DIPLOMADO DE PROFUNDIZACION CISCO PRUEBA DE HABILIDADES PRÁCTICAS CCNP

Diego Alexander Figueroa Villarreal

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA - ECBTI INGENIERÍA *DE TELECOMUNICACIONES* BOGOTÁ 2022

Informe de avance - Prueba de habilidades práctica

Diego Alexander Figueroa Villarreal

Diplomado de opción de grado presentado para optar el título de INGENIERO DE TELECOMUNICACIONES

DIRECTOR: JOHN HAROLD PEREZ CALDERON

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA - ECBTI INGENIERÍA *DE TELECOMUNICACIONES* BOGOTÁ 2022

NOTA DE ACEPTACIÓN

Firma del Presidente del Jurado

Firma del jurado

Firma del jurado

Bogotá, 20 de noviembre de 2022

AGRADECIMIENTOS

En primera medida agradezco la finalización de este trabajo a Dios todo poderoso por darme la vida y darme también la posibilidad de cumplir mis sueños, a mi familia quienes han sido un pilar fundamental para el crecimiento como persona y el cumplimiento de mis proyectos.

A la Universidad Nacional Abierta y a Distancia, por brindarme la oportunidad de pertenecer a esta institución y por permitirme mejorar mis competencias como futuro Ingeniero de Telecomunicaciones, al cuerpo de Docentes que con su compromiso y dedicación permitieron que se logra el desarrollo del presente trabajo.

CONTENIDO

AGRADECIMIENTOS4
CONTENIDO
LISTA DE FIGURAS6
GLOSARIO
RESUMEN10
ABSTRACT10
INTRODUCCIÓN11
ESCENARIO 112
PARTE 1: CREE LA RED Y CONFIGURE LOS AJUSTES BÁSICOS DEL DISPOSITIVO Y EL DIRECCIONAMIENTO DE LA INTERFAZ12
PASO 1: CABLEE LA RED COMO SE MUESTRA EN LA TOPOLOGÍA12
12
PARTE 2: CONFIGURAR LA COMPATIBILIDAD DE RED Y HOST DE CAPA 2 22
ESCENARIO 2
PART 1: CONFIGURAR PROTOCOLOS DE ENRUTAMIENTO
3.1 En la "Red de la empresa" (es decir, R1, R3, D1 y D2), configure OSPFv2 de área única en e área 0
3.2 En la "Red de la empresa" (es decir, R1, R3, D1 y D2), configure OSPFv3 clásico de área única en el área 0
3.3 En R2 en la "Red ISP", configure MP-BGP
3.4 En R1 en la "Red ISP", configure MP-BGP41
PART 2: CONFIGURAR REDUNDANCIA DE PRIMER SALTO43
4.1 En D1, cree IP SLA que prueben la accesibilidad de la interfaz E1/2 de R143
4.2 En D2, cree IP SLA que prueben la accesibilidad de la interfaz E1/0 de R344
4.3 En D1, configure HSRPv246
CONCLUSIONES
BIBLIOGRAFÍA

LISTA DE FIGURAS

Figura	1. Configuración Topología de Red	.12
Figura	2. Configuración comando startup-config en R1	.20
Figura	3. Configuración comando startup-config en R2	.20
Figura	4. Configuración comando startup-config en R3	.20
Figura	5. Configuración comando startup-config en D1	.21
Figura	6. Configuración comando startup-config en D2	.21
Figura	7. Configuración comando startup-config en A1	.21
Figura	8. Dirección IP del PC1	.22
Figura	9. Dirección IP del PC4	.22
Figura	10. Verificación Enlace troncal en D1	.22
Figura	11. Verificación Enlace troncal en D2	.23
Figura	12. Verificación Enlace truncal en A1	.23
Figura	13. Verificación VLAN 999 Native en D1	.23
Figura	14. Verificación VLAN 999 Native en D2	.23
Figura	15. Verificación VLAN 999 Native en A1	.24
Figura	16. Verificación Árbol de expansión en D1	.24
Figura	17. Verificación Árbol de expansión en D2	.24
Figura	18. Verificación Árbol de expansión en A1	.24
Figura	19. Verificación del puente raíz en D1	.25
Figura	20. Verificación del puente raíz en D2	.25
Figura	21. Verificación EtherChannel en D1	.25
Figura	22. Verificación EtherChannel en D2	.26
Figura	23. Verificación EtherChannel en A1	.26
Figura	24. Verificación Puertos de Acceso PC1	.26
Figura	25. Verificación Puertos de Acceso PC2	.27
Figura	26. Verificación Puertos de Acceso PC3	.27
Figura	27. Verificación Puertos de Acceso PC4	.28
Figura	28. Verificación DHCP en PC2	.28
Figura	29. Verificación DHCP en PC3	.28
Figura	30. Verificación Comando Ping PC1	.29
Figura	31. Verificación Comando Ping PC2	.29
Figura	32. Verificación Comando Ping PC3	.30
Figura	33. Verificación Comando Ping en PC4	.30
Figura	34. configuración OSPFV2 en R1	.33
Figura	35. configuración OSPFV2 en R3	.33
Figura	36. configuración OSPFV2 en D2	.34
Figura	37. configuración OSPFV2 en D1	.34
Figura	38. Configuración OSPFv3 en R1	.37
Figura	39. Configuración OSPFv3 en R3	.38
Figura	40. Configuración OSPFv3 en D1	.38

Figura	41. Configuración OSPFv3 en D2	39
Figura	42. Configuración MP-BGP en R2	41
Figura	43. Configuración MP-BGP en la red ISP R1	42
Figura	44. Configuración Ip Sla Para El Acceso A La Interfaz E1/2 De R1	44
Figura	45. Configuración Ip Sla Para El Acceso A La Interfaz E1/0 De R3	45
Figura	46. Verificación lp Interfaz E1/0 De R3	46
Figura	47. configuración HSRPv2 en D1	48
Figura	48. verificación HSRPv2 en D1	49
Figura	49. configuración HSRPv2 en D2	50
Figura	50. verificación HSRPv2 en D2	50

LISTA DE TABLA

		Pág.
Tabla 1	Direcciones IP de Equipos	13

GLOSARIO

DHCP: Protocolo de asignación automática de direcciones IP.

SWITCH: Dispositivo que permite la conexión equipos en una red.

HOST: Dispositivo electrónico que permite la conexión a la red de internet.

CCNP: Certificación Cisco Certified Network Professional.

LAN: Red de área local, que permite la comunicación entre equipos activos en una red.

PROTOCOLO: Conjunto de reglas o estándares que contienen procedimientos, restricciones que permiten el intercambio de paquetes de información.

ROUTER: Equipo electrónico que permite interconectar distintas redes y establecer la mejor ruta de un equipo a otro.

RESUMEN

El desarrollo de este trabajo contiene las competencias del Diplomado de Profundización Cisco CCNP, el cual permite la construcción de redes conmutadas (LAN y WAN), utilizando los diferentes protocolos de comunicaciones para el paso de paquetes entre los diferentes equipos activos en la topología como los son Switch y Router, logrando que los Host de la red se comuniquen garantizando la seguridad de la red, todo esto mediante el uso de software de simulación (GN3), que permite la ejecución de cada uno de los comando planteados en el trabajo.

Palabras claves: DHCP, SWITCH, HOST, CCNP, LAN, PROTOCOLO

ABSTRACT

The development of this work contains the skills of the Cisco CCNP Deepening Diploma, which allows the construction of switched networks (LAN and WAN), using the different communication protocols for the passage of packets between the different active equipment in the topology such as They are Switch and Router, making the Hosts of the network communicate, guaranteeing the security of the network, all this through the use of simulation software (GN3), which allows the execution of each of the commands proposed in the work.

Keywords: DHCP, SWITCH, HOST, CCNP, LAN, PROTOCOL

INTRODUCCIÓN

En el desarrollo del *Diplomado de Profundización Cisco CCNP*, se busca planificar, diseñe, estructure y realizar la simulación de redes jerárquicas convergentes, escalables y seguras para empresas locales y de área específica. En donde se cuenta con el apropiamiento de los conocimientos básicos de redes empresariales, en temas como calidad de servicio, escalabilidad y seguridad entre otros.

Es así como se logra a través de escenarios de simulación la creación de una red con equipos activos y con la implementación de protocolos como DHCP, STP, IPV4, IPV6 y OSPF que permiten acceso seguro a través de la automatización y virtualización, logrando solucionar problemas presentado en el simulador GN3.

ESCENARIO 1

PARTE 1: CREACION DE LA RED Y CONFIGURACION DE LOS AJUSTES BÁSICOS DEL DISPOSITIVO Y EL DIRECCIONAMIENTO DE LA INTERFAZ

PASO 1: CABLEAR LA RED COMO SE MUESTRA EN LA TOPOLOGÍA.

Figura 1. Configuración Topología de Red

Fuente: propia

Dispositivo	Interfaz	Dirección IPv4	Dirección IPv6	Enlace IPv6 local
R1	E1/1	209.165.200.225/27	2001:db8:200::1/64	fe80::1:1
	E1/0	10.88.10.1/24	2001:db8:100:1010::1/64	fe80::1:2
	F0/0	10.88.13.1/24	2001:db8:100:1013::1/64	fe80::1:3
R2	F0/0	209.165.200.226/27	2001:db8:200::2/64	fe80::2:1
	Bucle invertido0	2.2.2.2/32	2001:db8:2222::1/128	fe80::2:3
R3	E1/0	10.88.11.1/24	2001:db8:100:1011::1/64	fe80::3:2
	F0/0	10.88.13.3/24	2001:db8:100:1013::3/64	fe80::3:3
D1	E1/1	10.88.10.2/24	2001:db8:100:1010::2/64	fe80::d1:1
	vlan 100	10.88.100.1/24	2001:db8:100:100::1/64	fe80::d1:2
	vlan 101	10.88.101.1/24	2001:db8:100:101::1/64	fe80::d1:3
	vlan 102	10.88.102.1/24	2001:db8:100:102::1/64	fe80::d1:4
D2	E1/0	10.88.11.2/24	2001:db8:100:1011::2/64	fe80::d2:1
	vlan 100	10.88.100.2/24	2001:db8:100:100::2/64	fe80::d2:2
	vlan 101	10.88.101.2/24	2001:db8:100:101::2/64	fe80::d2:3
	vlan 102	10.88.102.2/24	2001:db8:100:102::2/64	fe80::d2:4
A1	vlan 100	10.88.100.3/23	2001:db8:100:100::3/64	fe80::a1:1
PC1	Nada	10.88.100.5/24	2001:db8:100:100::5/64	EUI-64
PC2	Nada	DHCP	SLAAC	EUI-64
PC3	Nada	DHCP	SLAAC	EUI-64
PC4	Nada	10. 88.100.6/24	2001:db8:100:100::6/64	EUI-64

Fuente: propia

PASO 2: CONFIGURACION DE LOS AJUSTES BÁSICOS PARA CADA DISPOSITIVO.

Router R1

Enable configure terminal hostname R1 ipv6 unicast-routing no ip domain lookup banner motd # R1, ENCOR SKills Assessment# line console 0 exec-time 0 0 logging synchronous exit interface e1/1 ip address 209.165.200.255 255.255.255.224 ipv6 address 2001:db8:200::1/64 ipv6 address fe80::1:1 link-local no shutdown exit interface F0/0 ip address 10.88.13.1 255.255.255.0 ipv6 address fe80::1:3 link-local ipv6 address 2001:db8:100:1013::1/64 no shutdown exit interface ethernet 1/0 ip address 10.88.10.1 255.255.255.0 ipv6 address fe80::1:2 link-local ipv6 address 2001:db8:100:1010::1/64 no shutdown exit

Router R2

enable configure terminal hostname R2 ipv6 unicast-routing no ip domain lookup banner motd # R2, ENCOR SKills Assessment# line console 0 exec-time 0 0 logging synchronous exit interface f0/0 ip address 209.165.200.226 255.255.255.224 ipv6 address fe80::2:1 link-local ipv6 address 2001:db8:200::2/64 no shutdown interface Loopback 0 ip address 2.2.2.2 255.255.255.255 ipv6 address fe80::2:3 link-local ipv6 address 2001:db8:2222::1/128 no shutdown exit

Router R3

enable configure terminal hostname R3 ipv6 unicast-routing no ip domain lookup banner motd # R3, ENCOR SKills Assessment# line console 0 exec-time 0 0 logging synchronous exit interface f0/0 ip address 10.88.13.3 255.255.255.0 ipv6 address fe80::3:3 link-local ipv6 address 2011:db8:100:1013::3/64 no shutdown exit interface e1/0 ip address 10.88.11.1 255.255.255.0 ipv6 address fe80::3:2 link-local ipv6 address 2011:db8:100:1011::1/64 no shutdown

Switch D1

enable configure terminal hostname D1 ip routing ipv6 unicast-routing no ip domain lookup banner motd # D1, ENCOR SKILLS Assessment# line console 0 exec-timeout 0 0 logging synchronous exit vlan 100 name Management exit vlan 101 name UserGroupA exit vlan 102 name UserGroupB exit vlan 999 name NATIVE exit interface e1/1 no switchport ip address 10.88.10.2 255.255.255.0 ipv6 address fe80::d1:1 link-local ipv6 address 2001:db8:100:1010::2/64 no shutdown exit interface vlan 100

ip address 10.88.100.1 255.255.255.0 ipv6 address fe80::d1:2 link-local ipv6 address 2001:db8:100:100::1/64 no shutdown exit interface vlan 101 ip address 10.88.101.1 255.255.255.0 ipv6 address fe80::d1:3 link-local ipv6 address 2001:db8:100:101::1/64 no shutdown exit interface vlan 102 ip address 10.88.102.1 255.255.255.0 ipv6 address fe80::d1:4 link-local ipv6 address 2001:db8:100:102::1/64 no shutdown exit ip dhcp excluded-address 10.88.101.1 10.88.101.109 ip dhcp excluded-address 10.88.101.141 10.88.101.254 ip dhcp excluded-address 10.88.102.1 10.88.102.109 ip dhcp excluded-address 10.88.102.141 10.88.102.254 ip dhcp pool VLAN-101 network 10.88.101.0 255.255.255.0 default-router 10.88.101.254 exit ip dhcp pool VLAN-102 network 10.88.102.0 255.255.255.0 default-router 10.88.102.254 interface range e2/0-3, e3/0-3 shutdown exit

Switch D2

Enable configure terminal ip routing ipv6 unicast-routing no ip domain lookup banner motf # D2, ENCOR Skills Assessment# line console 0 exec-time 0 0 logging synchronous exit vlan 100 name Management exit vlan 101 name UserGroupA exit vlan 102 name UserGroupB exit vlan 999 name NATIVE exit interface e1/0 no switchport ip address 10.88.11.2 255.255.255.0 ipv6 address fe80::d1:1 link-local ipv6 address 2001:db8:100:1011::2/64 no shutdown exit interface vlan 100 ip address 10.88.100.2 255.255.255.0 ipv6 address fe80::d2:2 link-local ipv6 address 2001:db8:100:100::2/64 no shutdown exit interface vlan 101 ip address 10.88.101.2 255.255.255.0 ipv6 address fe80::d2:3 link-local ipv6 address 2001:db8:100:101::2/64 no shutdown exit interface vlan 102 ip address 10.88.102.2 255.255.255.0 ipv6 address fe80::d2:4 link-local ipv6 address 2001:db8:100:102::2/64 no shutdown exit ip dhcp excluded-address 10.88.101.1 10.88.101.209 ip dhcp excluded-address 10.88.101.241 10.88.101.254 ip dhcp excluded-address 10.88.102.1 10.88.102.209 ip dhcp excluded-address 10.88.102.241 10.88.102.254 ip dhcp pool VLAN-101 network 10.88.101.0 255.255.255.0 default-router 88.0.101.254 exit ip dhcp pool VLAN-102 network 10.88.102.0 255.255.255.0 default-router 10.88.102.254 exit interface range e2/0-3, e3/0-3 shutdown exit

SWITCH A1

enable configure terminal hostname A1 no ip domain lookup banner motd # A1, ENCOR Skills Assessment# line console 0 exec-timeout 0 0 logging synchronous exit vlan 100 name Management exit vlan 101 name UserGroupA exit vlan 102 name UserGroupB exit vlan 999 name NATIVE exit interface vlan 100 ip address 10.88.100.3 255.255.254.0 ipv6 address fe80::a1:1 link-local ipv6 address 2001:db8:100:100::3/64 no sh

interface range e1/2-3, e2/0-3, e3/0-3 shutdown

b. Guardar la configuración en ejecución en startup-config en todos los dispositivos.

Figura 2. Configuración comando startup-config en R1

Fuente: propia

Figura 3. Configuración comando startup-config en R2

Fuente: propia

Figura 4. Configuración comando startup-config en R3

Fuente: propia

Figura 5. Configuración comando startup-config en D1

Fuente: propia

Figura 6. Configuración comando startup-config en D2

Fuente: propia

Fuente: propia

c. Configurar el direccionamiento de Host de PC 1 y PC 4 como se muestra en la tabla de direcciones. Asignar una dirección de puerta de enlace predeterminada de 10.XY.100.254, que será la dirección IP virtual HSRP utilizada en la Parte 4.

Figura 8. Dirección IP del PC1

		2.2.2.2/32		
PC1 - PuT	TTY		_	\times
PC1> show i	ір			-
NAME IP/MASK GATEWAY DNS MAC LPORT RHOST:PORT	: PC1[1] : 10.88.100.5/24 : 10.88.100.254 : : 00:50:79:66:68:02 : 10029 : 127.0.0.1:10030			
MIU:	: 1200			

Fuente: propia

Figura 9. Dirección IP del PC4

1	PC4 - PuTTY	C		—	\times
ľ	PC4> show ip				^
	NAME LP/MASK SATEWAY DNS LPORT LPORT RHOST: PORT MTU:	: PC4[1] : 10.88.100.6/24 : 10.88.100.254 : : 00:50:79:66:68:01 : 10027 : 127.0.0.1:10028 : 1500			

Fuente: propia

PARTE 2: CONFIGURAR LA COMPATIBILIDAD DE RED Y HOST DE CAPA 2

2.1 En todos los conmutadores, configurar las interfaces troncales IEEE 802.1Q en los enlaces de conmutación interconectados.

i iyula l		I LINACE II ONCAI EN D	1		
🛃 D1 - P	UTTY	- Noue		LIEL Frients Dérra	
					^
Port	Mode	Encapsulation	Status	Native vlan	
Et0/0	on	802.1q	trunking	1	
Et0/1	on	802.1q	trunking	1	
Et0/2	on	802.1q	trunking	1	
Et0/3	on	802.1q	trunking	1	
Et1/0	on	802.1q	trunking	1	
Et1/3	on	802.1q	trunking	1	

Figura 10. Verificación Enlace troncal en D1

Fuente: propia

Figura 11. Verificación Enlace troncal en D2

🚰 D2 - Pi	uTTY			_	×
Port Et0/0 Et0/1 Et0/2 Et0/3 Et1/1 Et1/1	Mode on on on on on	Encapsulation 802.1q 802.1q 802.1q 802.1q 802.1q 802.1q 802.1q	Status trunking trunking trunking trunking trunking	Native vlan 1 1 1 1 1 1	

Fuente: propia

Figura 12. Verificación Enlace truncal en A1

🚰 A1 - P	A1 - PuTTY					×
Pont	Mode	Encanculation	Status	Nativa vlan		^
Et0/2	on	802.10	trunking			
Et0/3	on	802.1q	trunking	1		
Et1/0	on	802.1q	trunking	1		
$1^{Et1/1}$	on	802.1q	trunking	1		

Fuente: propia

2.2 En todos los conmutadores, cambie la VLAN nativa de los enlaces troncales.

Figura 13. Verificación VLAN 999 Native en D1

🛃 D1 - Pu	ITTY			-	_	\times
D1#show i	nterfaces tru	nk				
Port	Mode	Encapsulation	Status	Native vlan		
Et0/0	on	802.1q	trunking	999		
Et0/1	on	802.1q	trunking	999		/
Et0/2	on	802.1q	trunking	999		/
Et0/3	on	802.1q	trunking	999		
Et1/0	on	802.1q	trunking	999		
Et1/3	on	802.1q	trunking	999		

Fuente: propia

Figura 14. Verificación VLAN 999 Native en D2

	🛃 D2 - PuTT	Y			_		\times
	Port	Mode	Encapsulation	Status		Native	vlan
	Et0/0	on	802.1q	trunking		999	
1	Et0/1	on	802.1q	trunking		999	
	Et0/2	on	802.1q	trunking		999	
	Et0/3	on	802.1q	trunking		999	
	Et1/1	on	802.1q	trunking		999	
	Et1/3	on	802.1q	trunking		999	

Fuente: propia

🛃 A1 - Pu	ITTY				_		\times			
Port	Mode	Encapsulation	Status	Native	vlan		^			
Et0/2	on	802.1q	trunking	999						
Et0/3	on	802.1q	trunking	999						
Et1/0	on	802.1q	trunking	999						
Et1/1	on	802.1q	trunking	999						

Figura 15. Verificación VLAN 999 Native en A1

Fuente: propia

2.3 En todos los conmutadores, se habilita el protocolo de árbol de expansión rápida.

Figura 16. Verificación Árbol de expansión en D1

Fuente: propia

Figura 17. Verificación Árbol de expansión en D2

Fuente: propia

Figura 18. Verificación Árbol de expansión en A1

Fuente: propia

2.4 En D1 y D2, configurar los puentes raíz RSTP adecuados en función de la información del diagrama de topología. Así mismo D1 y D2 deben proporcionar copia de seguridad en caso de fallo del puente raíz.

Figura 19. Verificación del puente raíz en D1

Fuente: propia

Figura 20. Verificación del puente raíz en D2

🛃 D2 - PuTTY		-	-	×
D2#show run include spanning-tree mode rap spanning-tree extend s spanning-tree vlan 100 spanning-tree vlan 101	spanning-tree id-pvst ystem-id ,102 priority 2867 priority 24576	2		^

Fuente: propia

2.5 En todos los Switches, crear LACP EtherChannel como se muestra en el diagrama de topología.

Figura 21. Verificación EtherChannel en D1

Fuente: propia

Figura 22. Verificación EtherChannel en D2

Fuente: propia

Figura 23. Verificación EtherChannel en A1

Fuente: propia

2.6 En todos los conmutadores, configurar los puertos de acceso al host que se conectan a PC1, PC2, PC3 y PC4.

Figura 24. Verificación Puertos de Acceso PC1

🛃 D1 - PuTTY					—	\times
D1#show spanı	ning-tree vla	an 100				
VLAN0100 Spanning ti Root ID	ree enabled p Priority Address This bridge Hello Time	protocol rstp 24676 aabb.cc00.0100 is the root 2 sec Max A	0 ge 20 sec	Forward Delay 15	sec	
Bridge ID	Priority Address Hello Time Aging Time	24676 (prior: aabb.cc00.0100 2 sec Max A 300 sec	ity 24576 0 ge 20 sec	sys-id-ext 100) Forward Delay 15	sec	
Interface	Role	Sts Cost	Prio.Nbr	Туре		
Et1/2 Po12 Po1	Desg Desg Desg	FWD 100 FWD 41 FWD 56	128.7 128.65 128.66	Shr Edge Shr Shr		

Fuente: propia

Figura 25. Verificación Puertos de Acceso PC2

						101/0			
	🛃 D2 - PuTTY					—		\times	
	D2#show spanr	ning-tree v]	an 10	92					
	VLAN0102								
	Spanning tr	ree enabled	prote	ocol rstp					
	Root ID	Priority	2467	78					
		Address	aabl	o.cc00.010	0				
		Cost	41						
		Port	65	(Port-chan	no112)				
		Hollo Timo	2			Forward	Dolov 15	600	
_		HEITO TIME	~ 2 :	Sec Max A	ge zo sec	FOrwaru	Delay 15	sec	
	Bridge ID	Priority Address	287 aabl	74 (prior p.cc00.020	ity 28672 0	sys-id-ex	rt 102)		
2		Hello Time Aging Time	2 : 300	sec Max A sec	ge 20 sec	Forward	Delay 15	sec	
/0	Interface	Role	Sts	Cost 	Prio.Nbr	Туре			
μ				400	400 7				
ł	Et1/2	Desg	FWD	100	128.7	Shr Edge			
	Po12	Root	FWD	41	128.65	Shr			
	Po2	Dese	FWD	56	128.66	Shr			

Fuente: propia

Figura 26. Verificación Puertos de Acceso PC3								
🗗 🗗 A1 - PuTTY					_		\times	
A1#show spanning-tree vlan 101								
VLAN0101								
Spanning t	ree enabled p	protocol rstp						
Root ID	Priority	24677						
	Address	aabb.cc00.0200	9					
	Cost	56						
	Port	66 (Port-chann	nel2)					
	Hello Time	2 sec Max Ag	ge 20 sec	Forward Delay 15	sec			
Bridge ID	Priority Address	32869 (prior: aabb.cc00.0300	ity 32768 0	sys-id-ext 101)				
	Hello Time	2 sec Max Ag	ge 20 sec	Forward Delay 15	sec			
L	Aging Time	300 sec						
Interface	Role	Sts Cost	Prio.Nbr	Туре				
Et0/0	Desg	FWD 100	128.1	Shr Edge				
Po1	Altn	BLK 56	128.65	Shr				
Po2	Root	FWD 56	128.66	Shr				

Fuente: propia

Figura 27. Verificación Puertos de Acceso PC4

- 24	🚰 A1 - PuTTY					—	\times
	A1#show spanr	ning-tree vla	an 100				
	VLAN0100						
	Spanning tr	ree enabled p	protocol rstp				
	Root ID	Priority	24676				
		Address	aabb.cc00.0100	3			
		Cost	56				
		Port	65 (Port-chan	11)			
		Hello Time			Forward Delay 19	5 600	
		HETTO TIME	Z SEC MAX A	se zo sec	TOTWATU DETAY 1	, sec	
2	Bridge ID	Priority Address	32868 (priori aabb.cc00.0300	ity 32768 9	sys-id-ext 100)		
1		Hello Time Aging Time	2 sec Max Ag 300 sec	ge 20 sec	Forward Delay 15	5 sec	
	Interface	Role	Sts Cost	Prio.Nbr	Туре		
	F+0/1	Desg	EWD 100	128.2	Shr Edge		
	Po1	Root	EWD 56	128 65	Shr		
	Po2	Altn	BLK 56	128.65	Shr		
	F02	AIUI	DER DU	120.00	3111		

Fuente: propia

2.7 Comprobación de los servicios DHCP IPv4.

Figura 28. Verificación DHCP en PC2

Fuente: propia

Figura 29. Verificación DHCP en PC3

Fuente: propia

2.8 Comprobar la conectividad LAN local.

PC1 debería hacer ping con éxito:

- D1: 10.XY.100.1
- D2: 10.XY.100.2
- PC4: 10.XY.100.6

Figura 30. Verificación Comando Ping PC1

PC1 - PuTTY	—	\times
PC1> ping 10.88.100.1		^
84 bytes from 10.88.100.1 icmp_seq=1 ttl=255 time=1.204 ms		
84 bytes from 10.88.100.1 icmp_seq=2 ttl=255 time=1.945 ms		
84 bytes from 10.88.100.1 icmp_seq=3 ttl=255 time=1.750 ms		
84 bytes from 10.88.100.1 icmp_seq=4 ttl=255 time=2.084 ms		
84 bytes from 10.88.100.1 icmp_seq=5 ttl=255 time=1.513 ms		
PC1> ping 10.88.100.2		
84 bytes from 10.88.100.2 icmp_seq=1 ttl=255 time=2.924 ms		
84 bytes from 10.88.100.2 icmp_seq=2 ttl=255 time=2.739 ms		
84 bytes from 10.88.100.2 icmp_seq=3 ttl=255 time=3.418 ms		
84 bytes from 10.88.100.2 icmp_seq=4 ttl=255 time=2.863 ms		
84 bytes from 10.88.100.2 icmp_seq=5 ttl=255 time=2.156 ms		
PC1> ping 10.88.100.6		
84 bytes from 10.88.100.6 icmp_seq=1 ttl=64 time=3.717 ms		
84 bytes from 10.88.100.6 icmp_seq=2 ttl=64 time=3.328 ms		
84 bytes from 10.88.100.6 icmp_seq=3 ttl=64 time=3.775 ms		
84 bytes from 10.88.100.6 icmp_seq=4 ttl=64 time=3.739 ms		
84 bytes from 10.88.100.6 icmp_seq=5 ttl=64 time=3.784 ms		

Fuente: propia

PC2 debería hacer ping correctamente:

- D1: 10.XY.102.1
- D2: 10.XY.102.2

Figura 31. Verificación Comando Ping PC2

PC2 - PuTTY	_	\times
		^
PC2> ping 10.88.102.1		
84 bytes from 10.88.102.1 icmp_seq=1 ttl=255 time=2.107 ms		
84 bytes from 10.88.102.1 icmp_seq=2 ttl=255 time=2.238 ms		
84 bytes from 10.88.102.1 icmp_seq=3 ttl=255 time=2.312 ms		
84 bytes from 10.88.102.1 icmp_seq=4 ttl=255 time=2.596 ms		
84 bytes from 10.88.102.1 icmp_seq=5 ttl=255 time=3.073 ms		
PC2> ping 10.88.102.2		
84 bytes from 10.88.102.2 icmp_seq=1 ttl=255 time=1.143 ms		
84 bytes from 10.88.102.2 icmp_seq=2 ttl=255 time=2.145 ms		
84 bytes from 10.88.102.2 icmp_seq=3 ttl=255 time=2.166 ms		
84 bytes from 10.88.102.2 icmp_seq=4 ttl=255 time=2.166 ms		
84 bytes from 10.88.102.2 icmp_seq=5 ttl=255 time=1.721 ms		

Fuente: propia

PC3 debería hacer ping correctamente:

- D1: 10.XY.101.1
- D2: 10.XY.101.2

Figura 32. Verificación Comando Ping PC3

PC3 - PuTTY	_	\times	
PC3> ping 10.88.101.1			~
84 bytes from 10.88.101.1 icmp_seq=1 ttl=255 time=3.955 ms			
84 bytes from 10.88.101.1 icmp_seq=2 ttl=255 time=3.292 ms			
84 bytes from 10.88.101.1 icmp_seq=3 ttl=255 time=4.089 ms			
84 bytes from 10.88.101.1 icmp_seq=4 ttl=255 time=1.816 ms			
84 bytes from 10.88.101.1 icmp_seq=5 ttl=255 time=4.019 ms			
PC3> ping 10.88.101.2			
84 bytes from 10.88.101.2 icmp_seq=1 ttl=255 time=3.219 ms			
84 bytes from 10.88.101.2 icmp_seq=2 ttl=255 time=3.626 ms			
84 bytes from 10.88.101.2 icmp_seq=3 ttl=255 time=3.200 ms			
84 bytes from 10.88.101.2 icmp_seq=4 ttl=255 time=3.540 ms			
84 bytes from 10.88.101.2 icmp_seq=5 ttl=255 time=1.075 ms			

Fuente: propia

PC4 debería hacer ping correctamente:

D1: 10.XY.100.1
D2: 10.XY.100.2
PC1: 10.XY.100.5

Figura 33. Verificación Comando Ping en PC4

PC4 - PuTTY	_	\times
PC4>		^
PC4> ping 10.88.100.1		
84 bytes from 10.88.100.1 icmp_seq=1 ttl=255 time=3.385 ms		
84 bytes from 10.88.100.1 icmp_seq=2 ttl=255 time=3.515 ms		
84 bytes from 10.88.100.1 icmp_seq=3 ttl=255 time=2.919 ms		
84 bytes from 10.88.100.1 icmp_seq=4 ttl=255 time=2.994 ms		
84 bytes from 10.88.100.1 icmp_seq=5 ttl=255 time=3.069 ms		
PC4> ping 10.88.100.2		
84 bytes from 10.88.100.2 icmp_seq=1 ttl=255 time=4.501 ms		
84 bytes from 10.88.100.2 icmp_seq=2 ttl=255 time=4.744 ms		
84 bytes from 10.88.100.2 icmp_seq=3 ttl=255 time=3.404 ms		
84 bytes from 10.88.100.2 icmp_seq=4 ttl=255 time=4.215 ms		
84 bytes from 10.88.100.2 icmp_seq=5 ttl=255 time=3.697 ms		
PC4> ping 10.88.100.5		
84 bytes from 10.88.100.5 icmp_seq=1 ttl=64 time=5.007 ms		
84 bytes from 10.88.100.5 icmp_seq=2 ttl=64 time=4.053 ms		
84 bytes from 10.88.100.5 icmp_seq=3 ttl=64 time=4.702 ms		
84 bytes from 10.88.100.5 icmp_seq=4 ttl=64 time=1.622 ms		
84 bytes from 10.88.100.5 icmp_seq=5 ttl=64 time=4.641 ms		

Fuente: propia

Escenario 2

PART 1: CONFIGURAR PROTOCOLOS DE ENRUTAMIENTO

3.1 En la "Red de la empresa" (es decir, R1, R3, D1 y D2), configure OSPFv2 de área única en el área 0.

- > Utilizando el ID de proceso OSPF 4 y asigne los siguientes ID de enrutador:
 - R1: 0.0.4.1
 - R3: 0.0.4.3
 - D1: 0.0.4.131
 - D2: 0.0.4.132
- En R1, R3, D1 y D2, anuncie todas las redes/VLAN conectadas directamente en el Área 0.
 - En R1, no anuncie la red R1 R2.
 - En el R1, propague una ruta predeterminada. Tenga en cuenta que BGP proporcionará la ruta predeterminada.
- Deshabilitar los anuncios OSPFv2 en:
 - D1: All interfaces except E1/2
 - D2: All interfaces except E1/0

Router R1:

enable configure terminal Router ospf 4 Router-id 0.0.4.1 network 10.88.10.0 0.0.0.255 area 0 network 10.88.13.0 0.0.0.255 area 0 default-information originate exit

ROUTER 3

enable configure terminal router ospf 4 router-id 0.0.4.3 network 10.88.11.0 0.0.0.255 area 0 network 10.88.13.0 0.0.0.255 area 0 exit

SWITCH D1

enable configure terminal router ospf 4 router-id 0.0.4.131 network 10.88.100.0 0.0.0.255 area 0 network 10.88.101.0 0.0.0.255 area 0 network 10.88.102.0 0.0.0.255 area 0 network 10.88.10.0 0.0.0.255 area 0 passive-interface default no passive-interface e1/1 exit

SWITCH D2

enable configure terminal router ospf 4 router-id 0.0.4.132 network 10.88.100.0 0.0.0.255 area 0 network 10.88.101.0 0.0.0.255 area 0 network 10.88.102.0 0.0.0.255 area 0 network 10.88.11.0 0.0.0.255 area 0 passive-interface default no passive-interface e1/0 exit

Figura 34. configuración OSPFV2 en R1

Fuente: propia

Figura 35. configuración OSPFV2 en R3

		/./././/				-
🗬 R3				_		×
R3#						\sim
*Nov 19 16:04:31.70	7: %SYS-5-CO	NFIG I: Configure	d from console	by cons	sole	
R3#						
R3#enable						
R3#configure termin	hal					
Enter configuration	n commands, o	ne per line. End	with CNTL/7.			
R3(config)#router of	osof 4					
R3(config-router)#r	router-id 0.0	.4.3				
R3(config-router)#r	network 10.88	.11.0 0.0.0.255 a	rea 0			
R3(config-router)#r	network 10.88	.13.0 0.0.0.255 a	rea Ø			
R3(config-router)#	exit					
R3(config)#exit						
R3#show						
*Nov 19 16:05:00.56	53: %SYS-5-CO	NETG T: Configure	d from console	by con-	sole	
R3#show in so		in 10_11 conriguie		<i>by</i> com.		
R3#show in os						
R3#show in osnf ne						
R3#show in osnf nei	ighbor					
Romonical approach	511001					
Neighbor TD Pri	i State	Dead Time	Address	Tnte	erface	
		00.00.38	10 88 13 1	Fast	tEthernet	a/
0		00.00.30	10.00.15.1	145	er ener ne e	~ /
0 0 4 132 1		00.00.30	10 88 11 2	Ethe	ernet1/0	
R3#			10100.11.2	E CIR	erneer, o	~

Fuente: propia

Figura 36. configuración OSPFV2 en D2

🛃 D2 - PuTTY					_		\times
D2 - PuTTY D2#enable D2#configure tel Enter configura D2(config)#route D2(config-route) D2(config-route) D2(config-route) D2(config-route) D2(config-route) D2(config-route) D2(config-route) D2(config-route) D2(config-route) D2(config-route) D2(config-route) D2(config-route) D2(config)#	rminal tion c er osp r)#rou r)#net r)#net r)#net r)#pas r)#no r)#exi	ommands, one per f 4 ter-id 0.0.4.132 work 10.88.100.0 work 10.88.101.0 work 10.88.102.0 work 10.88.11.0 sive-interface d passive-interfac t	1 line. End 0.0.0.255 a 0.0.0.255 a 0.0.0.255 an 0.0.0.255 an efault e e1/0	with CNTL/Z. rea 0 rea 0 rea 0 ea 0	_		×
*Nov 19 22:02:20 LL to DOWN, Nei *Nov 19 22:02:20 ADING to FULL, D2(config)#exit D2#show	6.449: ghbor 6.482: Loadin	%OSPF-5-ADJCHG: Down: Interface %OSPF-5-ADJCHG: g Done	Process 4, down or deta Process 4,	Nbr 0.0.4.3 on E ched Nbr 0.0.4.3 on E	thernet1	/0 from ./0 from	I FU
D2#show ip os D2#show ip os D2#show ip ospf D2#show ip ospf	ne neigh	bor	: Configured	Trom console by	console		
Neighbor ID 0.0.4.3 D2#	Pri 1	State FULL/DR	Dead Time 00:00:32	Address 10.88.11.1	Interfa Etherne	t1/0	

Fuente: propia

Figura 37. configuración OSPFV2 en D1

	_		_				
🛃 D1 - PuTTY					—		×
D1(config)#ro	uter os	of 4					^
D1(config-rou	ter)#roi	uter-id 0.0.4	.131				
D1(config-rou	ter)#ne	twork 10.88.1	00.0 0.0.0.255 a	area 0			
D1(config-rou	ter)#ne	twork 10.88.1	01.0 0.0.0.255 a	area 0			
D1(config-rou	ter)#ne	twork 10.88.1	02.0 0.0.0.255 a	area 0			
D1(config-rou	ter)#ne	twork 10.88.1	0.0 0.0.0.255 ar	rea Ø			
D1(config-rou	ter)#pa	ssive-interfa	ce default				
D1(config-rou	ter)#no	passive-inte	rface e1/1				
D1(config-rou	ter)#ex	it					
D1(config)#							
D1(config)#							
*Nov 19 22:03	:50.557	: %OSPF-5-ADJ	CHG: Process 4,	Nbr 0.0.4.1 or	n Etherr	net1/1 ·	from
FULL to DOWN	, Neighl	bor Down: Int	erface down or d	detached			
*Nov 19 22:03	:50.592	: %OSPF-5-ADJ	CHG: Process 4,	Nbr 0.0.4.1 or	n Etherr	net1/1 ·	from
C LOADING to F	ULL, Loa	ading Done 👘					
D1(config)#ex	it						
D1#show ip							
*Nov 19 22:03	:53.974	: %SYS-5-CONF	IG_I: Configured	d from console	by cons	sole	
_l D1#show ip os							
D1#show ip os	pf nei						
D1#show ip os	pf neig	hbor					
N							
Neighbor ID	Pri	State	Dead Time	Address	Inte	erface	
0.0.4.1	1	FULL/DR	00:00:38	10.88.10.1	Ethe	ernet1/	1
D1#							\sim

Fuente: propia

3.2 En la "Red de la empresa" (es decir, R1, R3, D1 y D2), configurar OSPFv3 clásico de área única en el área 0.

- Utilizar el ID de proceso OSPF 6 para asignar los siguientes ID de enrutamiento:
- R1: 0.0.6.1
- R3: 0.0.6.3
- D1: 0.0.6.131
- D2: 0.0.6.132
 - En R1, R3, D1 y D2, anuncie todas las redes/VLAN conectadas directamente en el Área 0.
- En R1, no anuncie la red R1 R2.
- En R1, propagar una ruta predeterminada, teniendo en cuenta que BGP proporcionará la ruta predeterminada.
 - Deshabilitar los anuncios OSPFv3 en:
- D1: Todas las interfaces excepto E1/2
- D2: Todas las interfaces excepto E1/0

ROUTER R1:

enable configure terminal ipv6 router ospf 6 router-id 0.0.6.1 default-information originate exit interface e1/0 ipv6 ospf 6 area 0 exit interface f0/0 ipv6 ospf 6 area 0 exit

ROUTER 3

enable configure terminal ipv6 router ospf 6 router-id 0.0.6.3 exit interface e1/0 ipv6 ospf 6 area 0 exit interface f0/0 ipv6 ospf 6 area 0 exit end

SWITCH D1

enable configure terminal ipv6 router ospf 6 router-id 0.0.6.131 passive-interface default no passive-interface e1/1 exit interface e1/1 ipv6 ospf 6 area 0 exit interface vlan 100 ipv6 ospf 6 area 0 exit interface vlan 101 ipv6 ospf 6 area 0 exit interface vlan 102 ipv6 ospf 6 area 0 exit end

SWITCH D2

enable configure terminal ipv6 router ospf 6 router-id 0.0.6.132 passive-interface default no passive-interface e1/0 exit

ipv6 ospf 6 area 0 exit interface vlan 100 ipv6 ospf 6 area 0 exit interface vlan 101 ipv6 ospf 6 area 0 exit interface vlan 102 ipv6 ospf 6 area 0 exit end

Figura 38. Configuración OSPFv3 en R1

Fuente: propia

Figura 39. Configuración OSPFv3 en R3

Fuente: propia

Figura 40. Configuración OSPFv3 en D1

Fuente: propia

Fuente: propia

3.3 En R2 en la "Red ISP", configurar MP-BGP.

- Configurar dos rutas estáticas predeterminadas a través de la interfaz Loopback 0:
 - Una ruta estática predeterminada IPv4.
 - Una ruta estática predeterminada IPv6.
- Configurar R2 en BGP ASN 500 y usar la identificación del enrutador 2.2.2.2.
- Configurar y habilitar una relación de vecino IPv4 e IPv6 con R1 en ASN 300.
- > En la familia de direcciones IPv4, Undvertise:
 - La red IPv4 de bucle invertido 0 (/32).
 - La ruta predeterminada (0.0.0.0/0).
- > En Familia de direcciones IPv6, anuncie:

- La red IPv4 de bucle invertido 0 (/128).
- La ruta predeterminada (::/0).

ROUTER R2:

enable configure terminal Ip route 0.0.0.0 0.0.0.0 loopback 0 lpv6 route ::/0 loopback 0 router bgp 500 bgp router-id 2.2.2.2 neighbor 209.165.200.225 remote-as 300 neighbor 2001:db8:200::1 remote-as 300 address-family ipv4 neighbor 209.165.200.225 activate no neighbor 2001.db8:200::1 activate network 2.2.2.2 mask 255.255.255.255 network 0.0.0.0 exit-address-family address-family ipv6 no neighbor 209.165.200.225 activate neighbor 2001:db8:200::1 activate network 2001:db8:2222::/128 network ::/0 exit-address-family

Figura 42. Configuración MP-BGP en R2

Fuente: propia

3.4 En R1 en la "Red ISP", configurar MP-BGP.

- > Configurar dos rutas resumidas estáticas a la interfaz NULL 0:
 - Una ruta IPv4 resumida para 10.91.0.0/8.
 - Una ruta IPv6 resumida para 2001:db8:100::/48.
- > Configurar R1 en BGP ASN 300 y use la identificación del enrutador 1.1.1.1.
- > Configurar una relación de vecino IPv4 e IPv6 con R2 en ASN 500.
- > En la familia de direcciones IPv4:
 - Deshabilitar la relación de vecino IPv6.
 - Habilitar la relación de vecino IPv4.
 - Anunciar la red 10.91.0.0/8.

En la familia de direcciones IPv6:

- Deshabilitar la relación de vecino IPv4.
- Habilitar la relación de vecino IPv6.

• Anunciar la red 2001:db8:100::/48.

ROUTER 1

enable configure terminal ip route 10.0.0.0 255.0.0.0 null 0 ipv6 route 2001:db8:100::/48 null 0 router bgp 300 bgp router-id 1.1.1.1 neighbor 209.165.200.226 remote-as 500 neighbor 2001:db8:200::2 remote-as 500 address-family ipv4 unicast neighbor 209.165.200.226 activate no neighbor 2001:db8:200::2 activate network 10.0.0.0 mask 255.0.0.0 exit-address-family address-family ipv6 unicast no neighbor 209.165.200.226 activate neighbor 2001:db8:200::2 activate network 2001:db8:100::/48 exit-address-family

Figura 43. Configuración MP-BGP en la red ISP R1

Fuente: propia

PART 2: CONFIGURAR REDUNDANCIA DE PRIMER SALTO

- 4.1 En D1, crear IP SLA que prueben la accesibilidad de la interfaz E1/2 de R1.
 - > Cree dos IP SLA.
 - Utilizar el SLA número 4 para IPv4.
 - Utilizar el SLA número 6 para IPv6.
 - Las IP SLA probarán la disponibilidad de la interfaz R1 E1/2 cada 5 segundos.
 - Programar el SLA para implementación inmediata sin tiempo de finalización.
 - > Crear un objeto IP SLA para IP SLA 4 y otro para IP SLA 6.
 - Usar la pista número 4 para IP SLA 4.
 - Usar la pista número 6 para IP SLA 6.

Los objetos rastreados deben notificar a D1 si el estado de IP SLA cambia de abajo a arriba después de 10 segundos, o de arriba a abajo después de 15 segundos.

SWITCH D1

Enable Configure terminal ip sla 4 icmp-echo 10.88.10.1 frequency 5 exit ip sla 6 icmp-echo 2001:db8:100:1010::1 frequency 5 exit ip sla schedule 4 life forever start-time now ip sla schedule 6 life forever start-time now track 4 ip sla 4 delay down 10 up 15 exit track 6 ip sla 6 delay down 10 up 15 exit

Figura 44. Configuración Ip Sla Para El Acceso A La Interfaz E1/2 De R1

Fuente: propia

4.2 En D2, crear IP SLA que prueben la accesibilidad de la interfaz E1/0 de R3

- Crear dos IP SLA.
 - Utilizar el SLA número 4 para IPv4.
 - Utilizar el SLA número 6 para IPv6.
- Las SLA IP probarán la disponibilidad de la interfaz R3 E1/0 cada 5 segundos.
- > Programar el SLA para implementación inmediata sin tiempo de finalización.
- > Crear un objeto IP SLA para IP SLA 4 y otro para IP SLA 6.
 - Use la pista número 4 para IP SLA 4.

• Use la pista número 6 para IP SLA 6.

Los objetos rastreados deben notificar a D1 si el estado de IP SLA cambia de abajo a arriba después de 10 segundos, o de arriba a abajo después de 15 segundos.

SWITCH D2

```
Enable
Configure terminal
ip sla 4
icmp-echo 10.88.11.1
frequency 5
exit
ip sla 6
icmp-echo 2001:db8:100:1011::1
frequency 5
exit
ip sla schedule 4 life forever start-time now
ip sla schedule 6 life forever start-time now
track 4 ip sla 4
delay down 10 up 15
exit
```

Figura 45. Configuración Ip Sla Para El Acceso A La Interfaz E1/0 De R3

D2 - PuTTY	_	×
D2#Enable		
D2#Configure terminal		
Enter configuration commands, one per line. End with CNTL/Z.		
D2(config)#ip sla 4		
D2(config-ip-sla)#icmp-echo 10.88.11.1		
D2(config-ip-sla-echo)#frequency 5		
D2(config-ip-sla-echo)#exit		
D2(config)#ip sla 6		
D2(config-ip-sla)#icmp-echo 2001:db8:100:1011::1		
D2(config-ip-sla-echo)#frequency 5		
D2(config-ip-sla-echo)#exit		
D2(config)#ip sla schedule 4 life forever start-time now		
D2(config)#ip sla schedule 6 life forever start-time now		
D2(config)#track 4 ip sla 4		
D2(config-track)#delay down 10 up 15		
D2(config-track)#exit		
D2(config)#		

Fuente: propia

Figura 46. Verificación Ip Interfaz E1/0 De R3

D2 - PuTTY	_	×
D2#s		^
*Nov 19 22:37:20.968: %SYS-5-CONFIG_I: Configured from console by	console	
D2#show ip sla op		
D2#show ip sla operation 4		
Entry number: 4		
Modification time: *22:36:23.709 UTC Sat Nov 19 2022		
Number of Octets Used by this Entry: 780		
Number of operations attempted: 15		
Number of operations skipped: 0		
Current seconds left in Life: Forever		
Operational state of entry: Active		
Last time this entry was reset: Never		
Connection loss occurred: FALSE		
Timeout occurred: FALSE		
Over thresholds occurred: FALSE		
Latest RTT (milliseconds): 7		
Latest operation start time: 22:37:33 UTC Sat Nov 19 2022		
Latest operation return code: OK		

Fuente: propia

4.3 En D1, configurar HSRPv2.

- D1 es el enrutador principal para la VLAN 100 y 102; por lo tanto, su prioridad también se cambiará a 150.
- ➤ Configurar la versión 2 de HSRP.
- > Configurar el grupo 104 de HSRP de IPv4 para la VLAN 100:
- Asignar la dirección IP virtual 10.91.100.254.
- Establezca la prioridad del grupo en 150.
- Habilitar preferencia.
- Siga el objeto 4 y disminuya en 60.

> Configure el grupo 114 de HSRP de IPv4 para la VLAN 101:

- Asigne la dirección IP virtual 10.91.101.254.
- Habilitar preferencia.
- Seguimiento del objeto 4 para disminuir en 60.

> Configure el grupo 124 de HSRP de IPv4 para la VLAN 102:

- Asignar la dirección IP virtual 10.91.102.254.
- Establezca la prioridad del grupo en 150.
- Habilitar preferencia.
- Seguimiento del objeto 4 para disminuir en 60.

> Configurar el grupo 106 de HSRP de IPv6 para la VLAN 100:

- Asignar la dirección IP virtual mediante la configuración automática de ipv6.
- Establezca la prioridad del grupo en 150.
- Habilitar preferencia.
- Siga el objeto 6 y disminuya en 60.
 - > Configurar el grupo 116 de HSRP de IPv6 para la VLAN 101:
 - Asignar la dirección IP virtual mediante la configuración automática de ipv6.
 - Habilitar preferencia.
 - Siga el objeto 6 y disminuya en 60.
 - > Configurar el grupo 126 de HSRP de IPv6 para la VLAN 102:
- Asignar la dirección IP virtual mediante la configuración automática de ipv6.
- Establezca la prioridad del grupo en 150.
- Habilitar preferencia.
- Siga el objeto 6 y disminuya en 60.

SWITCH D1

enable configure terminal interface vlan 100 standby version 2 standby 104 ip 10.88.100.254 standby 104 priority 150 standby 104 track 4 decrement 60 standby 106 ipv6 autoconfig standby 106 priority 150 standby 106 preempt standby 106 track 6 decrement 60 exit interface vlan 101

standby version 2 standby 104 ip 10.88.101.254 standby 114 preempt standby 114 track 4 decrement 60 standby 106 ipv6 autoconfig standby 116 preempt standby 116 track 6 decrement 60 exit interface vlan 102 standby version 2 standby 124 ip 10.88.102.254 standby 124 priority 150 standby 124 preempt standby 124 track 4 decrement 60 standby 126 ipv6 autoconfig standby 126 priority 150 standby 126 preempt standby 126 track 6 decrement 60 exit end

Figura 47. configuración HSRPv2 en D1

🛃 D1 - PuTTY	_		×
D1(config-if)#exit			^
D1(config)#interface vlan 101			
D1(config-if)#standby version 2			
D1(config-if)#standby 104 ip 10.88.101.254			
D1(config-if)#standby 114 preempt			
D1(config-if)#standby 114 track 4 decrement 60			
D1(config-if)#standby 106 ipv6 autoconfig			
D1(config-if)#standby 116 preempt			
D1(config-if)#standby 116 track 6 decrement 60			
D1(config-if)#exit			
D1(config)#interface vlan 102			
D1(config-if)#standby version 2			
D1(config-if)#standby 124 ip 10.88.102.254			
D1(config-if)#standby 124 priority 150			
D1(config-if)#standby 124 preempt			
D1(config-if)#standby 124 track 4 decrement 60			
D1(config-if)#standby 126 ipv6 autoconfig			
D1(config-if)#standby 126 priority 150			
D1(config-if)#standby 126 preempt			
D1(config-if)#standby 126 track 6 decrement 60			
D1(config-if)#exit			
D1(config)# end			
D1#			
*Nov 19 22:39:10.241: %SYS-5-CONFIG_I: Configured from console by D1#	conso]	le	~

Fuente: propia

Figura 48. verificación HSRPv2 en D1

			0 j 22	/				
🛃 D1 - PuTT	Υ					_		×
D1#show sta	andby	brief						^
		P	indicat	es configur	red to preempt.			
Interface	Grp	Pri P	State	Active	Standby	Virtual IP		
V1100	104	150	Active	local	unknown	10.88.100.254		
V1100	106	150 P	Active	local	unknown	FE80::5:73FF:FE	A0:6A	
V1101	104	100	Active	local	unknown	10.88.101.254		
V1101	106	100	Active	local	unknown	FE80::5:73FF:FE	A0:6A	
V1102	124	150 P	Active	local	unknown	10.88.102.254		
V1102	126	150 P	Active	local	unknown	FE80::5:73FF:FE	A0:7E	
D1#								

Fuente: propia

SWITCH D2

interface vlan 100 standby version 2 standby 104 ip 10.88.100.254 standby preempt standby 104 track 4 decrement 60 standby 106 ipv6 autoconfig standby 106 preempt standby 106 track 6 decrement 60 exit interface vlan 101 standby version 2 standby 104 ip 10.88.101.254 standby 114 priority 150 standby 114 preempt standby 114 track 4 decrement 60 standby 116 ipv6 autoconfig standby 116 priority 150 standby 116 preempt standby 116 track 6 decrement 60 exit interface vlan 102 standby version 2 standby 124 ip 10.88.102.254 standby 124 preempt standby 124 track 4 decrement 60 standby 126 ipv6 autoconfig standby 126 preempt

standby 126 track 6 decrement 60 exit end

Provide for consignation for the construction of the constru

Figura 49. configuración HSRPv2 en D2

Fuente: propia

Figura 50. verificación HSRPv2 en D2

🛃 D2 - PuTT	Υ							—		\times
D2#show sta	ndby	brief	F							^
			Р 	indicat	es configured	to preempt.				
Interface	Grp	Pri	Ρ	State	Active	Standby	Virtual I	Р		
V1100	104	100		Standby	10.88.100.1	local	10.88.100	.254		
V1100	106	100	Ρ	Standby	FE80::D1:2	local	FE80::5:7	3FF:FEA	0:6A	
V1101	104	100		Standby	10.88.101.1	local	10.88.101	.254		
V1101	116	150	Ρ	Active	local	unknown	FE80::5:7	3FF:FEA	9:74	
V1102	124	100	Ρ	Standby	10.88.102.1	local	10.88.102	.254		
V1102 D2#	126	100	Ρ	Standby	FE80::D1:4	local	FE80::5:7	3FF:FEA@):7E	

Fuente: propia

CONCLUSIONES

El desarrollo del curso de *Diplomado de Profundización CISCO CCNP* permitió planificar, diseñar y simular redes empresariales locales de manera que sean escalables, de igual forma se logra comprender los conceptos técnicos de redes de telecomunicaciones, como calidad de servicio, seguridad, escalabilidad, que alberga el diplomado.

De igual forma se logra comprender el funcionamiento y manejo correcto de la herramienta de simulación GN3, el cual permite la simulación correcta del ejercicio planteado, con cada uno de los dispositivos activos en la red.

Es así como se puede ver que se logró la implementación de protocolos de enrutamiento, dentro de la red LAN, con el fin de garantizar la calidad de la infraestructura de red, calidad de servicio y automatización.

BIBLIOGRAFÍA

Edgeworth, B., Garza Rios, B., Gooley, J., Hucaby, D. (2020). CISCO Press (Ed). **Multiple Spanning Tree Protocol**. CCNP and CCIE Enterprise Core ENCOR 350-401. https://1drv.ms/b/s!AAIGg5JUgUBthk8

Edgeworth, B., Garza Rios, B., Gooley, J., Hucaby, D. (2020). CISCO Press (Ed). OSPF. CCNP and CCIE Enterprise Core ENCOR 350-401. https://1drv.ms/b/s!AAIGg5JUgUBthk8

Edgeworth, B., Garza Rios, B., Gooley, J., Hucaby, D. (2020). CISCO Press (Ed). OSPFv3. CCNP and CCIE Enterprise Core ENCOR 350-401. https://1drv.ms/b/s!AAIGg5JUgUBthk8