DIPLOMADO DE PROFUNDIZACIÓN CISCO PRUEBA DE HABILIDADES PRÁCTICAS CCNP

IVÁN ALEXIS GONZÁLEZ BENAVIDES

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA-UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA ECBTI INGENIERÍA ELECTRÓNICA SOGAMOSO, BOYACA 2023 DIPLOMADO DE PROFUNDIZACIÓN CISCO PRUEBA DE HABILIDADES PRÁCTICAS CCNP

IVÁN ALEXIS GONZÁLEZ BENAVIDES

Diplomado de opción de grado presentado para optar el título de INGENIERO ELECTRÓNICO

> DIRECTOR: Juan Esteban Tapias Baena

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICA TECNOLOGÍA E INGENIERÍA – ECBTI INGENIERÍA ELECTRÓNICA SOGAMOSO, BOYACA 2023

Nota De Aceptación:

Firma del presidente del Jurado

Firma del Jurado

Firma del Jurado

Sogamoso, 21 de septiembre de 2023

AGRADECIMIENTOS

Primeramente, quiero darle las gracias a Dios por permitirme la realización de mis estudios y uno de mis sueños: Ser ingeniero.

Asimismo, quiero expresar mi gratitud a mis padres: motor y aliento para continuar con cada uno de los retos puestos en el camino, a cada uno de mis familiares, amigos y allegados que en situaciones específicas me brindaron la mano, para continuar con los aprendizajes diarios de una formación autónoma y exigente.

Por último, quiero resaltar el apoyo recibido por parte del equipo de monitores y docentes de

la UNAD que fueron el soporte y parte fundamental durante de este proceso de formación continua. Solo queda por decir que cada propósito de la vida no es imposible si nos atrevemos a dar el primer paso, luchar por ese sueño abonado diariamente de grandes sacrificios para el alcance de este sueño que me permite aportar a una sociedad más justa e igualitaria.

CONTENIDO

Introducción	11
Evaluación de habilidades ENCOR (Escenario 1)	12
Recurso requerido	15
Router 1	16
Router 2	18
Router 3	19
Interruptor D1	21
Interruptor D2	24
Interruptor A1	27
Configurar la compatibilidad de red y host de capa 2	33
Switch D1	36
Switch D2	37
Switch A1	37
Switch D1	39
Switch D2	39
Switch A1	40
Switch D1	41
Switch D2	42
Configuración para A1 PC3	43
Configuración para PC4	43
Verificación del comando Show VLAN BRIEF en D1	44

Verificación de PC3 comando Show IP para ver los IP	45
Verificación de PC2 comando show IP para ver los ID	46
Configurar Los protocolos de enrutamiento escenario 82	47
R1	48
R3	49
R1	58
Conclusión	67
Bibliografía	68

LISTA DE FIGURAS

Figura 1. Escenario	10
Figura 2.Escenario Simulado	11
Figura 3. Configuración de R	15
Figura 4. Configuración de R2	17
Figura 5. Configuración de R 3	18
Figura 6. Configuración de D1 figura	21
Figura 7. Configuración de D2	24
Figura 8. Configuración de D2	27
Figura 9. Configuración A1	28
Figura 10. Comando Copy running -configuración startup R1	28
Figura 11 Comando Copy running -configuración startup R2	28
Figura 12. Comando Copy running -configuración startup R3	28
Figura 13. Comando Copy running -configuración startup D1	29
Figura 14. Comando Copy running -configuración startup D2	29
Figura 15Comando Copy running -configuración startup config A3	29
Figura 16. Comando direccionamiento PC1	30
Figura 17. Comando direccionamiento PC4	31
Figura 18. Configuración de D1como parte de raz	34
Figura 19. Configuración D2 como parte de raz	35
Figura 20. Configuración de A1 como parte de raz	36
Figura 21. Configuración de D1 mode trunk	37

Figura 22. Configuración de D2 mode trunk	38
Figura 23. Configuración de A1 trunk native	39
Figura 24. Configuración de D1 spanning-tree portfast	40
Figura 25. Configuración de D2 spanning-tree portfast	40
Figura 26. Configuración de A1 spanning-tree portfast	41
Figura 27. Configuración de A1 spanning-tree portfast	41
Figura 28. Verificación comando Shoe VLAN brief D1	42
Figura 29. Verificación comando Shoe VLAN brief en D2	42
Figura 30. Verificación comando Shoe VLAN brief en A1	43
Figura 31. Comando Show IP PC3	43
Figura 32. Comando Show IP PC2	44
Figura 33. Se realiza Ping	45
Figura 34. Se realiza asignación de ID y configuración R1	46
Figura 35. Se realiza asignación de ID y configuración R3	47
Figura 36. Se realiza asignación de ID y configuración D1	48
Figura 37. Se realiza asignación de ID y configuración D2	49
Figura 38. Se realiza potocolo OSPF, direccionamiento a área o R1	50
Figura 39. Se realiza asignación de ID y configuración D2	51
Figura 40. Se realiza potocolo OSPFI, direccionamiento a área o R1	52
Figura 41. Se realiza potocolo OSPFI, direccionamiento a área o D2	53
Figura 42. Se realiza dos rutas mediante interface 100p back R2	55
Figura 43. Se realiza protocolo OSPF direccionamiento a área o R1	57

Figura 44. Se crea dos SLA4 D1	59
Figura 45. Se crea dos SLA4 D2	60
Figura 46. Se configura HSRPV2 D1	64
Figura 47. Se configura HSRPV2 D2	67

GLOSARIO

DHCP: Tiene la función de proporcionar de forma automática las direcciones IP además de esto brinda información relacionada con el Gateway y la máscara.

VLAN: Es utilizada con el fin de crear varias redes de tipo lógico en una sola red de tipo físico.

LACP: Es un elemento con él se proporciona la orientación con el fin de agregar enlaces para las conexiones de datos.

LOOPBACK: Es una interfaz virtual especialmente en host, la cual nos permite el tráfico de datos así mismo.

IPV6: Este es un protocolo nuevo con el cual generamos direcciones IP complejas y largas con el fin de asegurar que se tendrán las cantidades suficientes para unos buenos años.

GNS3: Principalmente es un simulador con el cual podemos realizar topologías de redes y realizar su configuración y además de esto verificar su funcionamiento de forma correcta.

RESUMEN

Este trabajo describe las soluciones que surgen en laboratorio a través de la implementación y simulación en el GNS3. En este ejercicio, no solo se ponen en práctica los conocimientos adquiridos desde el diplomado, que nos acerca a la configuración de dispositivos a través de instrucciones y comandos que nos permiten generar alternativas para apropiar su correcto funcionamiento.

Palabras claves: Cisco, redes, Ingeniería, Protocolos, Enrutamiento, LAN

INTRODUCCION

En el siguiente trabajo se realiza la solución al laboratorio por medio de GNS3 para el cual esta propuesta una serie de escenario en el cual se realización figuración específicas de los rúters y switches. Con el fin de realiza la implementación de las instrucción y comandos relacionados para poder llegar a así dar solución a este laboratorio.

Logramos realizar una configuración la implementación de conocimientos básicos avanzados en los cuales se proponen soluciones y puesta en marcha del programa que es requerido evidenciado la importancia de los entornos virtuales los cuales aplicamos en el desarrollo y configuración de los elementos que componen nuestro escenario logrando así apropiarnos de su correcto funcionamiento. 1. EVALUACIÓN DE HABILIDADES ENCOR (ESCENARIO 1)

TOPOLOGÍA

Figura 1. Escenario

Fuente: Documento Escenario 1 Prueba de Habilidades Diplomado CCNP_español

Fuente: González, 2022 (Autoría propia) realizado en GNS3

Tabla 1. Tabla de direccionamiento

Disposi tivo	Interfaz	Dirección IPv4	Dirección IPv6	Enlace IPv6
				local
R 1	E1/0	209.165.200.225/27	2001:db8:200::1/64	fe80::1:1
R 1	E1/2	10.01.10.1/24	2001:db8:100:1010::1 /64	fe80::1:2
R 1	E1/1	10.01.13.1/24	2001:db8:100:1013::1 /64	fe80::1:3
R 2	E1/0	209.165.200.226/27	2001:db8:200::2/64	fe80::2:1
R 2	Bucle invertido	2.2.2/32	2001:db8:2222::1/128	fe80::2:3
R 3	E1/0	10.01.11.1/24	2001:db8:100:1011::1 /64	fe80::3:2
R 3	E1/1	10.01.13.3/24	2001:db8:100:1013::3 /64	fe80::3:3
D 1	E1/2	10.01.10.2/24	2001:db8:100:1010::2 /64	fe80::d1:1
D 1	vlan 100	10.01.100.1/24	2001:db8:100:100::1/ 64	fe80::d1:2
D 1	vlan 101	10.01.101.1/24	2001:db8:100:101::1/ 64	fe80::d1:3
D 1	vlan 102	10.01.102.1/24	2001:db8:100:102::1/ 64	fe80::d1:4
D 2	E1/0	10.01.11.2/24	2001:db8:100:1011::2 /64	fe80::d2:1
D 2	vlan 100	10.01.100.2/24	2001:db8:100:100::2/ 64	fe80::d2:2

Dispo sitivo	Interfaz	Dirección IPv4	Dirección IPv6	Enlace IPv6
				local
D2	vlan 101	10.01.101.2/24	2001:db8:100:101::2/ 64	fe80::d2:3
D2	vlan 102	10.01.102.2/24	2001:db8:100:102::2/ 64	fe80::d2:4
A1	vlan 100	10.01.100.3/23	2001:db8:100:100::3/ 64	fe80::a1:1
PC1	Nada	10.01.100.5/24	2001:db8:100:100::5/ 64	EUI-64
PC2	Nada	DHCP	SLAAC	EUI-64
PC3	Nada	DHCP	SLAAC	EUI-64
PC4	Nada	10.01.100.6/24	2001:db8:100:100::6/ 64	EUI-64

Fuente: González, 2022 (Autoría propia) realizado en GNS3

RECURSOS REQUERIDOS

3 Routers (Cisco 7200). <u>Haga clic en el enlace de descarga de las imágenespara GNS3.</u>
3 Switches (Cisco IOUL2). <u>Haga clic en el enlace de descarga de las imágenesparaGNS3.</u>
4 PC (Utilice las VPCS del GNS3)

Cree la red y configure los ajustes básicos del dispositivo y el direccionamiento de la interfaz En la Parte 1, configurará la topología de red y configurará los ajustes básicos y eldireccionamiento de la interfaz. Cablea la red como se muestra en la topología.

Conecte los dispositivos como se muestra en el diagrama de topología y cablee según sea necesario. Configure los ajustes básicos para cada dispositiv

Conecte la consola a cada dispositivo, entre en el modo de configuración global y aplique la configuración básica. Las configuraciones de inicio para cada dispositivo se proporcionan a continuación.

ROUTER R1

Ena// habilitamos el comando R1 config t// Ingresamos a la configuración inicial hostname R1 //Cambiamos nombre de router ipv6 unicast-routing// Habilitamos elrouting en IPV6 no ip domain lookup// Desactivamos la traduccion de nombres a Direccion banner motd # R1, ENCOR Skills Assessment# line con 0// Realizamos la configuración de la línea de consola exec-timeout 0 0 logging synchronous exit interface e1/0 ip address 209.165.200.225 255.255.255.255.224// configuramos la IP ipv6 address fe80::1:1 link-local ipv6 address 2001:db8:200::1/64 no shutdown// encendemos interfaz exit interface e1/2// nombramos interfaz 1/2 ip address 10.01.10.1 255.255.255.0// ingresamos IP ipv6 address fe80::1:2 link-local ipv6 address 2001:db8:100:1010::1/64 no shutdown// encendemos interfaz exit interface e1/1// nombramos interfaz 1/1 ip address 10.01.13.1 255.255.255.0// ingresamos IP ipv6 address fe80::1:3 link-local ipv6 address 2001:db8:100:1013::1/64 no shutdown// encedemos la interfaz exit

Figura 3. Configuración de R1

ROUTER R2

Ena Config t Hostname R2 ipv6 unicast-routing no ip domain lookup banner motd # R2, ENCORSkills Assessment#line con 0 exec-timeout 00 logging synchronous exit interface e1/0 ip address 209.165.200.226 255.255.255.224 ipv6 address fe80::2:1 linklocal ipv6 address 2001:db8:200::2/64 no shutdown exit interface Loopback 0 ip address 2.2.2.2 255.255.255.255 ipv6 address fe80::2:3 linklocal ipv6 address 2001:db8:2222::1/128no shutdown exit

Figura 4. Configuración de R2.

ROUTER R3

Config t hostname R3 ipv6 unicast-routing no ip domain lookup banner motd # R3, ENCOR Skills Assessment# line con 0 exec-timeout 0 0 logging synchronous exit interface e1/0 ip address 10.01.11.1 255.255.255.0 ipv6 address fe80::3:2 link-local ipv6 address 2001:db8:100:1011::1/64 no shutdown exit interface e1/1 ip address 10.01.13.3 255.255.255.0 ipv6 address fe80::3:3 link-local ipv6 address 2001:db8:100:1010::2/64 no shutdown exitFigura 5. Configuración de R3. R3≻ena R3#Config t Enter configuration commands, one per line. End with CNTL/Z. R3(config)#hostname R3 R3(config̃)#ipv6 unicast-routing R3(config)#no ip domain lookup R3(config)#banner motd # R3, ENCOR Skills Assessment# R3(config)#line con 0 R3(config-line)#exec-timeout 0 0 R3(config-line)#logging synchronous R3(config-line)#exit R3(config)#interface e1/0 R3(config-if)#ip address 10.01.11.1 255.255.255.0 R3(config-if)#ipv6 address fe80::3:2 link-local R3(config-if)#ipv6 address 2001:db8:100:1011::1/64 R3(config-if)#no_shutdown R3(config-if)#exit R3(config)#interface e1/1 R3(config-if)#ip address 10.01.13.3 255.255.255.0 R3(config-if)#ipv6 address fe80::3:3 link-local R3(config-if)#ipv6 address 2001:db8:100:1010::2/64 R3(config-if)#no_shutdown R3(config-if)#exit 3(config)# Nov 17 00:29:59.927: %OSPF-5-ADJCHG: Process 4, Nbr 0.0.4.132 on Ethernet1/0 from FULL to DOWN, Nei ghbor Down: Interface down or detached R3(config)# Activar Windows Solar-PuTTY free tool © 2019 SolarWinds Worldwide, LLC. All rights reserved. solarwinds 7:30 p.m. P w へ 🍋 ESP ₹2 16/11/2022

INTERRUPTOR D1

Ena Conf t hostname D1 ip routing ipv6 unicast-routing no ip domain lookup banner motd # D1, ENCOR Skills Assessment# line con 0 exec-timeout 0 0 logging synchronous exit vlan 100// se crea la VLAN name Management exit vlan 101 name UserGroupA exit vlan 102 name UserGroupB exit vlan 999 name NATIVE exit interface e1/2 no switchport ip address 10.01.10.2 255.255.255.0 ipv6 address fe80::d1:1 link-local ipv6 address 2001:db8:100:1010::2/64 no shutdown exit interface vlan 100// se configure las IP la VLAN ip address 10.01.100.1 255.255.255.0 ipv6 address fe80::d1:2 link-local ipv6 address 2001:db8:100:100::1/64 no shutdown exit interface vlan 101 ip address 10.01.101.1 255.255.255.0 ipv6 address fe80::d1:3 link-local ipv6 address 2001:db8:100:101::1/64 no shutdown exit interface vlan 102 ip address 10.01.102.1 255.255.255.0 ipv6 address fe80::d1:4 link-local ipv6 address 2001:db8:100:102::1/64 no shutdown exit ip dhcp excluded-address 10.01.101.1 10.01.101.109 ip dhcp excluded-address 10.01.101.141 10.01.101.254 ip dhcp excluded-address 10.01.102.1 10.01.102.109

ip dhcp excluded-address 10.01.102.141 10.01.102.254 ip dhcp pool VLAN-101// Crea el pool para la VLAN network 10.01.101.0 255.255.255.0 default-router 10.01.101.254 exit ip dhcp pool VLAN-102 network 10.01.102.0 255.255.255.0 default-router 10.01.102.254 exit interface range e0/0-3,e1/0-1,e1/3,e2/0-3,e3/0-3 shutdown exit

Figura 6. Configuración de D1 Figura 1

Fuente: González, 2022 (Autoría propia) realizado en GNS3

Fuente: González, 2022 (Autoría propia) realizado en GNS3

INTERRUPTOR D2

hostname D2 ip routing ipv6 unicast-routing no ip domain lookup banner motd # D2, ENCOR Skills Assessment# line con 0 exec-timeout 0 0 logging synchronous evit

exit vlan 100 name Management exit vlan 101 name UserGroupA exit vlan 102 name UserGroupB exit vlan 999 name NATIVE exit interface e1/0 no switchport ip address 10.01.11.2 255.255.255.0 ipv6 address fe80::d1:1 link-local ipv6 address 2001:db8:100:1011::2/64 no shutdown exit interface vlan 100 ip address 10.01.100.2 255.255.255.0 ipv6 address fe80::d2:2 link-local ipv6 address 2001:db8:100:100::2/64 no shutdown exit interface vlan 101 ip address 10.01.101.2 255.255.255.0 ipv6 address fe80::d2:3 link-local ipv6 address 2001:db8:100:101::2/64 no shutdown exit interface vlan 102 ip address 10.01.102.2 255.255.255.0 ipv6 address fe80::d2:4 link-local ipv6 address 2001:db8:100:102::2/64 no shutdown exit

ip dhcp excluded-address 10.01.101.1 10.01.101.209 ip dhcp excluded-address 10.01.101.241 10.01.101.254 ip dhcp excluded-address 10.01.102.1 10.01.102.209 ip dhcp excluded-address 10.01.102.241 10.01.102.254 ip dhcp pool VLAN-101 network 10.01.101.0 255.255.255.0 default-router 01.0.101.254 exit ip dhcp pool VLAN-102 network 10.01.102.0 255.255.255.0 default-router 10.01.102.254 exit interface range e0/0-3,e1/1-3,e2/0-3,e3/0-3 shutdown exit

Figura 7. Configuraciones de D2

Figura 8. Configuración de D2.

Fuente: González, 2022 (Autoría propia) realizado en GNS3

INTERRUPTOR A1

ena Config t hostname A1 no ip domain lookup banner motd # A1, ENCOR Skills Assessment# line con 0 exec-timeout 0 0 logging synchronous exit vlan 100 name Management exit vlan 101 name UserGroupA

exit vlan 102 name UserGroupB exit vlan 999 name NATIVE exit interface vlan 100 ip address 10.01.100.3 255.255.255.0 ipv6 address fe80::a1:1 link-local ipv6 address 2001:db8:100:100::3/64 no shutdown exit interface range e0/0,e0/3,e1/0,e2/1-3,e3/0-3 shutdown exit

Figura 9. Configuración de A1.

Fuente: González, 2022 (Autoría propia) realizado en GNS3

Guarde la configuración en ejecución en startup-config en todos los dispositivos. Copy running-config startup-config

R1

Figura 10. Comando Copy running-config startup-config R1.

Fuente: González, 2022 (Autoría propia) realizado en GNS3

R2

Figura 11.Comando Copy running-config startup-config R2.

Fuente: González, 2022 (Autoría propia) realizado en GNS3

R3

Figura 12. Comando Copy running-config startup-config R3.1.

D1

Figura 13.Comando Copy running-config startup-config D1.

Fuente: González, 2022 (Autoría propia) realizado en GNS3

Realizamos la configuración del grupo de interfaces, establecemos el encapsulamiento y procedemos a la configuración de la interfaz truncal

D2

Figura 14. Comando Copy running-config startup-config D2.

Fuente: González, 2022 (Autoría propia) realizado en GNS3

A1

Figura 15. Comando Copy running-config startup-config A1.

*Nov 17 00:58:16.262: %SYS-5-CONFIG_I: Configur Al#Copy running-config startup-config Destination filename [startup-config]? Building configuration Compressed configuration from 2141 bytes to 115 A1#	ed from console by console 6 bytes[0K] Activar Windows Vola Configuración para activar Windows
solarwinds Solar-PuTTY free tool	© 2019 SolarWinds Worldwide, LLC. All rights reserved.
🧟 😵 🎽 🕐 🖉	∧ 📾 ESP 8:15 p. m. 16/11/2022 ₹2

Configure el direccionamiento de host de PC 1 y PC 4 como se muestra en la tabla de direcciones. Asigne una dirección de puerta de enlace predeterminada de 10.70.100.254, que será la dirección IP virtual HSRP utilizada en la Parte 4.

Direccionamiento pc1 ip 10.01.100.5/24 10.01.100.254// realizamos configuración del direccionamiento de hots sabe // guardamos

Figura 16. Comando Direccionamiento PC1

Fuente: González, 2022 (Autoría propia) realizado en GNS3

Figura 17. Comando Direccionamiento PC4

Fuente: González, 2022 (Autoría propia) realizado en GNS3

CONFIGURAR LA COMPATIBILIDAD DE RED Y HOST DE CAPA 2

En esta parte de la Evaluación de habilidades, completará la configuración de red de capa 2 y establecerá el soporte básico de host. Al final de esta parte, todos los interruptores deben poder comunicarse. PC2 y PC3 deben recibir direcciones de DHCP y SLAAC.

Las tareas de configuración son las siguientes:

Tabla 2. Configurar la capa 2 de la red y el soporte de Host

Tarea	Tarea	Especificación	Punt os
2.1	En todos los conmutadores, configure las interfaces troncales IEEE 802.1Q enlos enlaces de conmutacióninterconectados	Habilite los enlaces troncales802.1Q entre: D1 y D2 D1 y A1 D2 y A1	6

2.2	En todos los conmutadores, cambie laVLAN nativa en los enlaces troncales.	Utilice VLAN 999 como VLANnativa.	6
2.3	En todos los conmutadores, habilite elprotocolo De árbol de expansión rápida.	Utilice el árbol de expansiónrápida.	3
2.4	En D1 y D2, configurelos puentes raízRSTP adecuados en funciónde la información del diagrama de topología. D1 y D2 deben proporcionar copia de seguridad en caso de fallo del puente raíz.	Configure D1 y D2 como raíz paralas VLAN adecuadas con prioridades de apoyo mutuo en casode fallodel conmutador.	2
2.5	En todos los switches, cree LACP EtherChannels como se muestra en el diagrama de topología.	Utilice los siguientes números decanal: D1 a D2 – Canal de puerto 12 D1 a A1 – Puerto canal 1 D2 a A1 – Puerto canal 2	3

2.6	En todos los conmutadores, configurelos puertos de acceso al host que se conectana PC1, PC2, PC3 y PC4.	Configure los puertos de acceso con la configuración de VLAN adecuada, como se muestra en eldiagrama de topología.	4
		Los puertos host deben pasar inmediatamente al estado dereenvío.	

2.7	Compruebe los servicios DHCP IPv4.	PC2 y PC3 son clientes DHCP ydeben recibir direcciones IPv4 válidas.	1
2.8	Compruebe la conectividad LANIocal.	 PC1 debería hacer pingcon éxito: D1: 10.XY.100.1 D2: 10.XY.100.2 PC4: 10.XY.100.6 PC2 debería hacer pingcorrectamente: D1: 10.XY.102.1 D2: 10.XY.102.2 PC3 debería hacer ping correctamente: D1: 10.XY.101.1 D2: 10.XY.101.1 D2: 10.XY.101.2 PC4 debería hacer ping correctamente: 	1

		• D1:10.XY.100.1	
		 D2: 10.XY.100.2PC1: 10.XY.100.5 	
2. 9	En D1 y D2, configurelos puentes raízRSTP adecuados en funciónde la información del diagrama de topología. D1 y D2 deben proporcionar copia de seguridad en caso de fallo del puenteraíz.	Configure D1 y D2 comoraíz paralas VLAN adecuadas con prioridades de apoyo mutuo en casode fallo delconmutador.	2

SWITCH D1

interface range e2/0-3// realizamos la configuracionde un grupo de interfacesswitchport mode trunk

switchport trunk encapsulation dot1q// realizamos el encapsulamiento interface range e0/1-2alizamos la configuracion de un grupo de interfacesswitchport mode trunk

switchport trunk encapsulation dot1q realizamos el encapsulamiento

Figura 18. Configuración de D1 como Puente de raíz.

Fuente: González, 2022 (Autoría propia) realizado en GNS3

SWITCH D2

interface range

e2/0-3 switchport mode trunk

switchport trunk

encapsulation dot1q

interface range

e1/1-2 switchport mode trunk

switchport trunk encapsulation dot1q

Figura 19. Configuración de D2 como Puente de raíz.

D2#ena D2#conf t Enter configuration commands, one per line. (D2(config)#interface range e2/0-3 D2(config-if-range)#switchport mode trunk D2(config-if-range)#switchport trunk encapsul D2(config-if-range)#interface range e1/1-2	End with CNTL/Z. ation dotlq
D2(config-if-range)#switchport mode trunk D2(config-if-range)#switchport trunk encapsul D2(config-if-range)#	ation dotiq Activar Windows Ve a Configuración para activar Windows,
solarwinds Solar-PuTTY <i>free tool</i>	© 2019 SolarWinds Worldwide, LLC. All rights reserved.
🧔 🛇 🎽 🖑 🚾 🔯	∧ 📾 ESP 8:30 p. m. 16/11/2022 ₹2

Fuente: González, 2022 (Autoría propia) realizado en GNS3

SWITCH A1

interface range

e0/1-2switchport mode trunk

switchport trunk

encapsulation dot1q

interface range e1/1-2

switchport mode trunk

switchport trunk encapsulation dot1q

Figura 20. Configuración de A1 como Puente de raíz

Fuente: González, 2022 (Autoría propia) realizado en GNS3

2.5	En todos los switches, cree LACP	Utilice los siguientes números
	EtherChannels como se muestra en	decanal:
	eldiagrama de topología	• D1 a D2 – Canal de puerto 12
		• D1 a A1 – Puerto canal 1
		• D2 a A1 – Puerto canal 2

SWITCH D1

interface range e2/0-3realizamos la configuraciondeun grupo de interfacesswitchport trunk native vlan 999 //creamos la trunk nativa exit

interface range e0/1-2 realizamos la configuracion de un grupo de interfacesswitchport trunk native vlan 999 // creamos la trunk nativa exit

Figura 21. Configuración de D1 mode trunk

Fuente: González, 2022 (Autoría propia) realizado en GNS3

SWITCH D2

interface range e2/0-3

switchport trunk native vlan 999

exit interface range e1/1-2

switchport trunk native vlan 999

exit

Fuente: González, 2022 (Autoría propia) realizado en GNS3

SWITCH A1

interface range e0/1-2

switchport trunk native

vlan 99

exit interface range

e1/1-2 switchport trunk native vlan 999

exit

Figura 23. Configuración de A1 Trunk native

		Configure	los pue	rtos de	acceso
	En todos los conmutadores	con la 🛛	configuració	ón de	VLAN
	configure	adecuada,com	o se i	muestra	en el
2.6	los nuertos de acceso al host que se	diagrama	de	te	opología.
	conocton aPC1_PC2_PC3 v PC4	Los puerto:	s host	deben	pasar
	conectariare i, rez, res y re4.	inmediatament	e al	estado	o de
		reenvío			

SWITCH D1

config t interface e0/0//ingresamos a la interfaz

switchport mode access//Ingresmos al mode Access switchport access vlan 100// asignamos el switchport a la vlan 100spanning-tree portfast no shutdown // activamos la configuración exit

Figura 24.Configuración deD1 spanning-tree portfast

Fuente: González, 2022 (Autoría propia) realizado en GNS3

SWITCH D2

config t interface e0/0 switchport mode access switchport access vlan 102 spanning-tree portfast no shutdown exit Figura 25. Configuración de D2 spanning-tree portfast

Fuente: González, 2022 (Autoría propia) realizado en GNS3

CONFIGURACIÓN PARA A1 PC3

config t interface e1/3 switchport mode access switchport access vlan 101 spanning-tree portfast no shutdown exit

Figura 26.Configuración de A1 spanning-tree portfast

Fuente: González, 2022 (Autoría propia) realizado en GNS3

CONFIGURACION PARA PC4

config t interface e2/0 switchport mode access switchport access vlan 100 spanning-tree portfast no shutdown exit

Figura 27.Configuración de A1 spanning-tree portfast.

Fuente: González, 2022 (Autoría propia) realizado en GNS3

VERIFICACION DEL COMANDO SHOW VLAN BRIEF EN D1

Figura 28. Verificación comando shoe vlan brief D1

Figura 29. Comando show vlan brief en D2

VLAN	Name	Status	Ports
1	default	active	Et0/1, Et0/2, Et0/3, Et1/1 Et1/2, Et1/3, Et2/0, Et2/1 Et2/2, Et2/3, Et3/0, Et3/1 Et3/2, Et3/3
100 101 102 999 1002 1003 1004	Management UserGroupA UserGroupB NATIVE fddi-default token-ring-default fddinet-default trnet-default	active active active active act/unsup act/unsup act/unsup act/unsup	<u>Et0/0</u>
D2#			Activar Windows Ve a Configuración para activar Windows.
sola	arwinds Solar-PuTTY free tool		© 2019 SolarWinds Worldwide, LLC. All rights reserved.
47	🛇 🎽 🖑 🚾		∧ ♥im ESP 8:50 p.m. 16/11/2022 2

Fuente: González, 2022 (Autoría propia) realizado en GNS3

Figura 30. Comando show vlan brief en A1

A1#sl	how vlan brief			
VLAN	Name	Status	Ports	
1	default	active	Et0/0, Et0/1, Et0/2, Et0/3 Et1/0, Et1/1, Et1/2, Et2/1 Et2/2, Et2/3, Et3/0, Et3/1 Et3/2, Et3/3	
100 101 102 999 1002 1003 1004	Management UserGroupA UserGroupB NATIVE fddi-default token-ring-default fddinet-default	active active active active act/unsup act/unsup act/unsup	Et2/0 Et1/3	
A1#	truet-uerduit	act/unsup	Activar Windows	v
sola	arwinds ኛ Solar-PuTTY fiee tool		© 2019 SolarWinds Worldwide, LLC. All rights reserved.	
	😵 🎽 💰 🐖	2	∧ 📾 ESP 8:52 p.m. 16/11/2022 ₹2	

2.7	Compruebe	los	PC2 y F	PC3 son	clientes	1
	servicios DH IPv4	ICP DI di	DHCP y direcciones IF	deben Pv4 válidas	recibir	

VERIFICACION DE PC3 COMANDO SHOW IP PARA VERLAS IP

Figura 31. Comando show ip PC3

NAME	: VPCS[1]
IP/MASK	: 10.1.100.5/24
GATEWAY	: 10.1.100.254
DNS	:
MAC	: 00:50:79:66:68:01
LPORT	: 20046
RHOST:PORT	: 127.0.0.1:20047
MTU VPCS>	: 1500

Fuente: González, 2022 (Autoría propia) realizado en GNS

VERIFICACIÓN DE PC2 COMANDO SHOW IP PARA VERLAS IP

Figura 32. Comando show ip PC2

NAME	: VPCS[1]
IP/MASK	: 10.1.100.5/24
GATEWAY	: 10.1.100.254
DNS	:
MAC	: 00:50:79:66:68:00
LPORT	: 20044
RHOST:PORT	: 127.0.0.1:20045
MTU	: 1500
VPCS>	

			PC ²	1debería hace	r ping cor	n éxito:	
			•	D1:		1.100.1	
			•	D2:	10.0	1.100.2	
			•	PC4:	10.0	1.100.6	
			PC2	debería	hacer	ping	
			correct	amente:			
			•	D1:	10.0	1.102.1	
	Compruebe	la	•	D2:	10.0	1.102.2	
2.8	conectividad	LAN	PC3	debería	hacer	ping	
	local		correct	amente:			
			•	D1:	10.0	1.101.1	1
			•	D2:	10.0	1.101.2	
			PC4	debería	hacer	ping	
			correct	amente:			

	•	D1:	10.01.100.1
	•	D2:	10.01.100.2
	• PC1: 10	.01.100.5	

PC1debería hacer ping con éxito:

- D1: ping 10.01.100.1// ingresamos la direcciones y realizamos ping
- D2: ping 10.01.100.2//ingresamos la direcciones y realizamos ping
- PC4:ping 10.01.100.6// ingresamos la direcciones y realizamos ping

Figura 33. Se realiza ping

Fuente: González, 2022 (Autoría propia) realizado en GNS3

2. CONFIGURAR LOS PROTOCOLOS DE ENRUTAMIENTO (ESCENARIOS 2)

Tarea #			Tarea			Especificación	Puntos
3.1	En	la	"Red	de	la	Utilice OSPF Procesos ID 4	8
	empres	sa"	(es	de	ecir,	У	
	R1,	R3,	D1	у[D2),	asigne lossiguientes ID de	

configure	Э	OSP	Fv2	router				
de ái	rea	únicaen	el	•	R1:	:	0.0.4.1	
área 0				•	R3:	:	0.0.4.3	
				• D1	: 0,0.	4.131	Español	
				•	D2:		0.0.4.132	
				En R'	, R3, D)1 y D2	, anuncie	
				todas				
				las re	des /VI	LAN co	onectadas	
				directa	amente	en el	Área 0.	
				• En F	₹1, no a	nuncie	la red R1	
				-			R2.	
				• En	R1, pro	pague	una ruta	
				prede	terminad	da. Te	enga en	
				cuenta	a que BO	GP prop	orcionará	
				laruta		predete	erminada.	
				Desad	tive lo	s anur	ncios de	
				OSPF		v2	en:	
				• D1	Todas	s las i	interfaces	
				excep	to E1/2	2D2: T	odas las	
				interfa	ces exc	epto E1	1/0	

Fuente: González, 2022 (Autoría propia) realizado en GNS3

R1

router ospf 4

router-id 0.0.4.1 network 10.01.10.0 0.0.0.255 area 0 network 10.01.13.0 0.0.255 area 0 default-information originate exit

Figura 34. Se realiza asignación de ID y configuración de R1

router ospf 4 router-id 0.0.4.3 network 10.01.11.0 0.0.0.255 area 0 network 10.01.13.0 0.0.0.255 area 0 exit

Figura 35. Se realiza asignación de ID y configuración de R3

Fuente: Autoría propia realizado en GNS3

D1

router ospf 4 router-id 0.0.4.131 network 10.01.100.0 0.0.0.255 area 0 network 10.01.101.0 0.0.0.255 area 0 network 10.01.102.0 0.0.0.255 area 0 network 10.01.10.0 0.0.0.255 area 0 passive-interface default no passiveinterface e1/2exit R3

Figura 36. Se realiza asignación de ID y configuración de D1

Fuente: González, 2022 (Autoría propia) realizado en GNS3

D2

```
router ospf 4
router-id 0.0.4.132
network 10.01.100.0 0.0.0.255 area 0
network 10.01.101.0 0.0.0.255 area 0
network 10.01.102.0 0.0.0.255 area 0
network
10.01.11.0
0.0.0.255 area 0
passive-interface
default
no
passiveinterface
e1/0exit
```

Figura 37. Se realiza asignación de ID y configuración de D2

D2#config t Enter configuration commands, one per line. End w D2(config)#router ospf 4 D2(config-router)#router-id 0.0.4.132 D2(config-router)#network 10.01.100.0 0.0.0.255 aru D2(config-router)#network 10.01.101.0 0.0.0.255 aru	ith CNTL/Z. ea 0 ea 0
D2(config-router)#network 10.01.102.0 0.0.0.255 ar D2(config-router)#network 10.01.11.0 0.0.0.255 are D2(config-router)#passive-interface default D2(config-router)#no passive-interface e1/0 D2(config-router)#exit D2(config)#	Activar Windows
solarwinds Solar-PuTTY free tool	© 2019 SolarWinds Worldwide, LLC. All rights reserved.
🧟 😤 🞽 🙋 📶	∧ 📾 ESP 9:19 p. m. 16/11/2022 ₹2

	En la "red de la empresa"	Utilice OSPFProcesosID 6	
	(es decir, R1, R3, D1 y D2),	y asigne los	
	configure OSPFv3 clásico del	siguientesID de router:	
	área única en el área 0	• R1: 0.0.6.1	
		• R3: 0.0.6.3	
		• D1: 0.0.6.131	
		• D2: 0.0.6.132	
		En R1, R3, D1 y D2, anuncie	
		todas	
		las redes /VLAN conectadas.	
		directamente en el Área 0.	
		• En R1, no anuncie la red R1	
		– R2.	
3.2		•En R1, propague una ruta	8
		predeterminada.	
		Tenga en cuenta que BGP	
		proporcionará	
		La ruta predeterminada.	
		Desactive los anuncios de	
		OSPFv3 en:	
		 D1: Todas las interfaces 	
		excepto E1/2	
		 D2: Todas las interfaces 	
		excepto E1/0	

Fuente: González, 2022 (Autoría propia) realizado en GNS3

R1

ipv6 router ospf 6 router-id 0.0.6.1 default-information originate exit interface e1/2 ipv6 ospf 6 area 0 exit interface e1/1 ipv6 ospf 6 area 0 exit

Figura 38. Se realiza protocolo ospf, direccionamiento a área 0 R1.

ipv6 router ospf 6 router-id 0.0.6.3 exit interface e1/0 ipv6 ospf 6 area 0 exit interface e1/1 ipv6 ospf 6 area 0

exit

Figura 39.Se realiza asignación de ID y configuración de D2

Fuente: González, 2022 (Autoría propia) realizado en GNS3

D1

ipv6 router ospf 6 router-id 0.0.6.131 passive-interface default no passive-interface e1/2 exit interface e1/2 ipv6 ospf 6 area 0 exit interface vlan 100 ipv6 ospf 6 area 0 exit interface vlan 101 ipv6 ospf 6 area 0 exit interface vlan 102 ipv6 ospf 6 area 0 exit

Figura 40. Se realiza protocolo ospf, direccionamiento a área 0 R1

Fuente: González, 2022 (autoría propia) realizado en GNS3

D2

ipv6 router ospf 6 router-id 0.0.6.132 passive-interface default no passive-interface e1/0 exit interface e1/0 ipv6 ospf 6 area 0 exit

interface vlan 100 ipv6 ospf 6 area 0 exit

interface vlan 101 ipv6 ospf 6 area 0 exit

interface vlan 102 ipv6 ospf 6 area 0 exit Figura 41. Se realiza protocolo ospf, direccionamiento a área 0 D2

En Familia de direcciones IPv6, anuncie:	
•La red IPv4 de bucle invertido 0 (/128).	
● La ruta predeterminada (::/0).	

Fuente: González, 2022 (autoría propia) realizado en GNS3

R2

ip route 0.0.0.0 0.0.0.0 loopback 0 router bgp 500 bgp router-id 2.2.2.2 neighbor 209.165.200.225 remote-as 300 neighbor 2001:db8:200::1 remote-as 300 address-family ipv4 neighbor 209.165.200.225 activate

no neighbor 2001:db8:200::1 activate network 2.2.2.2 mask 255.255.255.255 network 0.0.00 exit-address-family address-family ipv6 no neighbor 209.165.200.225 activate neighbor 2001:db8:200::1 activate network 2001:db8:2222::/128 network ::/0 exit-address-family

Figura 42.Se realiza dos rutas estáticas mediante interface loop back R2

		F	
		Configure dos rutas de resumen estáticas para lainterfaz Null 0:	
		 Un resumen de la ruta IPv4 para 10.XY.0.0/8. 	
		 Un resumen de la ruta IPv6 para 2001:db8:100::/48. 	
		Configure R1 en BGP ASN 300 yutilice el router-id 1.1.1.1.	
	En R1 en la "Red ISP",	Configure una relación de vecinolPv4 e IPv6 conR2 en ASN 500.	
	configureMP-BGP.	En la familia de direcciones IPv4:	
3.4	• Deshabilite la relación de vecinolPv6.	4	
		 Habilite la relación de vecino IPv4. 	
		• Anuncie la red 10.XY0.0/8.	
		En la familia de direcciones IPv6:	
		• Deshabilite la relación de vecinolPv4.	
		 Habilite la relación de vecino IPv6. 	
		• Anuncie la red 2001:db8:100::/48.	

R1

ip route 10.01.0.0 255.0.0.0 null0 ipv6 route 2001:db8:100::/48 null0 router bgp 300 bgp router-id 1.1.1.1 neighbor 209.165.200.226 remote-as 500 neighbor 209.165.200.226 Up neighbor 2001:db8:200::2 remote-as 500 address-family ipv4 unicast neighbor 209.165.200.226 activate

no neighbor 2001:db8:200::2 activate network 0.0.00 mask 255.0.0.0 exit-address-family address-family ipv6 unicast no neighbor 209.165.200.226 activate neighbor 2001:db8:200::2 activate network 2001:db8:100::/48 exit-address-family Figura 43. Se realiza protocolo ospf, direccionamiento a área 0 R1.

		Cree dos SLA IP.	
		 Utilice el SLA número 4 para IPv4. 	
	En D1, cree SLA IPque	 Utilice el SLA número 6 para IPv6. 	
prueben la accesibilidad de la interfaz R1 E1/2. 4.1	prueben la accesibilidad de la interfaz R1 E1/2.	Los SLA IP probarán la disponibilidad delainterfaz R1 E1/2 cada 5 segundos.	
		Programe el SLA para su implementacióninmediata sin hora de finalización.	
		Cree un objeto de SLA de IP para el SLA4 y otropara el SLA de IP 6.	2
		 Utilice el número de pista 4 para IPSLA 4. 	
		 Utilice el número de pista 6 para IPSLA 6. 	

	Los objetos rastreados deben notificar a D1 si elestado del SLA IP cambia de abajo a arriba después de 10 segundos ,o de arriba a abajo después de 15 segundos.	

Fuente: González, 2022 (autoría propia) realizado en GNS3

ip sla 4 icmp-echo 10.01.10.1 frequency 5 exit ip sla 6 icmp-echo 2001:db8:100:1010::1 frequency 5 exit ip sla schedule 4 life forever start-time now ip sla schedule 6 life forever start-time now track 4 ip sla 4 delay down 10 up 15 exit track 6 ip sla 6 delay down 10 up 15 exit

Figura 44.Se crea dos sla4 D1

Fuente: González, 2022 (autoría propia) realizado en GNS3

		Cree dos SLA IP.	
	En D2, orog SLA	 Utilice el SLA número 4 para IPv4. Utilice el SLA número 6 para IPv6. 	
En D2, cree SLA IP que prueben la accesibilidac de la interfaz R3 E1/0	IP que prueben	cada 5 segundos.	
	la accesibilidad de la interfaz R3 F1/0	Programe el SLA para su implementacióninmediata sin hora de finalización.	
		Cree un objeto de SLA de IP para el SLA4 yotro para el SLA de IP 6.	
4.2		• Utilice el número de pista 4 para IPSLA 4.	2
		 Utilice el número de pista 6 para IPSLA 6. 	
		Los objetos rastreados deben notificar a D1 si elestado del SLA IP cambia de abajo a arriba después de 10 segundos ,o de arriba a abajo después de 15 segundos.	

ip sla 4 icmp-echo 10.01.11.1 frequency 5 exit ip sla 6 icmp-echo 2001:db8:100:1011::1 frequency 5 exit ip sla schedule 4 life forever start-time now ip sla schedule 6 life forever start-time now track 4 ip sla 4 delay down 10 up 15 exit track 6 ip sla 6

exit

Figura 45.validacion de D1

Fuente: González, 2022 (autoría propia) realizado en GNS3.

D2 es el router principal para VLAN 101; por lo tanto, la prioridad también se cambiará a 150. Configure HSRP versión 2.

Configure el grupo 104 de HSRP IPv4 para VLAN 100:

Asigne la dirección IP virtual 10.XY.100.254. Habitite la preferencia.

Realice un seguimiento del objeto 4 y disminuya En D2, configure HSRPv2. Configure el grupo 114 de HSRP IPv4 para VLAN101: Asigne la dirección IP virtual 10. XY.10 1,254. Establezca la prioridad del grupo en 150. Habilite la preferencia. Realice un seguimiento del objeto 4 hasta disminuir en 60. Configure el grupo HSRP IPv4 124 para VLAN 102: Asigne la dirección IP virtual 10. XY.10 2.254. Habilite la preferencia. Realice un seguimiento del objeto 4 hastadisminuir en 60. Configure IPv6 HSRP grupo 10 6 para VLAN 100: Asigne la dirección IP virtual mediante la configuración automática de ipv6. interface vlan 100 standby version 2 standby 104 ip 10.01.100.254 standby 104 priority 150 standby 104 preempt standby 104 track 4 decrement 60 standby 106 ipv6 autoconfig standby 106 priority 150 standby 106 preempt standby 106 track 6 decrement 60 exit interface vlan 101 standby version 2 standby 114 ip 10.01.101.254 standby 114 preempt standby 114 track 4 decrement 60 standby 116 ipv6 autoconfig standby 116 preempt standby 116 track 6 decrement 60 exit interface vlan 102 standby version 2 standby 124 ip 10.01.102.254 standby 124 priority 150 standby 124 preempt standby 124 track 4 decrement 60 standby 126 ipv6 autoconfig standby 126 priority 150

standby 126 priority 150

standby 126 preempt

standby 126 track 6 decrement 60 exit

end

Figura 47.Se configura HSRPv2

2(config)#interface vlan 100	
2(config-if)#standby version 2	
2(config-if)#standby 104 ip 10.01.100.254	
2(config-if)#standby 104 preempt	
2(config-if)#standby 104 track 4 decrement 60	
2(config-if)#standby 106 ipv6 autoconfig	
2(config-if)#standby 106 preempt	
2(config-if)#standby 106 track 6 decrement 60	
2(config-if)#exit	
2(config)#interface vlan 101	
2(config-if)#standby version 2	
2(config-if)#standby 114 ip 10.01.101.254	
2(config-if)#standby 114 priority 150	
2(config-if)#standby 114 preempt	
2(config-if)#standby 114 track 4 decrement 60	
2(config-if)#standby 116 ipv6 autoconfig	
2(config-if)#standby 116 priority 150	
2(config-if)#standby 116 preempt	
2(config-if)#standby 116 track 6 decrement 60	
2(config-if)#exit	
2(config)#interface vlan 102	
2(config-if)#standby version 2	
2(config-if)#standby 124 ip 10.01.102.254	
2(config-if)#	Activar Windows
	- Vola Lonngaración para activar trindons.
solarwinds / Solar-PuTTY free tool	© 2019 SolarWinds Worldwide, LLC. All rights reserved.
🧧 父 <u> 🖉 🖉 </u>	∧ 🐲 ESP 9:44 p. m. 16/11/2022 ₹2

CONCLUSIONES

Durante el desarrollo de esta actividad se evidencia la implementación de latopología propuesta y sus configuraciones, utilizando los diferentes protocolos de enrutamientos como OSPF, BGP, interfaces Loopback y protocolos en IPv4 e IPv6entre otros.

Se logró entender el funcionamiento de un sistema de enrutamiento avanzado y suimportancia a la hora de implementar en una red de datos, Se identificó y solucionoproblemas propios de conmutación y enrutamiento, mediante el uso adecuado de estrategias basadas en comandos del IOS basada en agrupamiento lógico entre varios enlaces físicos con el fin de resolver problemas de configuración, conectividad y enrutamiento.

Se concluyó implementado los lineamientos establecidos con los direccionamientosIP, VLANs, etherchannels, entre otros. Cada configuración fue verificada que cumpliera la funcionalidad de red en cada uno de los dispositivos, utilizando los diferentes comandos implementados en la consola. La solución de este ejercicio pone en marcha todos los conocimientos adquiridos en este proceso de formación, demostrando las capacidades y habilidades adquiridas para luego ponerlos en práctica en nuestra vida laboral.

BIBLIOGRAFIA

Edgeworth, B., Garza Rios, B., Gooley, J., Hucaby, D. (2020). CISCO Press (Ed). IP Routing Essentials. CCNP and CCIE Enterprise Core ENCOR 350-401. https://1drv.ms/b/s!AAIGg5JUgUBthk8

Edgeworth, B., Garza Rios, B., Gooley, J., Hucaby, D. (2020). CISCO Press (Ed). EIGRP. CCNP and CCIE Enterprise Core ENCOR 350-401.

Edgeworth, B., Garza Rios, B., Gooley, J., Hucaby, D. (2020). CISCO Press(Ed). Advanced OSPF. CCNP and CCIE Enterprise Core ENCOR 350-401. https://1drv.ms/b/s!AAIGg5JUgUBthk8

https://1drv.ms/b/s!AAIGg5JUgUBthk8Edgeworth, B., Garza Rios, B., Gooley, J., Hucaby, D. (2020). CISCO Press (Ed). OSPF. CCNP and CCIE Enterprise Core ENCOR 350-40