DIPLOMADO DE PROFUNDIZACION CISCO CCNP SOLUCIÓN DE DOS ESCENARIOS PRESENTES EN ENTORNOS CORPORATIVOS BAJO EL USO DE TECNOLOGÍA CISCO

RICARDO PEREIRA LAMBRAÑO

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA-UNAD ESCUELA DE CIENCIAS BÁSICAS,TECNOLOGÍA E INGENIERÍA-ECBTI INGENIERÍA ELECTRÓNICA CERETE – CORDOBA

2020

DIPLOMADO DE PROFUNDIZACION CISCO CCNPSOLUCIÓN DE DOS ESCENARIOS PRESENTES EN ENTORNOS CORPORATIVOS BAJO EL USO DE TECNOLOGÍA CISCO

RICARDO PEREIRA LAMBRAÑO

Diplomado de opción de grado presentado para optar al titulo de INGENIERO ELECTRÓNICO

DIRECTOR:

MSc. GERARDO GRANADOS ACUÑA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA-UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA- ECBTI INGENIERÍA ELECTRÓNICA CERETE – CORDOBA

2020

NOTA DE ACEPTACIÓN

Firma del Presidente del Jurado

Firma del Jurado

CERETE, NOVIEMBRE DE 2020

AGRADECIMIENTOS

Agradezco a la Universidad Nacional Abierta y a Distancia por brindarme la oportunidad de recibir esos nuevos conocimientos que me hicieron crecer a nivel profesional, de ante mano felicito al ingeniero Gerardo Granados por su gran labor de Tutor al igual que la ingenieria Nancy Amparo Guaca por estar presente en los cursos anterior de CISCO.

CONTENIDO

AGRADECIMIENTOS	4 -
CONTENIDO	5 -
LISTA DE TABLAS	6 -
LISTA DE FIGURAS	7-
GLOSARIO	9 -
RESUMEN	10 -
ABSTRACT	10 -
INTRODUCCION	11 -
DESARROLLO	12 -
1. ESCENARIO 1	12 -
2.ESCENARIO 2	24 -
CONCLUSIONES	63 -
BIBLIOGRAFIA	64 -

LISTA DE TABLAS

Tabla 1. Direcciones interfaces Loopback	18
Tabla 2. Direcciones interfaces R5	20
Tabla 3. Tabla de VLAN	44
Tabla 4. Tabla de interfaces	

LISTA DE FIGURAS

Figura 1. Escenario 1	12
Figura 2. Simulación Escenario 1	13
Figura 3. Configuración Inicial R1	14
Figura 4. Configuración Inicial R2	15
Figura 5. Configuración Inicial R3	16
Figura 6. Configuración Inicial R4	17
Figura 7. Configuración Inicial R5	18
Figura 8. Configuración Loopback R1	20
Figura 9. Configuración Loopback R5	22
Figura 10. Revisión mediante el comando show ip route	22
Figura 11. Configuración OSPF y EIGRP en R3	23
Figura 12. Revisión mediante el comando show ip route	24
Figura 13. Escenario 2	24
Figura 14. Simulación del escenario 2	25
Figura 15. Apagado de interfaz en DLS1	26
Figura 16. Apagado de interfaz en DLS2	26
Figura 17. Apagado de interfaz en ALS1	27
Figura 18. Apagado de interfaz en ALS2	27
Figura 19. Asignación de nombre a DLS1	
Figura 20. Asignación de nombre a DLS2	28
Figura 21. Asignación de nombre a ALS1	29
Figura 22. Asignación de nombre a ALS2	29
Figura 23. Configuración de puertos troncales en DLS1	31

Figura 24. Configuración de puertos troncales en DLS2	34
Figura 25. Configuración de puertos troncales en ALS1	36
Figura 26. Configuración de puertos troncales en ALS2	40
Figura 27. Configuración de dominio CISCO DLS1	41
Figura 28. Configuración de dominio CISCO DLS2	42
Figura 29. Configuración de dominio CISCO ALS1	43
Figura 30. Configuración de dominio CISCO ALS2	44
Figura 31. Configuración de VLAN en DLS1	45
Figura 32. Suspendida de VLAN 434	46
Figura 33. Verificación de las VLAN en DLS1	46
Figura 34. Modo VTP transparente en DLS2	48
Figura 35. Suspender vlan 434 en DLS2	48
Figura 36. Verificación de vlan en DLS2	49
Figura 37. Creación de vlan PRODUCCION en DLS2	50
Figura 38. Creación de raíz secundaria en DLS1	51
Figura 39. Creación de raíz secundaria en DLS2	52
Figura 40. De los puertos como troncales DLS1	53
Figura 41. De los puertos como troncales DLS2	54
Figura 42. Configuración de puertos de acceso en DLS1	55
Figura 43. Configuración de puertos de acceso en DLS2	56
Figura 44. Configuración de puertos de acceso en ALS1	58
Figura 45. Configuración de puertos de acceso en ALS2	59
Figura 46. Verificación General mediante el comando show vlan brief	60
Figura 47. Verificación General mediante el comando etherchannel sumary	60
Figura 48. Verificación de Spanning en DLS1	61
Figura 49. Verificación de Spanning en DLS1	61
Figura 50. Verificación de Spanning en DLS2	62

GLOSARIO

RIP: Protocolo de puerta de enlace interna o IGP (Internal Gateway Protocol) utilizado por los routers. Protocolo de mayor compatibilidad para las redes Internet. RIP es el protocolo de enrutamiento por vector de distancia más antiguo

IGRP: Actualizaciones Periódicas: Cada 90 segundos por defecto, RIP era cada 30. La actualización es un sumario de las rutas, sólo se intercambia con los routers vecinos. Actualizaciones por Broadcast: Las actualizaciones se envían por broadcast. Protocolos posteriores como RIPv2 ya utilizaban multicast

OSPF: Estándar y de especificación abierta. Converge rápidamente

ROUTER: Es un direccionador o enrutador tipo electronico programable para interconectar redes y dispositivos finales

SWITCH: dispositivo electronico que nos permite conectar perifericos como impresoras, ordenadores, telefonos y entre otros a una red

IGP: Es un protocolo de ruteo comunmente usado para el intercambio de informacio dentro d un sistema.

RESUMEN

El diplomado de profundizacion CISCO CCNP - (208014A_764) esta diseñado con el fin enfatizar los conocimientos previos en REDES, este diplomado cuenta con competencias necesarias para adquirir habilidades en el mundo laboral dando como resultado una gran experiencia a la hora de enfrentarse al campo laboral, gracias a esta profundizacion podemos instalar redes locales pequeñas como redes a gran escala, ademas de esto la deteccion de errores enfocados en la ELECTRONICA y soluciones de manera eficiente en el ENRUTAMIENTO de redes.

Obteniendo este titulo en CISCO tenemos la capacidad de hacer enrutamiento en CCNP sin ningun inconveniente, simular una red y hacer un plan de mejora a alguna red.

ABSTRACT

The CISCO CCNP deepening diploma - (208014A_764) is designed in order to emphasize previous knowledge in NETWORKS, this diploma has the necessary skills to acquire skills in the world of work resulting in a great experience when facing the labor field, Thanks to this deepening we can install small local networks and large-scale networks, in addition to this, the detection of errors focused on ELECTRONICS and solutions efficiently in the ROUTING of networks.

Obtaining this title in CISCO we have the ability to do routing in CCNP without any inconvenience, simulate a network and make an improvement plan to a network.

INTRODUCCION

El diplomado de profundizacion CISCO CCNP - (208014A_764) tiene como objetivo potencializar las habilidades de los estudiantes de ingenieria electronica y telecomunicaciones esto con el fin de hacer profesionales con altas capacidades en ele diseño y control de redes de enrutamiento a nivel local y lan.

Para el escenario numero 1 esta diseñado con el objetivo de que el estudiante comprenda las configuraciones iniciales de los router como establecer su nombre, sus direcciones ip, conexiones tipo serial, la creacion de interfaces LoopBack, la configuracion de crear participaciones en interfaces OSPF e interfaces EIGRP.

Para el segundo escenario esta diseñado con el objetivo de aprender apagar las interfaces de cada switch, asignarle un nombre a cada una de ellas, configurar puertos troncales y Port – Channel y por ultimo hacer prueba de conectividad

DESARROLLO

1. ESCENARIO 1

Figura 1. Escenario 1

Figura 2. Simulación Escenario 1

1.1. Aplique las configuraciones iniciales y los protocolos de enrutamiento para los routers R1, R2, R3, R4 y R5 según el diagrama. No asigne passwords en los routers. Configurar las interfaces con las direcciones que se muestran en la topología de red. Se realiza la configuración de las direcciones asignadas en el esquema en cada router y para cada puerto para ingresar a la forma de configuración del router se escribe el comando enable, después se usa el comando configure terminal, se escribe interface ... con el nombre del puerto a configurar y por último el comando ip address ... con la dirección que se desea asignar al puerto, esta secuencia de comandos es la misma que se utilizará para configurar cada uno de los puertos.

Se procede a configurar los nombres de los Router de la red y su respectiva IP

Configuraciones iniciales mediante código

R1	
	R1#config terminal R1(config)#interface s0/0/0 R1(config-if)#bandwidth 128000 R1(config-if)#ip address 10.113.12.8 255.255.255.0 R1(config-if)#no shutdown
	R1(config-if)#exit R1(config)#router ospf 1

R1(config-router)#network 10.113.12.0 0.0.0.255 area 5 R1(config-router)# R1#

Figura 3. Configuración Inicial R1

R2	R2#config terminal
	R2(config)#interface s0/0/0
	R2(config-if)#ip address 10.113.12.18 255.255.255.0
	R2(config-if)#no shutdown
	R2(config-if)#exit
	R2(config)#interface s0/0/1
	R2(config-if)#ip address 10.113.13.18 255.255.255.0
	R2(config-if)#no shutdown
	R2(config-if)#
	R2(config-if)#exit
	R2(config)#router ospf 1
	<i>R2(config-router)#network 10.113.12.0 0.0.0.255 area 5</i>
	<i>R2(config-router)#network 10.113.13.0 0.0.0.255 area 5</i>
	00:16:45: %OSPF-5-ADJCHG: Process 1, Nbr 10.113.12.8 on
	Serial0/0/0network 10.113.13.0 0.0.0.255 area 5
	R2(config-router)#

Figura 4. Configuración Inicial R2

Configuraciones iniciales en R3

R3	R3#config terminal
	R3(config)#interface s0/0/1
	R3(config-if)#ip address 10.113.13.8 255.255.255.0
	R3(config-if)#no shutdown
	R3(config-if)#exit
	R3(config)#interface s0/0/0
	R3(config-if)#ip address 172.19.45.8 255.255.255.0
	R3(config-if)#no shutdown
	R3(config-if)#exit
	R3(config)#router ospf 1

 R3(config-router)#network 10.113.13.0 0.0.0.255 area 5

 R3(config-router)#exit

 R3(config)#router eigrp 15

 R3(config-router)#network 172.19.45.0 0.0.0.255

 R3(config-router)#

Figura 5. Configuración Inicial R3

Configuraciones iniciales en R4

R4	R4>enable R4#config terminal R4(config)#interface s0/0/0 R4(config-if)#ip address 172.19.45.10 255.255.255.0 R4(config-if)#no shutdown
	R4(config-if)#exit R4(config)#interface s0/0/1 R4(config-if)#ip address 172.19.34.15 255.255.255.0 R4(config-if)#no shutdown

R4(config-if)#exit R4(config)#router eigrp 15 R4(config-router)#network 172.19.45.0 0.0.0.255 R4(config-router)#network 172.19.34.0 0.0.0.255 R4(config-router)#exit R4(config)#end R4#copy running-config startup-config

Figura 6. Configuración Inicial R4

Seguimos con las configuraciones iniciales R5

R5	R5>enable							
	R5#config terminal							
	R5(config)#interface s0/0/0							
	R5(config-if)#bandwidth 128000							
	R5(config-if)#ip address 172.19.34.15 255.255.255.0							
	R5(config-if)#no shutdown							
	R5(config-if)#exit							
	R5(config)#router eigrn 15							
	R5(config-router)#network 172.19.45.0 0.0.0.255							
	R5(config-router)#end							

Figura 7. Configuración Inicial R5

1.2. Cree cuatro nuevas interfaces de Loopback en R1 utilizando la asignación de direcciones 10.1.0.0/22 y configure esas interfaces para participar en el área 5 de OSPF.

Para crear las nuevas interfaces de Loppback en R1 se utiliza la asignación de direcciones como se muestra en la Tabla 6. Para esto se necesita utilizar en la línea de comando los comandos mencionados anteriormente para configurar el router mediante el terminal, después se debe usar el comando interfaz loopback y en seguida ingresar el comando ip address con la dirección a asignar. El siguiente paso fue configurar esta nueva interfaz para participar en el área 5 de OSPF usando los comandos router ospf y después network (IP) área (número área)

Tabla 1. Direcciones interfaces Loopback

Loopback 0	10.1.0.1/22
Loopback 1	10.1.4.1/22
Loppback 2	10.1.8.1/22
Loppback 3	10.1.12.1/22

R1	<i>R1>enable</i>
	R1#config terminal
	R1(config)#interface lo0
	R1(config-if)#
	R1(config-if)#ip address 10.1.0.1 255.255.252.0
	R1(config-if)#exit
	R1(config)#interface lo1
	R1(config-if)#ip address 10.1.4.1 255.255.252.0
	R1(config-if)#exit
	R1(config)#interface lo2
	R1(config-if)#
	R1(config-if)#ip address 10.1.8.1 255.255.252.0
	R1(config-if)#exit
	R1(config)#interface lo3
	R1(config-if)#
	R1(config-if)#ip address 10.1.12.1 255.255.252.0
	R1(config-if)#exit
	R1(config)#
	R1(config)#router ospf 1
	R1(config-router)#network 10.113.12.0 0.0.0.255 area 5
	R1(config-router)#network 10.113.13.0 0.0.0.255 area 5
	R1(config-router)#end
	<i>R1#</i>

Figura 8. Configuración Loopback R1

1.3. Cree cuatro nuevas interfaces de Loopback en R5 utilizando la asignación de direcciones 172.5.0.0/22 y configure esas interfaces para participar en el Sistema Autónomo EIGRP 15

Para configurar en R5 las interfaces de Loopback se utilizan los mismos comandos, mencionados en el anterior punto, y para configurar el sistema autónomo EIGRP se utiliza los comandos: Route eigrp 15, auto-summary, network #IP.

En la tabla 8 se observa los valores de las direcciones asignadas para las interfaces en R5

Tabla	2.	Direcc	iones	inter	faces	R5

Loopback 0	172.5.0.1/22
Loopback 1	172.5.4.1/22
Loppback 2	172.5.8.1/22
Loppback 3	172.5.12.1/22

Se configuran las interfaces de Lo del Router 5

R5	R5>enable
	R5#config terminal
	R5(config)#in lo0
	R5(config-if)#
	R5(config-if)#ip address 172.5.0.1 255.255.252.0
	R5(config-if)#exit
	R5(config)#in lo1
	<i>R5(config-if)#ip address 172.5.4.1 255.255.252.0</i>
	R5(config-if)#exit
	R5(config)#in lo2
	<i>R5(config-if)#ip address 172.5.8.1 255.255.252.0</i>
	R5(config-if)#exit
	R5(config)#in lo3
	<i>R5(config-if)#ip address 172.5.12.1 255.255.252.0</i>
	R5(config-if)#exit
	<i>R5(config-if)#ip address 172.5.12.1 255.255.252.0</i>
	R5(config-if)#exit
	R5(config)#route eigrp 15
	R5(config-router)#auto-summary
	R5(config-router)#network 172.5.0.0 0.0.3.255
	R5(config-router)#network 172.19.45.0 0.0.0.255
	R5(config-router)#

Figura 9. Configuración Loopback R5

1.4.Analice la tabla de enrutamiento de R3 y verifique que R3 está aprendiendo las nuevas interfaces de Loopback mediante el comando show ip route.

Figura 10. Revisión mediante el comando show ip route

Gisco Packet Tracer - C//Users/RICARDO/Desktop/Escenario_1.pkt		- 0
	a	
	<pre>/// / / / / / / / / / / / / / / / / /</pre>	

1.5.Configure R3 para redistribuir las rutas EIGRP en OSPF usando el costo de 50000 y luego redistribuya las rutas OSPF en EIGRP usando un ancho de banda T1 y 20,000 microsegundos de retardo.

Se crea las redistribuciones EIGRP y OSPF

R3R3#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
R3(config)#router ospf 1
R3(config-router)#redis
R3(config-router)#redistribute eigrp 15 metric 50000 subnets
R3(config-router)#exit
R3(config)#router eigrp 15
R3(config)#router eigrp 15
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config-router)#redis
R3(config)#router

1.6. Verifique en R1 y R5 que las rutas del sistema autónomo opuesto existen en su tabla de enrutamiento mediante el comando show ip route.

Figura 12. Revisión mediante el comando show ip route

ESCENARIO 2

Una empresa de comunicaciones presenta una estructura Core acorde a la topología de red, en donde el estudiante será el administrador de la red, el cual deberá configurar e interconectar entre sí cada uno de los dispositivos que forman parte del escenario, acorde con los lineamientos establecidos para el direccionamiento IP, etherchannels, VLANs y demás aspectos que forman parte del escenario propuesto.

Figura 14. Simulación del escenario 2

Parte 1: Configurar la red de acuerdo con las especificaciones.

a. Apagar todas las interfaces en cada switch.

DLS1	DLS1#config terminal DLS1(config)#interface range fa0/1-24 DLS1(config-if-range)#shutdown
DLS2	DLS2#config terminal

DLS2	DLS2#config terminal
	DLS2(config)#interface range fa0/1-24
	DLS2(config-if-range)#shutdown

ALS1	ALS1#config terminal
	ALS1 (config)#interface range fa0/1-24
	ALS1 (config-if-range)#shutdown

ALS2 ALS2#config terminal

Figura 15. Apagado de interfaz en DLS1

Figura 17. Apagado de interfaz en ALS1

Figura 18. Apagado de interfaz en ALS2

b. Asignar un nombre a cada switch acorde con el escenario establecido.

Figura 19. Asignación de nombre a DLS1

Figura 20. Asignación de nombre a DLS2

Figura 21. Asignación de nombre a ALS1

c. Configurar los puertos troncales y Port-channels tal como se muestra en el diagrama.

1) La conexión entre DLS1 y DLS2 será un EtherChannel capa-3 utilizando LACP. Para DLS1 se utilizará la dirección IP 10.12.12.1/30 y para DLS2 utilizará 10.12.12.2/30.

2) Los Port-channels en las interfaces Fa0/7 y Fa0/8 utilizarán LACP.

3) Los Port-channels en las interfaces F0/9 y fa0/10 utilizará PAgP.

4) Todos los puertos troncales serán asignados a la VLAN 500 como la VLAN nativa.

DI S1

DLSI	
	DLS1>enable
	DLS1#config terminal
	DLS1(config)#interface range fastEthernet 0/11-12
	DLS1(config-if-range)#no switchport
	DLS1(config-if-range)#channel-group 12 mode active
	DLS1(config-if-range)#no shutdowm
	DLS1(config-if-range)#no shut
	%LINK-5-CHANGED: Interface FastEthernet0/11, changed state to down
	%LINK-5-CHANGED: Interface FastEthernet0/12, changed state to down
	DLS1(config-if-range)#exit
	DLS1(config)#interface range fas
	DLS1(config)#interface range fastEthernet 0/9-10
	DLS1(config-if-range)#desc member of po4 to ALS2
	DLS1(config-if-range)#channel-group 1 mode desirable
	DLS1(config-if-range)#
	Creating a port-channel interface Port-channel 1
	DLS1(config-if-range)#exit
	DLS1(config)#interface range fastEthernet 0/7-8
	DLS1(config-if-range)#desc member of po1 to ALS2
	DLS1(config-if-range)#desc member of po1 to ALS1
	DLS1(config-if-range)#channel-group 1 mode active
	DLS1(config-if-range)#exit
	DLS1(config)#interface range fa
	DLS1(config)#interface range fastEthernet 0/7-10
	DLS1(config-if-range)#switchport trunk encapsulation dot1q
	DLS1(config-if-range)#
	%EC-5-CANNOT_BUNDLE2: Fa0/8 is not compatible with Fa0/9 and will be
	suspended (trunk encap of Fa0/8 is auto, Fa0/9 is $dot1q$)
	%EC-5-CANNOT_BUNDLE2: Fa0/8 is not compatible with Fa0/10 and will be
	suspended (trunk encap of Fa0/8 is auto, $Fa0/10$ is $dot1q$)

Figura 23. Configuración de puertos troncales en DLS1

DLS2	
	DLS2>enable
	DLS2#config t
	DLS2(config)#int range fastEthernet 0/9-10
	DLS2(config-if-range)#desc member of po3 to ALS2
	DLS2(config-if-range)#channel-group 3 mode desirable
	DLS2(config-if-range)#
	Creating a port-channel interface Port-channel 3
	DLS2(config-if-range)#exit
	DLS2(config)#int range fastEthernet 0/7-8
	DLS2(config-if-range)#desc member of po2 to ALS2
	DLS2(config-if-range)#channel-group 2 mode active
	DLS2(config-if-range)#
	Creating a port-channel interface Port-channel 2
	DLS2(config-if-range)#exit
	DLS2(config)#int range fa0//-10
	DLS2(config-if-range)#switchport trunk encapsulation dot1q
	%EC-5-CANNOT_BUNDLE2: Fa0// is not compatible with Fa0/8 and will be
	suspended (trunk encap of $Fa0/7$ is auto, $Fa0/8$ is $dot1q$)
	9/EC = 5 CANNOT BUNDLE2, Eq0/0 is not compatible with Eq0/10 and will be
	$\frac{76EC-5-CANNO1_BOINDLE2}{Fa0/9}$ is not compatible with Fa0/10 and will be
	suspended (trunk encup of Fuo/9 is duto, Fuo/10 is dot1q)
	DI \$2(config-if-range)#switchport trunk native vlan 500
	DLS2(config-if-range)#switchport made trunk
	%EC-5-CANNOT BUNDLE2: Fa0/7 is not compatible with Po2 and will be
	suspended (native vlan of $Fa0/7$ is 500 Po2 id 1)
	suspended (nauve vian 6j 1 do) / 15 500, 1 02 la 1)
	%EC-5-CANNOT BUNDLE2: Fa0/8 is not compatible with Po2 and will be
	suspended (native vlan of Fa0/8 is 500. Po2 id 1)
	%EC-5-CANNOT_BUNDLE2: Fa0/9 is not compatible with Po3 and will be
	suspended (native vlan of Fa0/9 is 500, Po3 id $\hat{1}$)
	%EC-5-CANNOT_BUNDLE2: Fa0/10 is not compatible with Po3 and will be
	suspended (native vlan of Fa0/10 is 500, Po3 id 1)
	DLS2(config-if-range)#switchport nonegotiate
	%LINK-5-CHANGED: Interface FastEthernet0/7, changed state to down
	%LINK-5-CHANGED: Interface FastEthernet0/8, changed state to down
	%LINK-J-CHANGED: Interface FastEthernetU/9, changed state to down

%LINK-5-CHANGED: Interface FastEthernet0/10, changed state to down DLS2(config-if-range)#exit DLS2(config)#int range fa0/11-12 DLS2(config-if-range)#no switchport DLS2(config-if-range)#channel-group 12 mode active Creating a port-channel interface Port-channel 12 DLS2(config-if-range)#no shutdown

DLS2(config-if-range)# %LINK-5-CHANGED: Interface FastEthernet0/11, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/11, changed state to up

%LINK-5-CHANGED: Interface FastEthernet0/12, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/12, changed state to up

%LINK-5-CHANGED: Interface Port-channel12, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Port-channel12, changed state to up

DLS2(config-if-range)#int port-channel 12 DLS2(config-if)#ip address 10.12.12.2 255.255.255 DLS2(config-if)#exit DLS2(config)#end DLS2# DLS2#copy running-config startup-config

Figura 24. Configuración de puertos troncales en DLS2

%LINK-5-CHANGED: Interface FastEthernet0/9, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/9, changed state to up

%LINK-5-CHANGED: Interface FastEthernet0/10, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/10, changed state to up

ALS1(config-if-range)#exit ALS1(config)#int range fa0/7-8 ALS1(config-if-range)#desc member of po1 to DLS1 ALS1(config-if-range)#channel-group 1 mode active %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/7, changed state to down

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/7, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/7, changed state to down

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/8, changed state to down

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/8, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/8, changed state to down

ALS1(config-if-range)#switchport trunk allowed vlan 12,123,234,500,1010,1111,3456 Command rejected: Bad VLAN list Command rejected: Bad VLAN list ALS1(config-if-range)#no shut

ALS1(config-if-range)# %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/7, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/8, changed state to up

ALS1(config-if-range)#exit
ALS1(config)#int range fa0/9-10
ALS1(config-if-range)#desc mamber of po3 to DLS2
ALS1(config-if-range)#channel-group 3 mode desirable
ALS1(config-if-range)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/9,
changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/9,
changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/10,
changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/10,
changed state to up
AI S1(config_if_range)#sw
ALSI(config-if-range)#switchport trunk allowed vlan
12 123 234 500 1010 1111 3456
Command rejected: Bad VIAN list
Command rejected: Bad VLAN list
ALSI(config-if-range)#no shut
ALSI(config-if-range)#exit
ALSI(config)#end
ALS1#conv running-config startun-config

Figura 25. Configuración de puertos troncales en ALS1

ALS2	
11202	ALS2>ENABLE
	ALS2#config t
	ALS2(config)#int range fa0/9-10
	ALS2(config-if-range)#desc member of po4 to ALS2
	ALS2(config-if-range)#channel-group 4 mode desirable
	AI \$2(config_if_range)#
	$ALS2(Conjig-ij-range)\pi$
	Creating a port-channel interface I on-channel 4
	AIS2(configuit range)#switchport trunk allowed ylan
	12 122 224 500 1010 1111 2456
	12,123,234,300,1010,1111,3430
	ALS2(config-if-range)#no snut
	AIS2(config_if_range)#
	$ALS2(CONJEG-IJ-TAILGE)\pi$
	%LINK-5-CHANGED: Interface FusiEthernet0/9, changed state to up
	% I INFPROTO 5-UPDOWN: Line protocol on Interface EastEthernet()/0
	changed state to up
	%I INK-5-CHANGED: Interface FastEthernet()/10 changed state to up
	Volantik 5 Chinitoleb. Interface Fusilinemeto/10, changea state to ap
	%LINFPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/10
	changed state to up
	%CDP-4-NATIVE VIAN MISMATCH: Native VIAN mismatch discovered on
	FastEthernot0/0 (1) with DIS1 EastEthernot0/0 (500)
	TusiEmemeio/> (1), with DEST TusiEmemeio/> (500).
	%CDP-4-NATIVE VIAN MISMATCH: Native VIAN mismatch discovered on
	FastEthernet()/10(1) with DIS1 EastEthernet()/10(500)
	T usiLinemeto/10 (1), with DEST T usiLinemeto/10 (300).
	ALS2(config-if-range)#%SPANTRFF-2-RFCV_PVID_FRR: Received 802-10
	RPDU on non trunk EastEthernet0/10 VI AN1
	DI DO ON NON THINK PUSIEINE MEIO/10 VEAIVI.
	%SPANTREE_2_BLOCK_PVID_LOCAL · Blocking EastEthernet0/10 on
	VIAN0001 Inconsistent port type
	V LANGOOT. Inconsistent port type.
	%SPANTREE_2_RECV_PVID_ERR: Received 802 10 RPDU on non-trunk
	FastEthernet0/0 VI AN1
	%SPANTREE-2-BLOCK_PVID_LOCAL: Blocking FastFthernet()/9 on
	VIAN0001 Inconsistent port type
	ALS2(config-if-range)#exit
	ALS2(config)#int range fa0/7-8
	ALS2(config-if-range)#desc member of po2 to DLS2

ALS2(config-if-range)#channel-group 2 mode active ALS2(config-if-range)# Creating a port-channel interface Port-channel 2

ALS2(config-if-range)#switchport trunk allowed vlan 12,123,234,500,1010,1111,3456 Command rejected: Bad VLAN list Command rejected: Bad VLAN list ALS2(config-if-range)#no shut

ALS2(config-if-range)# %LINK-5-CHANGED: Interface FastEthernet0/7, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/7, changed state to up

%LINK-5-CHANGED: Interface FastEthernet0/8, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/8, changed state to up

%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/7 (1), with DLS2 FastEthernet0/7 (500).

%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/8 (1), with DLS2 FastEthernet0/8 (500).

ALS2(config-if-range)#%SPANTREE-2-RECV_PVID_ERR: Received 802.1Q BPDU on non trunk FastEthernet0/7 VLAN1.

%SPANTREE-2-BLOCK_PVID_LOCAL: Blocking FastEthernet0/7 on VLAN0001. Inconsistent port type.

%SPANTREE-2-RECV_PVID_ERR: Received 802.1Q BPDU on non trunk FastEthernet0/8 VLAN1.

%SPANTREE-2-BLOCK_PVID_LOCAL: Blocking FastEthernet0/8 on VLAN0001. Inconsistent port type.

%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/9 (1), with DLS1 FastEthernet0/9 (500).

%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/10 (1), with DLS1 FastEthernet0/10 (500).

ALS2(config-if-range)#exit ALS2(config)#int range fa0/7-10 ALS2(config-if-range)#switchport trunk native vlan 500 ALS2(config-if-range)#switchport mode trunk

ALS2(config-if-range)# %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/7, changed state to down

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/7, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/7, changed state to down

%EC-5-CANNOT_BUNDLE2: Fa0/7 is not compatible with Fa0/8 and will be suspended (dtp mode of Fa0/7 is on, Fa0/8is off)

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/8, changed state to down

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/8, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/8, changed state to down

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/8, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/7, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/9, changed state to down

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/9, changed state to up

%EC-5-CANNOT_BUNDLE2: Fa0/9 is not compatible with Fa0/10 and will be suspended (dtp mode of Fa0/9 is on, Fa0/10 is off)

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/9, changed state to down

%LINEPR changed st	OTO-5-UPDOWN: Line protocol on Interface FastEthernet0/10, ate to down
%LINEPR changed st	OTO-5-UPDOWN: Line protocol on Interface FastEthernet0/10, ate to up
%LINEPR changed st	OTO-5-UPDOWN: Line protocol on Interface FastEthernet0/9, ate to up
ALS2(confi	ig-if-range)#switchport nonegotiate
ALS2(confi	ig-if-range)#no shut
ALS2(confi	ig-if-range)#exit
ALS2(confi	ig)#end
Destination	n filename [startun-config]?

Figura 26. Configuración de puertos troncales en ALS2

- d. Configurar DLS1, ALS1, y ALS2 para utilizar VTP versión 3
- 1) Utilizar el nombre de dominio CISCO con la contraseña ccnp321
- 2) Configurar DLS1 como servidor principal para las VLAN.
- 3) Configurar ALS1 y ALS2 como clientes VTP.

Configuramos los DLS1 de la siguiente forma

DLS1 DLS1>ena DLS1#config t Enter configuration commands, one per line. End with CNTL/Z. DLS1(config)#vtp domain CISCO Changing VTP domain name from NULL to CISCO DLS1(config)#vtp password ccnp321 Setting device VLAN database password to ccnp321 DLS1(config)#vtp primary vlan

DLS2	DLS2>
	DLS2>ENABLE
	DLS2#CONFIG T
	Enter configuration commands, one per line. End with CNTL/Z.
	DLS2(config)#vtp domain CISCO
	Domain name already set to CISCO.
	DLS2(config)#vtp version 2
	DLS2(config)#vtp mode client
	Setting device to VTP CLIENT mode.
	DLS2(config)#vtp pass
	DLS2(config)#vtp password ccnp321

Setting device VLAN database password to ccnp321 DLS2(config)#

ALS1	ALS1>enable
	ALS1#config t
	Enter configuration commands, one per line. End with CNTL/Z.
	ALS1(config)#vtp domain CISCO
	Domain name already set to CISCO.
	ALS1(config)#vtp version 2
	VTP mode already in V2.
	ALS1(config)#vtp mode client
	Setting device to VTP CLIENT mode.
	ALS1(config)#vtp pass ccnp321
	Setting device VLAN database password to ccnp321
	ALS1(config)#

ALS2	ALS2>
	ALS2>enable
	ALS2#conf t
	Enter configuration commands, one per line. End with CNTL/Z.
	ALS2(config)#vtp domain CISCO
	Domain name already set to CISCO.
	ALS2(config)#vtp version 2
	VTP mode already in V2.
	ALS2(config)#vtp mode client
	Setting device to VTP CLIENT mode.
	ALS2(config)#vtp pass ccnp321
	Setting device VLAN database password to ccnp321
	ALS2(config)#

Figura 30. Configuración de dominio CISCO ALS2

e. Configurar en el servidor principal las siguientes VLAN:

Tabla 3. Tabla de VLAN

Número de VLAN	Nombre de VLAN	Número de VLAN	Nombre de VLAN
500	NATIVA	434	PROVEEDORES
12	ADMON	123	SEGUROS
234	CLIENTES	1010	VENTAS
1111	MULTIMEDIA	3456	PERSONAL

A partir de esto en el servidor DLS1 creamos las VLAN de acuerdo lo planteado en la tabla

DLS1	DLS1#config t
	Enter configuration commands, one per line. End with CNTL/Z.
	DLS1(config)#vlan 500

DLS1(config-vlan)#name NATIVA
DLS1(config-vlan)#exit
DLS1(config)#vlan 434
DLS1(config-vlan)#name PROVEEDORES
DLS1(config-vlan)#exit
DLS1(config)#vlan 12
DLS1(config-vlan)#name ADMON
DLS1(config-vlan)#exit
DLS1(config)#vlan 123
DLS1(config-vlan)#name SEGUROS
DLS1(config-vlan)#exit
DLS1(config)#vlan 234
DLS1(config-vlan)#name CLIENTES
DLS1(config-vlan)#exit
DLS1(config)#vlan 1010
DLS1(config)#name VENTAS
DLS1(config)#vlan 1111
DLS1(config)# name MULTIMEDIA
DLS1(config)#exit

Algunas vlan no pudieron ser asignadas debido a la versión de l packet tracert pero se anexa código correspondiente a las asignaciones de vlan

f. En DLS1, suspender la VLAN 434.

DLS1 *DLS1#config t*

Enter configuration commands, one per line. End with CNTL/Z. DLS1(config)#no vlan 434 DLS1(config)#exit

Figura 32. Suspendida de VLAN 434

Figura 33. Verificación de las VLAN en DLS1

g. Configurar DLS2 en modo VTP transparente VTP utilizando VTP versión 2, y configurar en DLS2 las mismas VLAN que en DLS1.

DLS2	DLS2#config t
	Enter configuration commands, one per line. End with CNTL/Z.
	DLS2(config)#vtp ver 2
	Cannot modify version in VTP client mode
	DLS2(config)#vtp version 2
	Cannot modify version in VTP client mode
	DLS2(config)#vtp mode trnas
	DLS2(config)#vtp mode trans
	DLS2(config)#vtp mode transparent
	Setting device to VTP TRANSPARENT mode.
	DLS2(config)#vlan 500
	DLS2(config-vlan)#name NATIVA
	DLS2(config-vlan)#exit
	DLS2(config)#vlan 434
	DLS2(config-vlan)#name PROVEEDORES
	DLS2(config-vlan)#exit
	DLS2(config)#vlan 12
	DLS2(config-vlan)#name ADMON
	DLS2(config-vlan)#exit
	DLS2(config)#vlan 123
	DLS2(config-vlan)#name SEGUROS
	DLS2(config-vlan)#exit
	DLS2(config)#vlan 234
	DLS2(config-vlan)#name CLIENTES
	DLS2(config-vlan)#exit
	DLS2(config)#vlan 1010
	DLS2(config-vlan)#name VENTAS
	DLS2(config-vlan)#EXIT
	DLS2(config)#vlan 1111
	DLS2(config-vlan)#name MULTIMEDIA
	DLS2(config-vlan)#exit
	DLS2(config)#vlan 3456
	DLS2(config-vlan)#name PERSONAL
	DLS2(config-vlan)#exit
	DLS2(config)#

Figura 34. Modo VTP transparente en DLS2

h. Suspender VLAN 434 en DLS2.

DLS2	DLS2#config t
	Enter configuration commands, one per line. End with CNTL/Z.
	DLS2(config)#no vlan 434
	DLS2(config)#exit
	DLS2#

Figura 36. Verificación de vlan en DLS2

i. En DLS2, crear VLAN 567 con el nombre de PRODUCCION. La VLAN de PRODUCCION no podrá estar disponible en cualquier otro Switch de la red.

DLS2	DLS2#config t
	Enter configuration commands, one per line. End with CNTL/Z.
	DLS2(config)#vlan 567
	DLS2(config-vlan)#name PRODUCCION
	DLS2(config-vlan)#end
	DLS2#

Figura 37. Creación de vlan PRODUCCION en DLS2

j. Configurar DLS1 como Spanning tree root para las VLAN 1, 12, 434, 500, 1010, 1111 y 3456 y como raíz secundaria para las VLAN 123 y 234.

DLS1	DLS1#CONFIG T
	Enter configuration commands, one per line. End with CNTL/Z.
	DLS1(config)#spannn
	DLS1(config)#spann
	<i>DLS1(config)#spanning-tree vlan 1,12,434,500,1010,1111,3456 root primary</i>
	DLS1(config)#spann
	DLS1(config)#spanning-tree vlan 123,234 root secondary
	DLS1(config)#exit

Figura 38. Creación de raíz secundaria en DLS1

k. Configurar DLS2 como Spanning tree root para las VLAN 123 y 234 y como una raíz secundaria para las VLAN 12, 434, 500, 1010, 1111 y 3456.

DLS2	DLS2#config t
	Enter configuration commands, one per line. End with CNTL/Z.
	DLS2(config)#spann
	DLS2(config)#spanning-tree vlan 123,234 root primary
	DLS2(config)#spann
	DLS2(config)#spanning-tree vlan 1,12,434,500,1010,1111,3456 root secondary
	DLS2(config)#exit

Figura 39. Creación de raíz secundaria en DLS2

1. Configurar todos los puertos como troncales de tal forma que solamente las VLAN que se han creado se les permitirá circular a través de éstos puertos.

DLS1	DLS1(config-if)#exit
	DLS1(config)#int port-channel 4
	DLS1(config-if)#sw
	<i>DLS1(config-if)#switchport trunk allowed vlan 12,123,234,500,1010,1111,3456</i>
	Command rejected: Bad VLAN list
	DLS1(config-if)#exit
	DLS1(config)#end

Figura 40. De los puertos como troncales DLS1

DLS2	DLS2#config t
	Enter configuration commands, one per line. End with CNTL/Z.
	DLS2(config)#int port-channel 2
	DLS2(config-if)#sw
	<i>DLS2(config-if)#switchport trunk allowed vlan 12,123,234,500,1010,1111,3456</i>
	Command rejected: Bad VLAN list
	DLS2(config-if)#exit
	DLS2(config)#int port
	DLS2(config)#int port-channel 3
	DLS2(config-if)#sw
	<i>DLS2(config-if)#switchport trunk allowed vlan 12,123,234,500,1010,1111,3456</i>
	Command rejected: Bad VLAN list
	DLS2(config-if)#exit
	DLS2(config)#

Figura 41. De los puertos como troncales DLS2

m. Configurar las siguientes interfaces como puertos de acceso, asignados a las VLAN de la siguiente manera:

Tabla 4. Ta	ola de ir	iterfaces
-------------	-----------	-----------

Interfaz	DLS1	DLS2	ALS1	ALS2
Interfaz Fa0/6	3456	12,1010	123, 1010	234
Interfaz Fa0/15	1111	1111	1111	1111
Interfaces F0 /16-18		567		

Para DLS1 configuramos de la siguiente manera

DLS1	DLS1#config t		
	Enter configuration commands, one per line.	End with CNTL/Z.	

DLS1	DLS2(config)#int fa0/6
	DLS2(config-if)#switchport access vlan 12
	DLS2(config-if)#switchport voice vlan 1010
	DLS2(config-if)#

%LINK-5-CHANGED: Interface FastEthernet0/6, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/6,
changed state to up
DLS2(config-if)#exit
DLS2(config)#int fa0/15
DLS2(config-if)#switchport access vlan 1111
DLS2(config-if)#no shut
%LINK-5-CHANGED: Interface FastEthernet0/15, changed state to down
DLS2(config-if)#exit
DLS2(config)#int range fa0/16-18
DLS2(config-if-range)#switchport access vlan 567
DLS2(config-if-range)#no shut
%LINK-5-CHANGED: Interface FastEthernet0/16, changed state to down
%LINK-5-CHANGED: Interface FastEthernet0/17, changed state to down
%LINK-5-CHANGED: Interface FastEthernet0/18, changed state to down
DLS2(config-if-range)#
DLS2(config-if-range)#exit
DLS2(config)#

Figura 43. Configuración de puertos de acceso en DLS2

ALS1	ALS1>
	ALS1>ena
	ALS1#config t
	Enter configuration commands, one per line. End with CNTL/Z.
	ALS1(config)#int fa0/6
	ALS1(config-if)#sw
	ALS1(config-if)#switchport ac
	ALS1(config-if)#switchport access vlan 123
	ALS1(config-if)#sw
	ALS1(config-if)#switchport voice vlan 1010
	ALS1(config-if)#no shut
	ALS1(config-if)#
	%LINK-5-CHANGED: Interface FastEthernet0/6, changed state to up
	%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/6,
	changed state to up
	ALS1(config-if)#exit
	ALS1(config)#int fa 0/15
	ALS1(config-if)#sw
	ALS1(config-if)#switchport ac
	ALS1(config-if)#switchport access vlan 1111
	ALS1(config-if)#no shut
	%LINK-5-CHANGED: Interface FastEthernet0/15, changed state to down
	ALS1(config-if)#exit
	ALS1(config)#

Figura 44. Configuración de puertos de acceso en ALS1

ALS2	ALS2>
	ALS2>ENA
	ALS2#config t
	Enter configuration commands, one per line. End with CNTL/Z.
	ALS2(config)#int fa 0/6
	ALS2(config-if)#sw
	ALS2(config-if)#switchport a
	ALS2(config-if)#switchport access vlan 234
	ALS2(config-if)#no shut
	ALS2(config-if)#
	%LINK-5-CHANGED: Interface FastEthernet0/6, changed state to up
	%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/6,
	changed state to up
	ALS2(config-if)#exit
	ALS2(config)#int fa 0/15
	ALS2(config-if)#sw
	ALS2(config-if)#switchport a
	ALS2(config-if)#switchport access vlan 1111

ALS2(config-if)#no shut
%LINK-5-CHANGED: Interface FastEthernet0/15, changed state to down
ALS2(config-if)#
ALS2(config-if)#exit
ALS2(config)#

Parte 2: conectividad de red de prueba y las opciones configuradas.

a. Verificar la existencia de las VLAN correctas en todos los switches y la asignación de puertos troncales y de acceso

Figura 46. Verificación General mediante el comando show vlan brief

b. Verificar que el EtherChannel entre DLS1 y ALS1 está configurado correctamente

Figura 47. Verificación General mediante el comando etherchannel sumary

c. Verificar la configuración de Spanning tree entre DLS1 o DLS2 para cada VLAN

Figura 48. Verificación de Spanning en DLS1

Figura 49. Verificación de Spanning en DLS1

Figura 50. Verificación de Spanning en DLS2

CONCLUSIONES

Para la primera conclusión podemos decir que aprendimos la configuración básica de una red, asignarles nombres a los dispositivos, direccionarlos y asignarles una IP en una red, no solo eso aprendimos la importancia de las redes OSPF y las redes EIGRP.

Para la segunda conclusión podemos extraer, la importancia de verificar la conectividad de nuestra red con el comando *ping, show ip route* y entre otros, esto con el fin de depurar la red y observar si existe una inconsistencia en nuestra red.

Para la tercera conclusión puedo anexar que crecí como futuro profesional en la ingeniería electrónica me parece muy interesante la rama de las telecomunicaciones y esta como influye directamente en el diario vivir.

Por ultimo concluyo que el diplomado CISCO ayuda y facilita herramientas para detectar y resolver problemas a nivel industrial, de manera personal trabajo en el área de automatización y control de procesos industriales, en esta rama se maneja comunicación en redes ModBus lo cual no es mi fortaleza pero gracias a este diplomado me encuentro motivado para adéntrame en este mundo de redes informáticas a nivel industrial.

BIBLIOGRAFIA

Froom, R., Frahim, E. (2015). CISCO Press (Ed). Spanning Tree Implementation. Implementing Cisco IP Switched Networks (SWITCH) Foundation Learning Guide CCNP SWITCH 300-115. Recuperado de <u>https://ldrv.ms/b/s!AmIJYei-</u>NT1IlnWR0hoMxgBNv1CJ

Teare, D., Vachon B., Graziani, R. (2015). CISCO Press (Ed). EIGRP Implementation. Implementing Cisco IP Routing (ROUTE) Foundation Learning Guide CCNP ROUTE 300-101. Recuperado de <u>https://1drv.ms/b/s!AmIJYei-NT1IInMfy2rhPZHwEoWx</u>