EFECTO DE LA INCLUSIÓN DE HARINA DE HOJA DE MORINGA (*Moringa oleifera*) EN EL CRECIMIENTO DE POLLO DE ENGORDE

Autores:

JOHN JAIRO HIGUITA GONZALEZ

NOHORA YOLANDA ROBAYO ROJAS

ESCUELA DE CIENCIAS AGRICOLAS, PECUARIAS Y DEL MEDIO AMBIENTE

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA “UNAD”

Bogotá

Septiembre de 2019
DEDICATORIA

Dedico esta tesis a mi hijo Fabián Alejandro Higuita Quintero. Hijo eres mi motivación, hace que mi mente se despeje de todas las adversidades que se me presentan, y me impulsa a cada día vencer los obstáculos para ofrecerte lo mejor. Esto no fuera posible sin tu apoyo desde la distancia.

John Jairo.

Dedico este trabajo a Dios y la Virgen María, por darme la vida y la posibilidad de culminar esta etapa, a mis hijos Juan Pablo y Luciana, por ser mi mayor motivación. A mis Padres Gilberto y Yolanda por el apoyo, ejemplo y amor que brindan en cada momento. A Mis Hermanos Néstor, Fernando y Leidy, por el cariño y respaldo moral en la búsqueda de mi formación profesional. Sin ustedes no hubiese podido lograrlo.

A todos y cada uno de los familiares y amigos que con sus oraciones y palabras de aliento me permitieron no decaer en el camino para alcanzar este propósito.

Nohora.
AGRADECIMIENTOS

Agradecemos a Dios, primeramente, por habernos dado esta oportunidad y la fortaleza para culminar nuestros estudios de Zootecnia; igualmente a las doctoras, Leonor Barreto de Escobar, y Carmen Helena Espitia, por el acompañamiento y colaboración durante todas las fases de este trabajo, sin ellas no fuera posible esta investigación. Al docente Diego Deaza, que desde su profesión nos apoyó en la estadística.
DECLARACION DE AUTORÍA

John Jairo Higuita González con cedula de ciudadanía número 94487214, y Nohora Yolanda Robayo Rojas con cedula de ciudadanía número 1073599616, estudiantes del programa de Zootecnia, en la Universidad Nacional Abierta y A distancia (UNAD). Declaran que el documento Tesis titulada “EFECTO DE LA INCLUSIÓN DE HARINA DE HOJA DE MORINGA (Moringa oleifera) EN EL CRECIMIENTO DE POLLO DE ENGORDE”:

i. La tesis es de nuestra autoría.

ii. La tesis no ha sido presentada ni publicada anteriormente para obtener algún grado académico previo al título profesional.

iii. Hemos respetado las normas de citas y referencias para las fuentes consultadas, por tanto, la tesis no ha sido plagiada ni total ni parcialmente.

iv. Los datos presentados en los resultados son reales, no han sido adulterados, ni duplicados, ni copiados y por lo tanto los resultados que se presentan en el documento se constituirán en aportes a la realidad investigada.

De identificarse la falta, fraude, plagio, autoplagio o falsificación, asumimos las consecuencias y sanciones que de nuestra acción se deriven, sometiéndonos a la normativa vigente de la Universidad Nacional Abierta y A distancia (UNAD).
ÍNDICE

RESUMEN ..1

ABSTRACT ..2

OBJETIVOS ..3

INTRODUCCIÓN ..4

Capítulo 1 REVISIÓN DE LITERATURA ...6

1.1. Caracterización de la moringa ..6

1.1.1. Moringa (M. oleífera) en la alimentación de aves ...8

Capítulo II MATERIALES Y MÉTODOS ...13

2.1. Materiales ..13

2.1.2. Localización ..13

2.1.3. Instalaciones y equipos ..13

2.1.4. Tiempo del ensayo ...14

2.3. Métodos ..14

2.3.1. Recepción de las aves ...14

2.3.2. Suministro de alimento ..14

2.3.3. Unidad experimental ..16

2.3.4. Diseño experimental ..16

2.3.5. Variables evaluadas ..17

2.4. Análisis estadístico: ...17
2.5. Aspectos Éticos ... 18

Capítulo III – RESULTADOS. .. 19

3.1. Consumo de alimento semanal .. 19

3.2. Peso ... 23

3.3. Conversión alimenticia .. 27

3.5. Mortalidad ... 31

Capítulo IV DISCUSIÓN... 33

CONCLUSIONES... 36

RECOMENDACIONES ... 37

REFERENCIAS BIBLIOGRÁFICAS ... 38
Índice de tablas

Tabla 1. Análisis de la Moringa Oleifera..15
Tabla 2. Dieta Experimental..15
Tabla 3. Distribución de tratamientos en el Galpón..17
Tabla 4. Consumo de alimento por tratamiento (g)..19
Tabla 5. Análisis de varianza variable consumo ...21
Tabla 6. Supuestos del modelo..21
Tabla 7. Tabla de comparación de medias de Tukey...23
Tabla 8. Peso por tratamiento ..23
Tabla 9. Análisis de varianza variable peso ..25
Tabla 10. Supuesto del modelo variable peso ..25
Tabla 11. Supuestos del modelo variable peso ...27
Tabla 12. Conversión alimenticia por tratamiento ...27
Tabla 13. Análisis de varianza conversión alimenticia ...28
Tabla 14. Supuestos del modelo conversión alimenticia ...29
Tabla 15. Tabla de medias ..31
Tabla 16. Mortalidad por semana por tratamiento ...31
Tabla 17. Datos resumen...32
Índice de Ilustraciones

Ilustración 2.. Tratamientos experimentales (Fuente: Autores 2019) .. 16
Ilustración 5. Box Plot variable consumo Fuente. Autores (2019) .. 22
RESUMEN

Con el propósito de reducir los altos costos de la producción avícola y de buscar fuentes alternas que reemplacen la proteína de la soya se ve la necesidad de indagar fuentes no convencionales que supla este requerimiento alimenticio. El objetivo del trabajo fue evaluar el efecto de la inclusión de harina de hojas de *Moringa oleifera* en la dieta de pollo de engorde línea Cobb y medir los parámetros zootécnicos en pollo de engorde tales como ganancia de peso, consumo de alimento, conversión alimenticia. En el experimento se incluyó tres tratamientos, tratamiento control con el 0% de inclusión harina de *M. oleífera* (T0), tratamiento al 5% de inclusión harina de *M. oleífera* (T1), y el tratamiento al 10% de inclusión de Harina de *M. oleífera* (T2).

Se realizó un diseño completamente al azar con tres réplicas por tratamiento, el análisis estadístico se hizo con el programa R versión 3.5.3. Se obtuvo los siguientes valores para ganancia de peso (T0) 2318,7 g, (T1) 2221,4 g, (T2) 2514,7 g. Conversión alimenticia (T0) 2,16, (T1) 2,06, (T2) 1,89. Se concluye que la *M. oleífera* al 10% de inclusión, genera una conversión alimenticia (1.89) representado una opción favorable para los sistemas productivos.

Palabra claves: consumo de alimento, ganancia de peso, conversión alimenticia.
ABSTRACT

In order to reduce the high costs of poultry production and to look for alternate sources that replace the soy protein, there is a need to investigate non-conventional sources that supply this food requirement. The objective of the work was to evaluate the effect of the inclusion of *Moringa oleifera* leaf meal on the Cobb line broiler growth and to measure the zootechnical parameters in broiler chicken such as weight gain feed consumption feed. In the experiment, three treatments were included, control treatment with 0% inclusion of *M. oleifera* meal (T0), treatment with 5% inclusion of *M. oleifera* meal (T1), and 10% inclusion of Flour of *M. oleifera* (T2).

A completely randomized design was performed with three replicates per treatment, the statistical analysis was done with the R version 3.5.3 program. The following values were obtained for weight gain (T0) 2318.7 g, (T1) 2221.4 g, (T2) 2514.7 g. Food conversion (T0) 2.16, (T1) 2.06, (T2) 1.89. It is concluded that the M. oleifera at 10% inclusion generates a food conversion (1.89) represented a favorable option for productive systems.

Keyword: food consumption, weight gain, feed conversion.
OBJETIVOS

OBJETIVO GENERAL

EVALUAR el efecto de la inclusion de harina de hoja de Moringa (*M. Oleifera*) en el comportamiento productivo de pollos de engorde – Cobb,

OBJETIVOS ESPECÍFICOS

Analizar parámetros zootécnicos en pollos de engorde- Cobb, tales como ganancia de peso, consumo de alimento y conversión alimenticia, durante toda su etapa productiva (42 días)

Generar un aporte a la investigación en lo que respecta a las alternativas nutricionales para pollo de engorde
INTRODUCCIÓN

La FAO (2018) hace énfasis en que “la avicultura cumple un papel importante en la alimentación humana, aportando altos niveles de proteína, una buena fuente de fósforo y vitaminas del complejo B, además de ácidos grasos deseables en comparación con otro tipo de carnes como bovina y porcina”, todo lo anterior permite concluir que la avicultura está estrechamente ligada con la seguridad alimentaria.

La avicultura, actividad del sector pecuario, está conformada principalmente por la producción de huevos y carne de pollo. A nivel país, esta actividad ha presentado crecimiento constante en los últimos cincuenta años al pasar de producir 30 mil toneladas de carne de pollo en 1961 a un poco más de un millón en 2012 y según reporte de Fenavi para el año 2018 la producción de pollo ascendió a 1.624.000 toneladas. Este crecimiento es el resultado de diferentes factores como: avances en la genética, un mayor conocimiento en lo que respecta a la nutrición y alimentación, al manejo y al control de enfermedades, entre otros.

Respecto al factor de la nutrición y alimentación, éste es el rubro más alto dentro de la producción, ya que representa entre el 65 y 75% de sus costos, siendo una de las causas la dependencia de materias primas importadas, poniendo en riesgo la participación en este renglón de la economía, a pequeños y medianos productores. Por lo anterior, se vienen buscando alternativas alimenticias y nutricionales que respondan a los requerimientos de las aves en sus diferentes fases de la producción. Es así como la presente investigación consistió en evaluar el
comportamiento productivo de pollos de engorde – Cobb, durante toda su fase productiva, de tres tratamientos experimentales, con la inclusión en dos de ellos de niveles de inclusión de *Moringa oleífera*, frente a un tratamiento testigo.

En el capítulo I, se hace una revisión de literatura, tanto de la *Moringa oleífera*, de investigaciones realizadas en producción animal y sobre el pollo de engorde. En el capítulo II se describen los materiales y métodos utilizados en la investigación y en el capítulo III los resultados obtenidos y en el IV se aborda la discusión. Finalmente se hacen algunas recomendaciones.

Para la realización de la investigación se utilizaron fuentes secundarias y se realizó la fase experimental a nivel de campo, en un diseño completamente al azar, conformado por tres tratamientos con repeticiones cada uno de ellos.
1.1. Caracterización de la moringa

Moringa oleifera es procedente de la zona de los Himalaya (Kumar, 2013; Sanjay & Dwivedi, 2015), y natural de la India, Paquistán, Bangladesh y Afganistán (Fahey, 2005) Pertenece a la familia *Moringaceae*, conformada por 13 especies y pertenece al género *M. Oleifera*. Esta especie presenta hojas pinnadas y su vaina larga y leñososa, que al llegar a su maduración se abre en tres valvas, la cual contienen sus semillas que presentan tres alas (Olson & Fahey, 2011); estas características permiten su fácil reconocimiento

Sus árboles alcanzan una altura de hasta 10 m (Paliwal, Sharma, & Pracheta, 2011). *M. Oleifera* crece en zonas tropicales (en lugares con baja altitud, < 2000 msnm) y en distintos tipos de suelos (arcillosos y arenosos), a excepción de los suelos con deficiente drenaje. Es una planta que soporta condiciones secas, pero el estrés hídrico (lluvia mínima anual de 250 mm) influye en su crecimiento (Dubey, Dora, Kumar, & Gulsan, 2013)

Según Pérez, Sánchez, Armengol y Reyes, -(2010)- las hojas y la torta de prensado de sus semillas pueden ser empleadas en la elaboración de raciones para animales.

En el Instituto de Producción Animal en los Trópicos y Subtrópicos (Hohenheim, Alemania 1996), se realizó una investigación donde se demostró que la conformación de aminoácidos presentes en hojas de moringa se puede comparar con la de la soya, igualmente se confirmó que el (PDI), índice de proteína digerible de las hojas de *M. Oleifera*; en los intestinos
es superior al de varios suplementos proteínicos tradicionales, como las semillas de algodón, maní, sésamo, girasol y las tortas de coco (Makkar y Becker, 1996).

Por su parte, Makkar y Becker, 1996 afirman que, hojas extraídas con etanol son incluso mejores ingredientes para raciones; pues, además de su contenido superior de proteínas, sus niveles de fitatos y saponinas son bajos, no contienen inhibidores de tripsina, taninos, lectinas ni factores de flatulencia.

Palada y Chang, 2003, indican que las hojas de M. Oleifera entregan un elevado contenido de minerales, vitaminas y provitaminas. Asimismo, la hoja de M. oleifera ha reportado que contiene alrededor de 16-19 aminoácidos, de los cuales 10 están clasificados como aminoácidos esenciales, a saber, treonina, tirosina, fenilalanina, isoleucina, histidina, metionina, valina, leucina, lisina y triptófano. El contenido de calcio, potasio, magnesio y hierro de M. oleífera se ha observado que las hojas son más altas en comparación con otras plantas fuentes como Manihot esculenta, Vernonia anydalira, Talinum triangulare, Teiferia occidentalis, y Amaranthus spinosus (Moyo et al., 2011; Nkafamiya, Osemeahon, Modibbo, y Aminu, 2010; Stevens, Ugese, Otitoju, y Baiyeri, 2015).

Más de la mitad (57%) de la hoja de M. Oleifera se ha clasificado como ácidos grasos insaturados con α-Linolenico (11.4 g -1) que tiene el mayor valor, mientras que el resto son ácidos grasos saturados (43%) (Moyo et al., 2011). Además del contenido nutricional mencionado anteriormente, M. Oleifera ha sido encontrado que contiene una cantidad relativamente baja de antinutrientes como fitatos, saponinas, taninos y oxalatos (Shih et al., 2011).
De acuerdo con Stevens et al. (2015) y Makkar y Becker (1996), el fitato y el contenido de saponina en semillas de *M. oleifera* (2.23%, 3.89%) y hojas (2.5%, 5.0%) fue menor que las encontradas en otras leguminosas como la soja. El nivel de saponina en *M. oleifera* se ha considerado relativamente inocuo ya que la hoja es consumida por humanos (4-50 g de polvo de hoja) sin efectos adversos (Makkar & Becker, 1996; Stohs & Hartman, 2015). Del mismo modo, el contenido de oxalato en la hoja de *M. oleifera* (2.754 g / 100 g) se informó que era menor en comparación con los encontrados en Hoja de espinaca (12.57 g / 100 g), hoja de amaranto verde (10.05 g / 100 g) y Hoja de curry (2.77 g / 100 g) (Radek & Savage, 2008).

1.1.1. Moringa (*M. oleifera*) en la alimentación de aves

Las investigaciones están orientadas para encontrar fuentes alternas a la harina de soya que es en la actualidad la principal fuente de proteína de origen vegetal que se utiliza para la alimentación de pollo para carne. En este sentido, la *M. oleifera* ha sido reconocida por sus múltiples propiedades como: antiinflamatoria, analgésica, antianémica, antihipertensiva, protectora del hígado, antiasmática, antioxidante, y nutricionalmente es considerada como una fuente rica en proteína para la nutrición en humanos y animales. Los nutrientes presentes en las hojas aportan beneficios como eliminar toxinas, fortalecer el sistema inmunológico, suplemento proteico, entre otros. Es una planta que rinde elevadas cantidades de un forraje de más de 25 %
de proteína bruta y un bajo contenido de sustancias antinutricionales (Olson y Fahy, 2011; Windepagnagde et al., 2011) por lo que se ha utilizado con éxito, en las dietas para aves y cerdos.

La *M. Oleifera* es un árbol de fácil crecimiento, en el forraje encontramos fuente muy alta en proteínas que lo hace ser principio potencial en la alimentación animal, y puede ser una alternativa nutricional para los avicultores que ayude a disminuir los costos de producción sin afectar el comportamiento natural de las aves. Martín, C., Martín, G., García, A., Fernández, T., Hernández, E., & Puls, J. (2013)

Estudios realizados por (Gómez, N. I., Rébak, G., Fernández, R., Sindik, M., & Sanz, P. (2016), donde manejaron niveles de inclusión del 4 y el 8% de harina de Moringa en la dieta de las aves, notaron una diferencia significativa en el consumo del alimento en la dieta con la inclusión más alta, en cuanto a la ganancia de peso, valores de 1643 g, 1631, 07g y 1562,67g para T0 T1(4%) y T2(8%) respectivamente; y conversión alimenticia valores de 2,67, 2,67 y 2,69 respectivamente, concluyendo con esto que los resultados son semejantes en los grupos experimentales incluyendo el tratamiento control.

Gadzirayi C.T, et al. (2012) realizó un estudio donde se evaluaron cinco diferentes niveles de inclusión de moringa en la dieta de las aves, por un lapso de seis semanas donde se
encontró rango de peso vivo rango de 1750.55-1306.71 g para dietas T1 y T5 respectivamente, demostrando que la ganancia de peso y el peso final disminuyeron a medida que aumentaba el nivel de inclusión de M. oleifera

Al-Bahouh, M., Al-Nasser, A., Khalil, F., Ragheb, G., & Boareki, M. N. (2017) realizaron una investigación cuya dieta consistió en evaluar 3 niveles de inclusión de M. oleífera en pollos de engorde durante 35 días, los tratamientos fueron T0(control), T1 (10%), T2(20%) y T3 (40%), con los siguientes resultados: consumo de alimento promedio 2617.1g T0, 2559.4 g T1, 2645.9 g T2, 2518.2g T3. Ganancia de peso 1524.26g T0, 1226.10 g T1, 1034.42 T2 y 669.63 T3. Conversión Alimenticia 1.72 T0, 2.10 T1, 2.60 T2 y 3.79 T3. Con estos resultados se determinó que la M. oleífera puede ser incluida en la dieta para pollos de engorde hasta en un 10% sin que provoque efectos negativos en los parámetros de producción

En investigación realizada por (Cambar, L. L., González, C. O., & Álvarez, E. L. (2012), demostraron que la ganancia de peso se comporta similar en todos los tratamientos, y en el estudio recalca que la harina de M. Oleifera no representa sustancias toxica que pueda alterar el funcionamiento fisiológico o digestivo del ave.

Mojica, K. Y. S., Villamizar, A. F. C., & Gelvez, M. Y. P. (2016), demostraron que los pollos alimentadas con harina de Moringa, incrementó el consumo del alimento en comparación con las aves que no recibieron la inclusión de la harina de M. Oleifera, estas últimas aves mostraron un comportamiento de desagrado hacia el alimento sin Moringa. Estos mismos autores afirman que las aves alimentadas con harina de M. Oleifera adquieren inmunidad hacia las enfermedades respiratorias (peste), que se le atribuye al alto componente nutricional y por ser un alimento natural, igualmente se recalca que en inclusiones elevadas de M. Oleifera repercute negativamente en el metabolismo de ave causando la muerte por infarto.
En las investigaciones se evidencia un alto consumo de alimento donde está presente la **M. Oleifera**, esta no influye sobre el peso corporal ni en el rendimiento, la harina de Moringa contiene niveles altos de proteína, pero también es alto en fibra, provocando un alto consumo de alimento, (Sandoval, 2006).

Las aves consumen gran cantidad de material fibroso, ya que esta regula el buen funcionamiento intestinal y ayuda a la buena absorción de los nutrimentos, pero cuando el alimento no aporta la cantidad suficiente de fibra, el ave se ve obligada en obtenerlo por sus propios medios, (ejemplo la cama) (G.GMateos, s.f.) (Cambra, González, & Álvarez, 2012).

La harina de **M. Oleifera** puede ser una alternativa para incluir en la alimentación de pollos de forma natural en cantidades moderadas, dado que puede sustituir la proteína del concentrado de fuentes convencionales cuyo valor económico es alto, beneficio que los avicultores deben aprovechar para ser más eficientes, aumentando la productividad de las granjas avícolas en el país a menos costos.

1.2. Características del pollo de engorde

El pollo de engorde es un animal sociable y pacífico, tiene pico corto, barbillas y cresta poco desarrolladas. Tiende a postrarse con mucha facilidad al ser un animal sedentario, debido al acelerado incremento de peso. Los machos poseen una velocidad de crecimiento superior al de las hembras. (Barreto, 2016)

Para el caso de la línea **COBB** se caracteriza por la excelente conversión alimenticia, tasa de crecimiento y viabilidad más alta. Esto hace que logre superioridad en su eficiencia y competitividad (Morris Hatchery, 2019). Dentro de sus exigencias nutricionales, es importante indicar que requiere proteína del 21 al 22% en su fase de inicio, del 19 al 20% para su fase de...
crecimiento y del 18 al 20 % en su fase final. Así mismo requiere niveles de energía como 3008 Kcal/kg en etapa de inicio, 3086 Kcal/kg en etapa de crecimiento 3167 Kcal/kg en la fase de finalización. (cobb-vantress, 2019)
CAPÍTULO II MATERIALES Y MÉTODOS

2.1. Materiales

2.1.2. Localización

El experimento se realizó en Santandercito, Corregimiento del Municipio de San Antonio del Tequendama en el Departamento de Cundinamarca. Ubicada a 1.390 m.s.n.m. y temperatura promedio 19 y 21 ºC., pluviosidad promedio anual de 122,75.

![Mapa de Santandercito](image)

2.1.3. Instalaciones y equipos

Se utilizó un galpón de 12 m² el cual fue dividido en 9 corrales de 1 m², por malla metálica, el sistema de alojamiento fue en piso, para lo cual se colocó cama de cascarilla de arroz. A cada corral se le instaló un comedero de tolva y un bebedero manual. Tanto instalaciones como equipos fueron desinfectados previo a la recepción de las aves. En cuanto a las condiciones ambientales, en la fase de iniciación se manejó una temperatura inicial de 30ºC y
se fue ajustando en los días hasta llegar a 24°C, con una humedad relativa del 60-70%. Para la fase de finalización la temperatura promedio fue de 20-22°C y la misma humedad relativa.

2.1.4. Tiempo del ensayo

La investigación se realizó durante 6 meses, se desarrolló en cinco etapas: elaboración de la propuesta de investigación, etapa pre-experimental, etapa experimental, análisis de resultados y elaboración del escrito final.

2.3. Métodos

2.3.1. Recepción de las aves

Las aves fueron distribuidas en forma aleatoria, alojando 11 pollos en cada uno de los galpones, inicialmente se suministró agua y posteriormente el alimento, además tuvieron fuente de luz todo el tiempo.

2.3.2. Suministro de alimento.

El alimento se suministró ad libitum a las 05.00 am, de acuerdo con las indicaciones del manual Cobb, se verificaba si era necesario aumentar la cantidad y el día siguiente se realizó pesaje del alimento sobrante, con el objetivo de registrar el consumo real.

Se utilizaron dietas isocalóricas e isoprotéicas que cumplen con los requerimientos nutricionales de los pollos, en cada una de sus fases productivas. Para efectos de la inclusión de la moringa, se determinó su valor nutricional (tabla 1).
Tabla 1. Análisis de la Moringa Oleifera

<table>
<thead>
<tr>
<th>Análisis</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia seca</td>
<td>18,17%</td>
</tr>
<tr>
<td>Proteína</td>
<td>23,78%</td>
</tr>
<tr>
<td>Extracto etéreo</td>
<td>3,86%</td>
</tr>
<tr>
<td>Fibra cruda</td>
<td>10,58%</td>
</tr>
<tr>
<td>Cenizas</td>
<td>8,75%</td>
</tr>
<tr>
<td>Extracto no nitrogenado</td>
<td>53,03%</td>
</tr>
<tr>
<td>TDN</td>
<td>75,00%</td>
</tr>
<tr>
<td></td>
<td>3,31</td>
</tr>
<tr>
<td>Energía digestible</td>
<td>Mcal/Kg</td>
</tr>
<tr>
<td></td>
<td>2,71</td>
</tr>
<tr>
<td>Energía metabolizable</td>
<td>Mcal/Kg</td>
</tr>
</tbody>
</table>

Fuente: Laboratorio de Análisis y Ensayos (NUTRIANALISIS)

El balance de las dietas experimentales se aprecia en la tabla 2

Tabla 2. Dieta Experimental

<table>
<thead>
<tr>
<th>Materias primas</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harina de torta de soya</td>
<td>30,50</td>
<td>30,50</td>
<td>30,50</td>
</tr>
<tr>
<td>Harina de viseras pollo</td>
<td>1,50</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Harina de pescado</td>
<td>2,00</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Harina de moringa</td>
<td>1,52</td>
<td>3,05</td>
<td></td>
</tr>
<tr>
<td>Maíz</td>
<td>55,50</td>
<td>55,50</td>
<td>54,85</td>
</tr>
<tr>
<td>Harina de arroz</td>
<td>3,50</td>
<td>3,50</td>
<td>2,95</td>
</tr>
<tr>
<td>Melaza</td>
<td>0,70</td>
<td>0,70</td>
<td>0,70</td>
</tr>
<tr>
<td>Aceite de soya</td>
<td>3,80</td>
<td>3,80</td>
<td>3,80</td>
</tr>
<tr>
<td>Sal</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Carbonato de calcio</td>
<td>1,20</td>
<td>0,30</td>
<td>0,00</td>
</tr>
<tr>
<td>Premix vitaminas</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>DL-Met</td>
<td>0,20</td>
<td>0,13</td>
<td>0,10</td>
</tr>
<tr>
<td>Lysina</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Fuente: Autores (2018)

Se usaron dietas basales para la fase de iniciación (1-15 días de edad) y crecimiento y engorde (16-42 días de edad). La dieta testigo contenía 22% de proteína hasta los 15 días del
experimento, y desde el día 16 hasta finalizar; 19 % de Proteína. Se evaluaron dos niveles de inclusión de harina de *M. Oleifera* en la dieta (5% y 10%) como substituto a la harina de soya. Para el experimento se contó con tres tratamientos, y cada tratamiento estaba conformado por tres réplicas, siendo homogéneo en cantidad de aves a evaluar

2.3.3. Unidad experimental

La investigación se realizó con 99 pollos machos de un día de nacidos, raza Cobb distribuidos en un galpón con 9 compartimentos, con tres tratamientos de 11 animales cada uno. (Figura 2)

Ilustración 2. Tratamientos experimentales (Fuente: Autores 2019)

2.3.4. Diseño experimental

Fue un diseño completamente al azar, conformado por 3 tratamientos con 3 repeticiones con 11 unidades experimentales cada uno de ellos (repeticiones).

Los tratamientos fueron dietas isocalóricas e isoprotéicas que cubren los requerimientos nutricionales de las aves en cada una de sus fases
T0 Tratamiento testigo concentrado a base de maíz, harina de arroz, torta de soya, harina de pescado, melaza, aceite de soya, harina de visera, sal aminoácidos sintéticos, pre-mezclas mineral y vitaminada, en las cantidades apropiadas para esta etapa.

T1: este tratamiento contó con la inclusión del 5% de *M. Oleifera*, maíz, harina de arroz, torta de soya, harina de pescado, melaza, aceite de soya, harina de visera, sal aminoácidos sintéticos, pre-mezclas mineral y vitaminada.

T2: contó con la inclusión del 10% de *M. Oleifera*, maíz, harina de arroz, torta de soya, harina de pescado, melaza, aceite de soya, harina de visera, sal aminoácidos sintéticos, pre-mezclas mineral y vitaminada.

Tabla 3. Distribución de tratamientos en el Galpón.

<table>
<thead>
<tr>
<th>T0R1 (tratamiento control)</th>
<th>T1R1 Inclusión 5% de M. Oleifera</th>
<th>T2R3 10% de M. Oleifera</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1R2 Inclusión 5% de M. Oleifera</td>
<td>T2R2 10% de M. Oleifera</td>
<td>T0R1 (tratamiento control)</td>
</tr>
<tr>
<td>T2R1 10% de M. Oleifera</td>
<td>T0R1 (tratamiento control)</td>
<td>T1R3 Inclusión 5% de M. Oleifera</td>
</tr>
</tbody>
</table>

Fuente: Diseño del estudio (2019)

2.3.5. **Variables evaluadas**

Consumo de alimento, Peso y ganancia de peso, Conversión Alimenticia, Mortalidad

2.4. **Análisis estadístico:**

Se realizó análisis estadístico descriptivo y exploratorio de los datos e identificadas las variables de análisis (*ganancia de peso, consumo de alimento, conversión alimenticia*), se propuso el análisis de varianza (ANOVA) para identificar la existencia de diferencia estadísticamente significativa (p<0.05.) en la ganancia de peso, consumo de alimento; de los animales. El procedimiento estadístico se realizó con el programa R versión 3.5.3.
2.5. Aspectos Éticos

Dado que la investigación exige la experimentación con animales, evaluando la efectividad de la introducción de dos productos vegetales en la alimentación de pollos, se tuvieron en cuenta los aspectos éticos para su manipulación, que dictan algunas normas internacionales, dado que, al respecto, en Colombia las reglamentaciones aún son ambiguas y precarias, según lo asegura (Botero. L & Gomez. R, 2013).

La ley 99-158 de 1985 “Animals In Research”, cuyo cumplimiento debe ser supervisado por el Instituto Nacional de Salud (NIH) y debe ser cumplida por todos los investigadores y productores en este país. La Ley enfatiza el hecho de que toda persona que cuide o use animales para investigación científica, enseñanza superior o pruebas de laboratorio debe asumir la responsabilidad de su bienestar promoviendo en resumen los siguientes principios:

El diseño y realización de los procedimientos con base en su relevancia para la salud humana y animal, el avance del conocimiento y el bien de la sociedad.

El uso de las especies, calidad y número apropiado de animales, evitando o reduciendo al mínimo la incomodidad, estrés y dolor, siempre y cuando sea compatible con una buena ciencia.

El establecimiento de metas y objetivos precisos en el experimento.

Ofrecer un manejo apropiado a los animales, dirigido y realizado por personas calificadas.

El documento recalca que debe brindarse atención veterinaria adecuada a todos los animales para la evaluación de su salud y bienestar.

Norma Oficial Mexicana 062-Zoo de 1999, la cual unifica criterios para garantizar condiciones óptimas de animales en experimentación, la prevención y manejo de enfermedades y adecuada movilización que impida el estrés en ellos.
En Colombia solo se cuenta con la Resolución 008430 de 1993, cuyo fin es direccionar y garantizar la ética en la investigación en seres humanos, sin embargo, en el Título V, menciona la investigación biomédica en animales, dando algunas pautas sobre el manejo, alojamiento, infraestructura (Botero. L & Gomez. R, 2013).

Capítulo III - RESULTADOS

A continuación, se muestran los resultados obtenidos durante la fase experimental del proyecto.

3.1. Consumo de alimento semanal

El consumo de alimento por cada uno de los tratamientos realizados se aprecia en la tabla y figura 4.

<table>
<thead>
<tr>
<th>SEMANA</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>211</td>
<td>215</td>
<td>202</td>
</tr>
<tr>
<td>2</td>
<td>360</td>
<td>322</td>
<td>324</td>
</tr>
<tr>
<td>3</td>
<td>626</td>
<td>527</td>
<td>563</td>
</tr>
<tr>
<td>4</td>
<td>929</td>
<td>853</td>
<td>908</td>
</tr>
<tr>
<td>5</td>
<td>1205</td>
<td>1109</td>
<td>1104</td>
</tr>
<tr>
<td>6</td>
<td>1815</td>
<td>1683</td>
<td>1777</td>
</tr>
<tr>
<td>Total</td>
<td>5146</td>
<td>4709</td>
<td>4878</td>
</tr>
</tbody>
</table>

Fuente: Autores (2019)

En la tabla 4, se muestra el parámetro consumo de alimento por semana, se evidencia el mayor consumo para el tratamiento testigo (T0), este comportamiento genuino, inicia desde la primera semana de la fase experimental, comportamiento que se aprecia en la figura 3.
La ilustración 3, ilustra el comportamiento del consumo total de alimento al final de la fase experimental.
La ilustración 4, nos indica que el tratamiento control (T0) superó el consumo respecto al tratamiento T1 (5% de harina de M. Oleifera) en un 8.5% y en 5.2% al T2 (10% de harina de M. Oleifera)

Análisis de Varianza

El siguiente es el resultado del análisis de varianza para la variable consumo

| Fuente. Autores (2019) |

Se determina que hay diferencia estadísticamente significativa para el consumo de los pollos en las dietas en prueba. Se validaron los supuestos del modelo

| Fuente. Autores (2019) |
Se constata que los residuales del modelo debidos a la variable consumo se ajustan a una distribución normal y presentan una varianza constante. Se desarrolló el gráfico Box Plot de la variable consumo en los tratamientos en prueba.

![Box Plot de consumo](image)

Ilustración 5. Box Plot variable consumo. Fuente: Autores (2019)

Como hay diferencia estadísticamente significativa entre tratamiento y se validaron los supuestos del modelo, se procedió a desarrollar una prueba de comparación de medias con el Test *HSD* (Honestly-significant-difference) de *Tukey*.
En este caso se concluye que el tratamiento que condujo a más consumo de los pollos fue el cero.

3.2. Peso

Respecto a esta variable, en la tabla 5, se muestra el comportamiento por tratamiento y por semana

<table>
<thead>
<tr>
<th>SEMANA</th>
<th>TRATAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T0</td>
</tr>
<tr>
<td>1</td>
<td>161</td>
</tr>
<tr>
<td>2</td>
<td>336</td>
</tr>
<tr>
<td>3</td>
<td>547</td>
</tr>
<tr>
<td>4</td>
<td>830</td>
</tr>
<tr>
<td>5</td>
<td>1289</td>
</tr>
<tr>
<td>6</td>
<td>2381</td>
</tr>
</tbody>
</table>

Fuente: Autores (2019)
La ilustración 6, evidencia la ganancia armónica que se obtiene los tratamientos evaluados, se empieza a destacar la dieta con la inclusión del 10% de harina de M. Oleifera, desde la semana 3. Esto posiblemente, debido a la palatabilidad del alimento balaceado ofrecido a las aves.
Respecto a la variable peso, la ilustración 7, muestra que el tratamiento T2 (10% de harina de M. *Oleifera*), obtuvo el mejor peso, superando al T1 (5% de harina de M. *Oleifera*) en un 11,33% y un 7,6% a T0 (control)

Análisis de Varianza

El siguiente es el resultado del análisis de varianza para la variable peso

Tabla 9 Análisis de varianza variable peso

| Fuente. Autores (2019) |

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>2</td>
<td>132313</td>
<td>66156</td>
<td>2.606</td>
<td>0.153</td>
</tr>
<tr>
<td>T1</td>
<td>2</td>
<td>152331</td>
<td>25389</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Se determina que no hay diferencia estadísticamente significativa para la variable peso de los pollos en los tratamientos en prueba. Se validaron los supuestos del modelo

Tabla 10 Supuesto del modelo variable peso

| Fuente. Autores (2019) |

<table>
<thead>
<tr>
<th>data: fit2$residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>W = 0.963, p-value = 0.8292</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Levene's Test for Homogeneity of Variance (center = "median")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Df</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>T0</td>
</tr>
<tr>
<td>T1</td>
</tr>
<tr>
<td>T2</td>
</tr>
</tbody>
</table>
Se constata que los residuales del modelo para la variable peso se ajustan a una distribución normal y presentan una varianza constante. Se desarrolló el gráfico Box Plot de la variable peso en los tratamientos en prueba.

Como no hay diferencia estadísticamente significativa entre tratamientos para la variable peso y se validaron los supuestos del modelo, no se procedió a desarrollar una prueba de comparación de medias con el Test *HSD* (Honestly-significant-difference) de *Tukey*.
Tabla 11. Supuestos del modelo variable peso

> model.tables(fit2, type = "mean")
Tables of means
Grand mean

2414.333

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Tratamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento 0</td>
<td>Tratamiento 1</td>
</tr>
<tr>
<td>2381.0</td>
<td>2285.3</td>
</tr>
</tbody>
</table>

Fuente. Autores (2019)

3.3. Conversión alimenticia

El comportamiento de la conversión alimenticia lograda por las aves en experimento se aprecia en la siguiente:

Tabla 12. Conversión alimenticia por tratamiento

<table>
<thead>
<tr>
<th>Repetición</th>
<th>Tratamiento 0</th>
<th>Tratamiento 1</th>
<th>Tratamiento 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>2.23</td>
<td>1.92</td>
<td>1.87</td>
</tr>
<tr>
<td>R2</td>
<td>2.17</td>
<td>2.13</td>
<td>1.77</td>
</tr>
<tr>
<td>R3</td>
<td>2.09</td>
<td>2.16</td>
<td>2.06</td>
</tr>
<tr>
<td>Promedio</td>
<td>2.16</td>
<td>2.06</td>
<td>1.89</td>
</tr>
</tbody>
</table>

Fuente: Autores (2019)
Análisis de Varianza

El siguiente es el resultado del análisis de varianza para la variable conversión

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>2</td>
<td>0.105690</td>
<td>0.05285</td>
<td>3.622</td>
<td>0.093</td>
</tr>
<tr>
<td>Residuals</td>
<td>6</td>
<td>0.08755</td>
<td>0.01459</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Fuente. Autores (2019)

Se determina que no hay diferencia estadísticamente significativa para la variable conversión en los pollos en los tratamientos en prueba. Se validaron los supuestos del modelo
Se constata que los residuales del modelo para la variable conversión se ajustan a una distribución normal y presentan una varianza constante. Se desarrolló el gráfico Box Plot de la variable Conversión en los tratamientos en prueba.

Fuente. Autores (2019)
Como no hay diferencia estadísticamente significativa entre tratamientos para la variable conversión y se validaron los supuestos del modelo, no se procedió a desarrollar una prueba de comparación de medias con el Test HSD (Honestly-significant-difference) de Tukey.
A pesar que no hubo diferencias estadísticas entre los tratamientos, sí se aprecian diferencias aritméticas que inciden en la producción ya que se puede apreciar que la mejor conversión la obtuvo el tratamiento T2.

3.5. Mortalidad

<table>
<thead>
<tr>
<th>SEMANA</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Autores (2019)
La ilustración 11, muestra un parámetro ininteligible aun, sucedido en la dieta control (T0), el mayor deceso para este tratamiento, sucede al finalizar la fase experimental, semana (6). Como explicación a la inferior mortalidad en los otros tratamientos, se les atribuye a las bondades nutricionales que posee la *M. Oleifera*.

El resumen de los resultados obtenidos en la investigación se aprecia en la tabla siguiente:

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Peso</th>
<th>Ganancia de peso</th>
<th>Consumo de Alimento</th>
<th>Conversión Alimenticia</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>2381</td>
<td>2318,7</td>
<td>5.146A</td>
<td>2,16</td>
</tr>
<tr>
<td>T1</td>
<td>2285</td>
<td>2221,4</td>
<td>4.709C</td>
<td>2,06</td>
</tr>
<tr>
<td>T2</td>
<td>2577</td>
<td>2514,7</td>
<td>4.878B</td>
<td>1,89</td>
</tr>
</tbody>
</table>

Fuente. Autores (2019)
La avicultura pasó a ser una actividad de mayor relevancia en la economía colombiana, por tal motivo los avicultores se ven en la necesidad de buscar alternativas nutricionales que ayude a bajar los costos de producción. Investigaciones hechas por el Instituto de Producción Animal en los Trópicos y Subtrópicos (Hohenheim, Alemania 1996) han demostrado que la harina de hoja de *M. Oleifera* está conformada por aminoácidos similares a los de la soya, el índice de proteína digerible que esta harina posee es mayor, comparado con algunos productos tradicionales (Makkar y Becker, 1996).

En la investigación efectuada se muestra un consumo promedio de 4709 g y 4878 g, para la dieta del 5 % y dieta del 10 % respectivamente. Lo cual se asemeja a estudios realizados por Gadzirayi C.T. *et al.*, (2012) y Kakengi *et al.*, (2007) que señalan que la ingesta de alimento aumentó a medida que aumentaba la inclusión de *M. Oleifera*. Este análisis lo corrobora el estudio realizado por (Gómez, N. I., Rébak, G., Fernández, R., Sindik, M., & Sanz, P. (2016), donde trabajaron con inclusiones del 4 y 8% de la harina de Moringa, notando en las aves el mismo comportamiento frente al consumo.

Sin embargo, el consumo de alimento reportado en la investigación para los tres tratamientos es superior que las cifras entregadas por Rosero *et al.*, (2012) quien indica consumo de 2872.7g para machos de la línea *cobb*; alimentados con dieta comercial. Por el contrario, la presente investigación reporta un consumo semejante de alimento en comparación con los resultados del estudio realizado por Olugbemi *et al.*, (2010) en inclusión *M. Oleifera* a la dieta de los pollos de engorde, basada en yuca; en este indica que el consumo de alimento durante 8
semanas de experimento fue de entre 6002,7 y 6346,9 g. Si bien hubo dos semanas más de experimento, el consumo es similar.

En términos de ganancia de peso (g), el experimento reporta para la dieta control un promedio de 2318,7 g, frente 2221,4 g de la dieta 5% y 2514,7 g, en la dieta 10% de inclusión de *M. Oleifera*; mientras que Olugbemi *et al.*, (2010) indica peso final después de 8 semanas de 2263,6 g y 2428,2 g. Como se mencionó anteriormente hubo dos semanas más de experimento; la ganancia de la presente investigación, supera a la de Olugbemi *et al.*, (2010) en solo 6 semanas.

Por otro lado; Gadzirayi C.T, *et al.*, (2012) en su estudio expresa que la ganancia de peso y el peso final disminuyeron a medida que el nivel de moringa aumentaba. Esto difiere profundamente con el experimento realizado, ya que se logró mejor ganancia de peso con el nivel más alto de inclusión de *M. Oleifera*, es decir al 10%.

En cuanto a conversión alimenticia; Olugbemi *et al*. (2010) refiere valores de 2.57-2.81, al término de 8 semanas de tratamiento, los anteriores datos son superiores a los que señala la actual investigación, pues encontramos valores de 2.16, 2.06 y 1.89 en las dietas control, 5 % y 10 % respectivamente. En cuanto a conversión alimenticia promedio. Estas cifras nos muestran una diferencia considerable entre las dietas, control y 5 % respecto a la dieta del 10%. Este valor nos indica que para producir un kilo de carne requerimos 1,89 Kilos de alimento con el 10% de inclusión de Moringa. Cifra que nos permite considerar que el experimento nos entrega una importante eficiencia de conversión de las aves con la dieta mencionada.

En una investigación similar, (Al-Bahouh, Al-Nasser, Khalil, Ragheb, & Boareki, 2017) encontraron qué; una dieta suplementada con 10% de Moringa produjo un efecto en ganancia de peso y canales de alta calidad igualmente peso final favorable; los *mismos autores* concluyeron este nivel de inclusión de hojas de Moringa no provoca ningún perjuicio sobre los parámetros de rendimiento en un sistema productivo de pollos de engorde. De igual modo Du et al., (2007) indicaron una mejora en tales parámetros al suplementar la dieta de los pollos sin sobre pasar ciertos topes.
CONCLUSIONES

El presente estudio demostró que pollos de la línea Cobb, alimentados con un nivel de inclusión del 10 % de hojas de *M. Oleifera* como sustituto de la soya dentro de su dieta, muestran un consumo inferior a la dieta control del 5.21%. Esta diferencia se puede atribuir a los altos niveles de fibra que contiene la harina de moringa y al efecto de llenura que esta produce en el organismo de las aves. Pero si evaluamos la ganancia de peso, existe una diferencia del 7,8% a favor de la dieta al 10% de hojas de *M. Oleifera*.

En ese sentido, y como lo corroboran los resultados de la investigación, se obtuvo un valor medio de 1,89 en cuanto a conversión alimenticia se refiere; es decir qué, para producir un kilo de carne requerimos 1,89 Kilos de alimento con el 10% de inclusión de *M. Oleifera*. Con esto podemos concluir que se obtiene una importante eficiencia de conversión en las aves durante el experimento realizado.
RECOMENDACIONES

Desacuerdo a esta investigación, se recomienda:

- Analizar parámetros como, rendimiento en canal y calidad de la misma y peso de órganos, digestibilidad.

- Extrapolar este estudio en campo, ya que los parámetros Zootécnicos de las aves bajo ambientes controlados varían de aquellas aves que están en granjas productivas.

- Aplicar esta investigación en otro tipo de producción aviar, y evaluar parámetros productivos.

- Alternar esta investigación con otros estudios, con el fin de mejorar la productividad de las granjas avícolas.
REFERENCIAS BIBLIOGRÁFICAS

Barreto, 2016. Sistemas de Produccion avícola, Modulo. Universidad Nacional Abierta y a Distancia. Pág. 1

https://cobbstorage.blob.core.windows.net/guides/9000e3b0-bcc7-11e6-bd5d-55bb08833e29.pdf

Paliwal, R., Sharma, V., & Pracheta. (2011). A review on Horse radish tree (Moringa Oleifera): A multipurpose tree with high economic and commercial

Shih, M. C., Chang, C. M., Kang, S. M., & Tsai, M. L. (2011). Effect of different parts (leaf, stem and stalk) and seasons (summer and winter) on the chemical compositions and antioxidant activity of Moringa Oleifera. International Journal of Molecular Sciences, 12(9), 6077–6088.
