------------------------------------|
| 1 | Dirección de red                                     | 10.13.14.8/30                                                  |
| 2 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.9 Pertenece al router CÚCUTA NACIONAL                |
| 3 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.10 Pertenece<br>al router<br>BUCARAMANGA<br>NACIONAL |
| 4 | Dirección de broadcast                               | 10. 13.14.11                                                   |
| 5 | Máscara de subred                                    | 255.255.255.252                                                |

Cuadro 58. DescripciónWAN Cúcuta - Bucaramanga

| Dispositivo                        | Interfaz | Dirección IP | Máscara de<br>subred |
|------------------------------------|----------|--------------|----------------------|
| ROUTER<br>CÚCUTA<br>NACIONAL       | S0/0/1   | 10.13.14.09  | 255.255.255.252      |
| ROUTER<br>BUCARAMAN<br>GA NACIONAL | S0/0/0   | 10.13.14.10  | 255.255.255.252      |

# **WAN IBAGUÉ- CUCUTA**

## Cuadro 59.WAN Ibagué- Cúcuta

|   | <u> </u>                                             |                                                    |
|---|------------------------------------------------------|----------------------------------------------------|
| 1 | Dirección de red                                     | 10.13.14.4/30                                      |
| 2 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.5 Pertenece al router IBAGUÉ<br>NACIONAL |
| 3 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.6 Pertenece al router CUCUTA             |
| 4 | Dirección de broadcast                               | 10. 13.14.7                                        |
| 5 | Máscara de subred                                    | 255.255.255.252                                    |



Cuadro 60. DescripciónWAN Ibagué- Cúcuta

| Cadalo Col 2000//pololitti (17 18 18 18 18 18 18 18 18 18 18 18 18 18 |          |              |                      |
|-----------------------------------------------------------------------|----------|--------------|----------------------|
| Dispositivo                                                           | Interfaz | Dirección IP | Máscara de<br>subred |
| ROUTER<br>IBAGUÉ<br>NACIONAL                                          | S0/0/1   | 10.13.14.09  | 255.255.255.252      |
| ROUTER<br>CUCUTA<br>NACIONAL                                          | S0/0/0   | 10.13.14.10  | 255.255.255.252      |

## **WAN CARTAGENA - IBAGUÉ.**

Cuadro 61.WAN Cartagena - Ibagué

|   | Guaro Girivi II Cartagoria Ibaguo                    |                                                    |  |  |
|---|------------------------------------------------------|----------------------------------------------------|--|--|
| 1 | Dirección de red                                     | 10.13.14.0/30                                      |  |  |
| 2 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.1 Pertenece al router CARTAGENA NACIONAL |  |  |
| 3 | Dirección IP Serial (Indicar a que router pertenece) | 10. 13.14.2 Pertenece al router IBAGUÉ<br>NACIONAL |  |  |
| 4 | Dirección de broadcast                               | 10. 13.14.3                                        |  |  |
| 5 | Máscara de subred                                    | 255.255.255.252                                    |  |  |

Cuadro 62. DescripciónWAN Cartagena - Ibagué

| Dispositivo                     | Interfaz | Dirección IP | Máscara de<br>subred |
|---------------------------------|----------|--------------|----------------------|
| ROUTER<br>CARTAGENA<br>NACIONAL | S0/0/1   | 10.13.14.1   | 255.255.255.252      |
| ROUTER<br>BAGUÉ<br>NACIONAL     | S0/0/0   | 10.13.14.2   | 255.255.255.252      |



#### 4.3. CONFIGURACIONES DE LA RED

#### PROTOCOLO, OSPF

CALI NACIONAL

CALI NACIONAL #configure terminal

CALI NACIONAL (config)#router ospf 1

CALI NACIONAL (config-router)#network 10. 13.14.36 0.0.0.3 area 0

CALI NACIONAL (config-router)#network 192.168.44.40 0.0.0.3 area 0

PEREIRA NACIONAL

PEREIRA NACIONAL #configure terminal

PEREIRA NACIONAL (config)#router ospf 1

PEREIRA NACIONAL L (config-router)#network 10. 13.14.32 0.0.0.3 area 0

PEREIRA NACIONAL (config-router)#network 10. 13.14.36 0.0.0.3 area 0

PEREIRA NACIONAL (config-router)#network 192.168.43.40 0.0.0.3 area 0

**BOGOTA NACIONAL** 

BOGOTA NACIONAL#configure terminal

BOGOTA NACIONAL (config)#router ospf 1

BOGOTA NACIONAL (config-router)#network 10. 13.14.28 0.0.0.3 area 0

BOGOTA NACIONAL (config-router)#network 10. 13.14.32 0.0.0.3 area 0

BOGOTA NACIONAL (config-router)#network 192.168.42.40 0.0.0.3 area 0

#### MEDELLIN NACIONAL

MEDELLIN NACIONAL #configure terminal

MEDELLIN NACIONAL (config)#router ospf 1

MEDELLIN NACIONAL (config-router)#network 10. 13.14.24 0.0.0.3 area 0

MEDELLIN NACIONAL (config-router)#network 10. 13.14.28 0.0.0.3 area 0

MEDELLIN NACIONAL (config-router)#network 192.168.41.40 0.0.0.3 area 0

#### PASTO NACIONAL

PASTO NACIONAL #configure terminal

PASTO NACIONAL (config)#routerospf 1

PASTO NACIONAL (config-router)#network 10. 13.14.20 0.0.0.3 area 0

PASTO NACIONAL (config-router)#network 10. 13.14.24 0.0.0.3 area 0

PASTO NACIONAL (config-router)#network 192.168.34.136 0.0.0.3 area 0

PASTO NACIONAL (config-router)#network 192.168.34.140 0.0.0.3 area 0



VILLAVICENCIO NACIONAL

VILLAVICENCIO NACIONAL #configure terminal

VILLAVICENCIO NACIONAL (config)#routerospf 1

VILLAVICENCIO NACIONAL (config-router)#network 10. 3.14.16 0.0.0.3 area 0 VILLAVICENCIO NACIONAL (config-router)#network 10.13.14.20 0.0.0.3 area 0 VILLAVICENCIO NACIONAL (config-router)#network 192.168.40.40 0.0.0.3 area 0

#### BARRANQUILLA NACIONAL

BARRANQUILLA NACIONAL #configure terminal

BUCARAMANGA NACIONAL (config)#routerospf 1

BARRANQUILLA NACIONAL (config-router)#network 10.13.14.16 0.0.0.3 area 0 BARRANQUILLA NACIONAL (config-router)#network 10.13.14.12 0.0.0.3 area 0 BARRANQUILLA NACIONAL (config-router)#network 192.168.39.40 0.0.0.3 area 0

#### **BUCARAMANGA NACIONAL**

BUCARAMANGA NACIONAL #configure terminal

BUCARAMANGA NACIONAL (config)#routerospf 1

BUCARAMANGA NACIONAL (config-router)#network 10.13.14.12 0.0.0.3 area

BUCARAMANGA NACIONAL (config-router)#network 10.13.14.8 0.0.0.3 area 0 BUCARAMANGA NACIONAL (config-router)#network 192.168.38.40 0.0.0.3 area 0

#### CUCUTA NACIONAL

CUCUTA NACIONAL #configure terminal

CUCUTA NACIONAL (config)#routerospf 1

CUCUTA NACIONAL (config-router)#network 10. 13.14.4 0.0.0.3 area 0

CUCUTA NACIONAL (config-router)#network 10. 13.14.91 0.0.0.3 area 0

CUCUTA NACIONAL (config-router)#network 192.168.37.40 0.0.0.3 area 0

#### **IBAGUE NACIONAL**

IBAGUE NACIONAL #configure terminal

IBAGUE NACIONAL (config)#router ospf 1

IBAGUE NACIONAL (config-router)#network 10. 13.14.0 0.0.0.3 area 0

IBAGUE NACIONAL (config-router)#network 10. 13.14.4 0.0.0.3 area 0

IBAGUE NACIONAL (config-router)#network 192.168.36.40 0.0.0.3 area 0



CARTAGENA NACIONAL #configure terminal CARTAGENA NACIONAL #configure terminal CARTAGENA NACIONAL (config)#routerospf 1 CARTAGENA NACIONAL (config-router)#network 10. 13.14.0 0.0.0.3 area 0 CARTAGENA NACIONAL (config-router)#network 192.168.35.40 0.0.0.3 area 0

#### 4.4. CONFIGURACION DE EIGRP EN LA PRINCIPAL PASTO

PISO 3#configure terminal

PISO 3 (config)#router eigrp 1

PISO 3(config-router)#network 192.168.34.96

PISO 3(config-router)#network 192.168. 34.120

PISO 3(config-router)#network 192.168. 34.128

PISO 3(config-router)#network 192.168. 34.136

PISO 1 Y 2#configure terminal

PISO 1 Y 2(config)#router eigrp 1

PISO 1 Y 2(config-router)#network 192.168. 34.0

PISO 1 Y 2(config-router)#network 192.168. 34.112

PISO 1 Y 2(config-router)#network 192.168. 34.64

#### 4.5 CONFIGURACION DE RIP V2 EN LAS SUCURSALES

MEDELLIN (config)#router rip

MEDELLIN (config-router)#version 2

MEDELLIN (config-router)#network 192.168.41.0

MEDELLIN (config-router)#network 192.168.41.16

MEDELLIN (config-router)#network 192.168.41.24

MEDELLIN (config-router)#network 192.168.41.32

MEDELLIN (config-router)#network 192.168.41.40



#### 5. RESULTADOS CASO DE ESTUDIO 2

Los resultados generales del caso son los siguientes:

- Diseñamos y documentamos un esquema de direccionamiento según los requisitos.
- Implementamos una configuración básica a los dispositivos.
- Configuramos una prioridad de routers y RID.
- Configuramos el enrutamiento OSPF
- Aplicamos de los comandos pertinentes al protocolo de enrutamiento OSPF
- Verificamos de la completa conectividad entre los dispositivos de la topología.
- Autoevaluamos las competencias adquiridas en el curso.
- Producimos un documento de calidad que atienda todos los aspectos evaluados en el documento "Rubrica de evaluación"
- Presentamos el producto final dentro de los plazos establecidos para la actividad.
- Se utilizo la herramienta PacketTracer que es una aplicación muy importante para poder configurar una red de área local o extensa; así como sus diferentes dispositivos como son Routers, Swithes; acompañados de sus respectivos conectores. El uso de comandos para aplicar la configuración básica a los dispositivos, para enrutamiento.
- Actualizaciones de enrutamiento, y la verificación y buen funcionamiento de una red dentro del simulador PacketTracer. Los protocolos de enrutamiento de estado de enlace responden rápidamente a las modificaciones en la red, enviando actualizaciones sólo cuando se producen las modificaciones.



#### CONCLUSIONES

- Con el desarrollo del presente trabajo, nos ha permitido observar la poderosa herramienta que es PACKET TRACER, ya que nos ayuda bastante en la verificación de la topología tanto física como lógica de nuestra red.
- Hemos puesto en práctica gran parte de los conocimientos adquiridos durante el transcurso de este curso, poniéndolos en práctica en un ejercicio que se acerca mucho a la realidad.
- Se ha observado la importancia que tiene el documentar perfectamente nuestra red, lo que posteriormente servirá de soporte en algún inconveniente que se presente, si no fuera así, sería muy complicado para las personas que lo están realizando.
- Un aspecto que se debe tener en cuenta al diseñar e implementar una red de datos, es que esta no se queda estática, va evolucionando y por consiguiente creciendo. Debemos adelantarnos a posibles cambios.
- La configuración de routers es una labor en la que se debe dedicar tiempo de estudio.
- Los inconvenientes presentados en el momento de configurar un router pueden ser aclarados tomando como guía el modulo de ccna 2.
- El caso de estudio del modulo ccna 2 es la oportunidad de poner en practica todo lo aprendido durante el curso de profundización.
- Con el desarrollo de este laboratorio se profundizo en la configuración del protocolo de enrutamiento OSPF
- Poder configurar una red del tamaño propuesto permitió entender y poner en práctica los conocimientos adquiridos en el trayecto del curso los cuales se encuentran desarrollados en los 11 capítulos de la segunda parte del curso CCNA.
- La Importancia de los protocolos de enrutamiento, la cual permiten el intercambio de información dentro de un sistema autónomo.



 El desarrollo de este caso de estudio permite al estudiante identificar de manera clara el funcionamiento de cada uno de los componentes de una red y las posibles fallas que se podrían presentar en una red real, gracias al programa PACKET TRACER 5.2, simulador que se utilizo para la realización de esta práctica, y demás actividades vistas durante todo el curso.



#### **BIBLIOGRAFÍA Y WEBGRAFIA.**

- CISCO NETWORKING ACADEMY CCNA EXPLORATION 4.0.
   Conceptos y protocolos de enrutamiento, Fundamentos de Networking.
   Cisco Systems. 2008.
- CISCO NETWORKING ACADEMY CCNA EXPLORATION 4.0.
   Conceptos y protocolos de enrutamiento, Principios de enrutamiento.
   Cisco Systems. 2007
- WIKIPEDIA ENCICLOPEDIA LIBRE. Máscaras de Red <
   <p>http://es.wikipedia.org/wiki/M%C3%A1scara\_de\_red> [citado 5 julio 2010]
- DEBUG\_MODE LA RED PARA LOS PROFESIONALES IT. Configurar una red con OSPF Parte I <a href="http://es.debugmodeon.com/articulo/configurar-una-red-con-ospf-parte-i">http://es.debugmodeon.com/articulo/configurar-una-red-con-ospf-parte-i</a>> [citado 2009]
- UNIVERSIDAD DE VALENCIA. Configuración de protocolo OSPF, <a href="http://informatica.uv.es/iiguia/2000/AER/Practica5.pdf">http://informatica.uv.es/iiguia/2000/AER/Practica5.pdf</a> [citado 2000]
- BALADONA WIRELESS. Rutas estáticas y dinámicas,
   <a href="http://www.badalonawireless.net/taxonomy/term/52">http://www.badalonawireless.net/taxonomy/term/52</a> [citado 9 de abril del 2006