EVALUACIÓN – PRUEBA DE HABILIDADES PRÁCTICAS CCNA

SAMUEL RICARDO GARIBELLO VARGAS

DIPLOMADO CISCO

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNAD INGENIERIA DE SISTEMAS BOGOTA 2019

TABLA DE CONTENIDO

1.	DE	SAF	ROLLO DE LOS DOS ESCENARIOS	3
1.	1.	ES	CENARIO 1	3
	1.1	.1	Topología de red	3
1.	2.	DE	SARROLLO	4
	1.2	.1	Parte 1: Asignación de direcciones IP:	6
	1.2	.2	Parte 2: Configuración Básica	7
	1.2	.3	Parte 3: Configuración de Enrutamiento.	11
	1.2	.4	Parte 4: Configuración de las listas de Control de Acceso	11
	1.2	.5	Parte 5: Comprobación de la red instalada.	13
1.	3.	ES	CENARIO 2	15
1.	4.	DE	SARROLLO	16
	1.4	.1	Configuración básica	16
	1.4	.2	Autenticación local con AAA	23
	1.4	.3	Cifrado contraseñas	24
	1.4	.4	Intentos para acceder al router	24
	1.4	.5	Máximo tiempo de acceso al detectar ataques	24
	1.4 de	.6 los r	Establezca un servidor TFTP y almacene todos los archivos neces outers	arios 25
	1.4 Buo	.7 cara	El DHCP deberá proporcionar solo direcciones a los hosts manga y Cundinamarca.	s de 26
	1.4 top	.8 olog	El web server deberá tener NAT estático y el resto de los equipos jía emplearan NAT de sobrecarga (PAT)	de la 31
	1.4	.9	El enrutamiento deberá tener autenticación	36
	1.4	.10	Listas de control de acceso	37
2.	СО	NCL	LUSIONES	42

LISTA DE ILUSTRACIONES

Ilustración 1 Topología de la Red	4
Ilustración 2 Topología de Red direccionamiento IP's	4
Ilustración 3 Ingreso a CLI	5
Ilustración 4 Topología de Red	6
Ilustración 5 Tabla de Enrutamiento Bogotá	8
Ilustración 6 Tabla de Enrutamiento Medellín	9
Ilustración 7 Tabla de Enrutamiento Cali	9
Ilustración 8 Comando CDP Bogotá	9
Ilustración 9 Comando CDP Cali	10
Ilustración 10 Comando CDP Medellín	10
Ilustración 11 Prueba Conectividad Ping	11
Ilustración 12 Prueba Conectividad Ping Equipos Cliente	11
Ilustración 13 Verificación Telnet Habilitado Cali	12
Ilustración 14 Verificación Telnet Habilitado Bogotá	12
Ilustración 15 Verificación Telnet Habilitado Medellín	13
Ilustración 16 Comprobación de Conectividad por ICMP	14
Ilustración 17 Topología de la Red	16
Ilustración 18 Direccionamiento IP servidor TFTP	25
Ilustración 19 Servicio TFTP activo	26
Ilustración 20 Direccionamiento DHCP VLAN 10 Bucaramanga	28
Ilustración 21 Direccionamiento DHCP VLAN 30 Bucaramanga	29
Ilustración 22 Direccionamiento DHCP VLAN 20 Cundinamarca	30
Ilustración 23 Direccionamiento DHCP VLAN 30 Cundinamarca	31

LISTA DE TABLAS

Tabla 1 Asignación direccionamiento IP	7
Tabla 2 Enrutamiento redes LAN por ciudades	7
Tabla 3 Pruebas ICMP rutas LAN	15

RESUMEN

Para esta prueba practica de habilidades en CISCO, se implementó el direccionamiento para las topologías de red en cada escenario planteado, así mismo se llevó a cabo la asignación de los parámetros necesarios para cada uno, como también la configuración del enrutamiento, control de acceso, DHCP, NAT, enrutamiento con autenticación, control de acceso de los hosts con VLAN. y demás requerimientos que se plantearon para la solución de los escenarios planteados, todo esto llevando a la práctica todos los conocimientos teóricos y prácticas adelantadas durante el desarrollo del diplomado CCNA1 y CCNA2.

De otra parte, también se contemplaron parámetros de seguridad en los dispositivos, se realizó comprobación de estos y su correcto funcionamiento.

ABSTRACT

For this practical test of skills in CISCO, the addressing for the network topologies was implemented in each scenario proposed, as well as the assignment of the necessary parameters for each one, as well as the routing configuration, access control, DHCP, NAT, routing with authentication, access control of hosts with VLAN. and other requirements that were raised for the solution of the proposed scenarios, all this putting into practice all the theoretical knowledge and practices advanced during the development of the CCNA1 and CCNA2 diploma.

On the other hand, safety parameters were also contemplated in the devices, these were checked and their correct functioning.

INTRODUCCIÓN

Con el fin de dar evidencia de las competencias y habilidades que fueron adquiridas durante el Diplomado de CCNA1 y CCNA2

Para esta actividad, se aplicaron todos los conocimientos adquiridos durante el diplomado con el fin de crear soluciones a los escenarios propuestos, para luego realizar la verificación de conectividad mediante el uso del protocolo ICMP.

El buen uso e implementación de la teoría de redes adquirida fue fundamental para abarcar correctamente la resolución de los escenarios.

OBJETIVOS

- Dar solución a los diferentes escenarios propuestos en la práctica, haciendo uso de los conocimientos adquiridos en el diplomado, para la configuración de las redes en cada caso.
- Definir el direccionamiento en la red de cada escenario.
- Aplicar los parámetros básicos de seguridad y de detección de vecinos directamente conectados.
- Configurar la red y la subred para su interconexión, implementando parámetros de seguridad y de acceso en los diferentes hosts.
- Configurar el enrutamiento y las listas de control de acceso.

1. DESARROLLO DE LOS DOS ESCENARIOS

Descripción de escenarios propuestos para la prueba de habilidades.

1.1. ESCENARIO 1

Una empresa posee sucursales distribuidas en las ciudades de Bogotá, Medellín y Cali en donde el estudiante será el administrador de la red, el cual deberá configurar e interconectar entre sí cada uno de los dispositivos que forman parte del escenario, acorde con los lineamientos establecidos para el direccionamiento IP, protocolos de enrutamiento y demás aspectos que forman parte de la topología de red.

1.1.1 Topología de red

Los requerimientos solicitados son los siguientes:

Parte 1: Para el direccionamiento IP debe definirse una dirección de acuerdo con el número de hosts requeridos.

Parte 2: Considerar la asignación de los parámetros básicos y la detección de vecinos directamente conectados.

Parte 3: La red y subred establecidas deberán tener una interconexión total, todos los hosts deberán ser visibles y poder comunicarse entre ellos sin restricciones.

Parte 4: Implementar la seguridad en la red, se debe restringir el acceso y comunicación entre hosts de acuerdo con los requerimientos del administrador de red.

Parte 5: Comprobación total de los dispositivos y su funcionamiento en la red.

Parte 6: Configuración final.

Ilustración 1 Topología de la Red

Ilustración 2 Topología de Red direccionamiento IP's

1.2. DESARROLLO

Como trabajo inicial se debe realizar lo siguiente.

Realizar las rutinas de diagnóstico y dejar los equipos listos para su configuración (asignar nombres de equipos, asignar claves de seguridad, etc).

Ilustración 3 Ingreso a CLI

Redellin	-		×
Physical Config CLI Attributes			
IOS Command Line Interface			
MEDELLIN conU is now available Press RETURN to get started.			>
MEDELLIN>enable			
MEDELLIN#			~
Ctrl+F6 to exit CLI focus	Сору	Paste	e

Realizar la conexión fisica de los equipos con base en la topología de red.

Ilustración 4 Topología de Red

Configurar la topología de red, de acuerdo con las siguientes especificaciones.

1.2.1 Parte 1: Asignación de direcciones IP:

Se debe dividir (subnetear) la red creando una segmentación en ocho partes, para permitir creciemiento futuro de la red corporativa.

Network Address	Usable Host Range	Broadcast Address:
192.168.1.0	192.168.1.1 - 192.168.1.30	192.168.1.31
192.168.1.32	192.168.1.33 - 192.168.1.62	192.168.1.63
192.168.1.64	192.168.1.65 - 192.168.1.94	192.168.1.95
192.168.1.96	192.168.1.97 - 192.168.1.126	192.168.1.127
192.168.1.128	192.168.1.129 - 192.168.1.158	192.168.1.159
192.168.1.160	192.168.1.161 - 192.168.1.190	192.168.1.191
192.168.1.192	192.168.1.193 - 192.168.1.222	192.168.1.223
192.168.1.224	192.168.1.225 - 192.168.1.254	192.168.1.255

Asignar una dirección IP a la red.

1.2.2 Parte 2: Configuración Básica.

Completar la siguiente tabla con la configuración básica de los routers, teniendo en cuenta las subredes diseñadas.

	R1	R2	R3
Nombre de Host	MEDELLIN	BOGOTA	CALI
Dirección de lp en interfaz Serial 0/0	192.168.1.99	192.168.1.98	192.168.1.131
Dirección de lp en interfaz Serial 0/1	192.168.1.161	192.168.1.130	192.168.1.193
Dirección de lp en interfaz FA 0/0	192.168.1.33	192.168.1.1	192.168.1.65
Protocolo de enrutamiento	Eigrp	Eigrp	Eigrp
Sistema Autónomo	200	200	200
Afirmaciones de red	192.168.1.0	192.168.1.0	192.168.1.0

Tabla 2 Enrutamiento redes LAN por ciudades

Después de cargada la configuración en los dispositivos, verificar la tabla de enrutamiento en cada uno de los routers para comprobar las redes y sus rutas.

Ilustración 5 Tabla de Enrutamiento Bogotá

```
Gateway of last resort is not set

192.168.1.0/27 is subnetted, 5 subnets

C 192.168.1.0 is directly connected, FastEthernet0/0

D 192.168.1.32 [90/20514560] via 192.168.1.99, 00:46:08, Serial0/0/0

D 192.168.1.64 [90/20514560] via 192.168.1.131, 00:49:13, Serial0/1/0

C 192.168.1.96 is directly connected, Serial0/0/0

C 192.168.1.128 is directly connected, Serial0/1/0

BOGOTA#
```

Ilustración 6 Tabla de Enrutamiento Medellín

```
Gateway of last resort is not set

192.168.1.0/27 is subnetted, 5 subnets

D 192.168.1.0 [90/20514560] via 192.168.1.98, 00:55:55, Serial0/0/0

C 192.168.1.32 is directly connected, FastEthernet0/0

D 192.168.1.64 [90/21026560] via 192.168.1.98, 00:50:23, Serial0/0/0

C 192.168.1.96 is directly connected, Serial0/0/0

D 192.168.1.128 [90/21024000] via 192.168.1.98, 00:55:55, Serial0/0/0

MEDELLIN#
```

Ilustración 7 Tabla de Enrutamiento Cali

```
Gateway of last resort is not set

192.168.1.0/27 is subnetted, 5 subnets

D 192.168.1.0 [90/20514560] via 192.168.1.130, 01:07:34, Serial0/0/0

D 192.168.1.32 [90/21026560] via 192.168.1.130, 00:48:38, Serial0/0/0

C 192.168.1.64 is directly connected, FastEthernet0/0

D 192.168.1.96 [90/21024000] via 192.168.1.130, 00:58:07, Serial0/0/0

C 192.168.1.128 is directly connected, Serial0/0/0

CALI#
```

- Verificar el balanceo de carga que presentan los routers.
- Realizar un diagnóstico de vecinos uando el comando cdp.

Ilustración 8 Comando CDP Bogotá

```
BOGOTA#show cdp nei
BOGOTA#show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
                S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
Device ID
           Local Intrfce Holdtme Capability Platform
                                                           Port ID
S1
           Fas 0/0
                          120
                                        s
                                                2960
                                                           Fas 0/1
CALI
           Ser 0/1/0
                          139
                                                C1841
                                                           Ser 0/0/0
                                        R
MEDELLIN
           Ser 0/0/0
                          173
                                        R
                                                C1841
                                                           Ser 0/0/0
BOGOTA#
```

Ilustración 9 Comando CDP Cali

```
CALI>enable
Password:
CALI#showed
CALI#show c
CALI#show cdp
CALI#show cdp ne
CALI#show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
              S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
           Local Intrfce Holdtme Capability Platform Port ID
Fas 0/0 135 S 2960 Fas 0/1
Device ID
                           135
            Fas 0/0
Switch
BOGOTA
            Ser 0/0/0
                             154
                                                    C1841
                                                                 Ser 0/1/0
                                            R
CALI#
```

Ilustración 10 Comando CDP Medellín

```
MEDELLIN>enable
Password:
MEDELLIN#show cdp ne
MEDELLIN#show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
               S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
          Local Intrfce Holdtme Capability Platform Port ID
Device ID
          Fas 0/0
                          167
                                        s
                                               2960
                                                         Fas 0/1
Switch
                        160
BOGOTA
          Ser 0/0/0
                                        R
                                               C1841
                                                         Ser 0/0/0
MEDELLIN#
```

Realizar una prueba de conectividad en cada tramo de la ruta usando Ping.

Ilustración 11 Prueba Conectividad Ping

enta	entana de Lista PDU									
ire	Last Status	Source	Destination	Туре	Color	Time(sec)	Periodic	Num	Edit	Delete
	Exitoso	CALI	BOGOTA	ICMP		0.000	Ν	0	(edit)	(delete)
	Exitoso	BOGOTA	MEDELLIN	ICMP		0.000	N	1	(edit)	(delete)
	Exitoso	MEDELLIN	BOGOTA	ICMP		0.000	N	2	(edit)	(delete)
	Exitoso	MEDELLIN	CALI	ICMP		0.000	Ν	3	(edit)	(delete)
	Exitoso	CALI	MEDELLIN	ICMP		0.000	Ν	4	(edit)	(delete)

1.2.3 Parte 3: Configuración de Enrutamiento.

Asignar el protocolo de enrutamiento EIGRP a los routers considerando el direccionamiento diseñado.

Verificar si existe vecindad con los routers configurados con EIGRP.

Realizar la comprobación de las tablas de enrutamiento en cada uno de los routers para verificar cada una de las rutas establecidas.

Realizar un diagnóstico para comprobar que cada uno de los puntos de la red se puedan ver y tengan conectividad entre sí. Realizar esta prueba desde un host de la red LAN del router CALI, primero a la red de MEDELLIN y luego al servidor.

Ilustración 12	Prueba	Conectividad	Ping	Equipos	Cliente
----------------	--------	--------------	------	---------	---------

<										
Ventana de Lista PDU										
Fire	Last Status	Source	Destination	Туре	Color	Time(sec)	Periodic	Num	Edit	Delete
•	Exitoso	servidor	PC0	ICMP		0.000	N	0	(edit)	(delete)
•	Exitoso	servidor	PC3	ICMP		0.000	N	1	(edit)	(delete)
•	Exitoso	PC0	PC3	ICMP		0.000	N	2	(edit)	(delete)
•	Exitoso	WS_1	PC3	ICMP		0.000	N	3	(edit)	(delete)

1.2.4 Parte 4: Configuración de las listas de Control de Acceso.

En este momento cualquier usuario de la red tiene acceso a todos sus dispositivos y estaciones de trabajo. El jefe de redes le solicita implementar seguridad en la red. Para esta labor se decide configurar listas de control de acceso (ACL) a los routers.

Las condiciones para crear las ACL son las siguientes:

Cada router debe estar habilitado para establecer conexiones Telnet con los demás routers y tener acceso a cualquier dispositivo en la red.

Ilustración 13 Verificación Telnet Habilitado Cali

```
BOGOTA#telnet
Host: 192.168.1.131
Trying 192.168.1.131 ...Open
User Access Verification
Password:
CALI>enable
Password:
CALI#
```

Ilustración 14 Verificación Telnet Habilitado Bogotá

```
CALI(config) #exit
%SYS-5-CONFIG_I: Configured from
CALI#telnet
Host: 192.168.1.130
Trying 192.168.1.130 ...Open
User Access Verification
Password:
BOGOTA>enable
Password:
BOGOTA#
```

Ilustración 15 Verificación Telnet Habilitado Medellín

```
#SIS=S=CONFIG_1. Configured from consol
telnet
Host: 192.168.1.99
Trying 192.168.1.99 ...Open
User Access Verification
Password:
Password:
MEDELLIN>enable
Password:
MEDELLIN#
```

El equipo WS1 y el servidor se encuentran en la subred de administración. Solo el servidor de la subred de administración debe tener acceso a cualquier otro dispositivo en cualquier parte de la red.

Las estaciones de trabajo en las LAN de MEDELLIN y CALI no deben tener acceso a ningún dispositivo fuera de su subred, excepto para interconectar con el servidor.

1.2.5 Parte 5: Comprobación de la red instalada.

Se debe probar que la configuración de las listas de acceso fue exitosa.

Comprobar y Completar la siguiente tabla de condiciones de prueba para confirmar el óptimo funcionamiento de la red

ntana	1841 BOGOTA 192.168.1.96 / 27 PC-PT PC0 192.168.1.92 / 27 192.168.1.128 / 27 192.168.1.128 / 27 PC-PT PC3											
	Last Status	Source	Destination	Tune	Color	Time(eac)	Pariadia	Num	Edit	Delete		
Ĩ	East Status Falló	PC4	PC0	ісме	COIDI	0.000	N	2	(edit)	Delete		(delete)
	Falló	PC4	PC1	ICMP		0.000	N	3	(edit)			(delete)
-	Exitoso	servidor	PC3	ICMP		0.000	N	4	(edit)			(delete)
	Falló	WS_1	PC3	ICMP		0.000	N	5	(edit)			(delete)
ē	Falló	WS_1	PC0	ICMP		0.000	N	6	(edit)			(delete)
ó	Exitoso	servidor	BOGOTA	ICMP		0.000	N	7	(edit)			(delete)
•	Exitoso	servidor	WS_1	ICMP		0.000	N	8	(edit)			(delete)
•	Exitoso	MEDELLIN	CALI	ICMP		0.000	N	9	(edit)			(delete)
	Exitoso	WS_1	BOGOTA	ICMP		0.000	N	10	(edit)			(delete)
	Exitoso	servidor	CALI	ICMP		0.000	N	11	(edit)			(delete)
	Falló	PC0	CALI	ICMP		0.000	N	12	(edit)			(delete)
•	Exitoso	PC0	MEDELLIN	ICMP		0.000	N	13	(edit)			(delete)

Ilustración 16 Comprobación de Conectividad por ICMP

Tabla 3 Pruebas ICMP rutas LAN

	ORIGEN	DESTINO	RESULTADO
	Router MEDELLIN	Router CALI	Exitoso
	WS_1	Router BOGOTA	Exitoso
IELINEI	Servidor	Router CALI	Exitoso
	Servidor	Router MEDELLIN	Exitoso
	LAN del Router MEDELLIN	Router CALI	Fallo
	LAN del Router CALI	Router CALI	Fallo
TELNET	LAN del Router MEDELLIN	Router MEDELLIN	Exitoso
	LAN del Router CALI	Router MEDELLIN	Fallo
	LAN del Router CALI	WS_1	Fallo
PING	LAN del Router MEDELLIN	WS_1	Fallo
	LAN del Router MEDELLIN	LAN del Router CALI	Fallo
	LAN del Router CALI	Servidor	Exitoso
	LAN del Router MEDELLIN	Servidor	Exitoso
PING	Servidor	LAN del Router MEDELLIN	Exitoso
	Servidor	LAN del Router CALI	Exitoso
	Router CALI	LAN del Router MEDELLIN	Fallo
	Router MEDELLIN	LAN del Router CALI	Fallo

1.3. ESCENARIO 2

Una empresa tiene la conexión a internet en una red Ethernet, lo cual deben adaptarlo para facilitar que sus routers y las redes que incluyen puedan, por esa vía, conectarse a internet, pero empleando las direcciones de la red LAN original.

Ilustración 17 Topología de la Red

1.4. DESARROLLO

Los siguientes son los requerimientos necesarios:

Todos los routers deberán tener los siguiente:

1.4.1 Configuración básica.

Router>

en Router#conf term

Enter configuration commands, one per line. End with CNTL/Z. Router(config)#hostname BUCARAMANGA

BUCARAMANGA(config)#no ip domain-lookup

BUCARAMANGA(config)#banner motd #Cuidado Acceso Restringido# BUCARAMANGA(config)#enable secret class123

BUCARAMANGA(config)#line console 0

BUCARAMANGA(config-line)#password cisco123

BUCARAMANGA(config-line)#login

BUCARAMANGA(config-line)#logging synchronous

BUCARAMANGA(config-line)#line vty 0 15

BUCARAMANGA(config-line)#password cisco123

BUCARAMANGA(config-line)#login

BUCARAMANGA(config-line)#logging synchronous

BUCARAMANGA(config)#int g0/0.1

BUCARAMANGA(config-subif)#encapsulation dot1q 1

BUCARAMANGA(config-subif)#ip address 172.31.2.1 255.255.255.248

BUCARAMANGA(config-subif)#int g0/0.10

BUCARAMANGA(config-subif)#encapsulation dot1q 10

BUCARAMANGA(config-subif)#ip address 172.31.0.1 255.255.255.192

BUCARAMANGA(config-subif)#int g0/0.30

BUCARAMANGA(config-subif)#encapsulation dot1q 30

BUCARAMANGA(config-subif)#ip address 172.31.0.65 255.255.255.192

BUCARAMANGA(config-subif)#int g0/0

BUCARAMANGA(config-if)#no shutdown

BUCARAMANGA(config-if)#int s0/0/0

BUCARAMANGA(config-if)#ip address 172.31.2.34 255.255.255.252

BUCARAMANGA(config-if)#no shutdown

BUCARAMANGA(config-if)#router ospf 1

BUCARAMANGA(config-router)#network 172.31.0.0 0.0.0.63 area 0

BUCARAMANGA(config-router)#network 172.31.0.64 0.0.0.63 area 0

BUCARAMANGA(config-router)#network 172.31.2.0 0.0.0.7 area 0 BUCARAMANGA(config-router)#network 172.31.2.32 0.0.0.3 area 0

TUNJA(config)#no ip domain-lookup TUNJA(config)#banner motd #Cuidado Acceso Restringido# TUNJA(config)#enable secret class123 TUNJA(config)#line console 0 TUNJA(config-line)#password cisco123 TUNJA(config-line)#login TUNJA(config-line)#logging synchronous TUNJA(config-line)#line vty 0 15 TUNJA(config-line)#password cisco123 TUNJA(config-line)#login TUNJA(config-line)#logging synchronous TUNJA(config)#int g0/0.1 TUNJA(config-subif)#encapsulation dot1g 1 TUNJA(config-subif)#ip address 172.3.2.9 255.255.255.248 TUNJA(config-subif)#int g0/0.20 TUNJA(config-subif)#encapsulation dot1q 20 TUNJA(config-subif)#ip address 172.31.0.129 255.255.255.192 TUNJA(config-subif)#int g0/0.30 TUNJA(config-subif)#encapsulation dot1g 30 TUNJA(config-subif)#ip address 172.31.0.193 255.255.255.192 TUNJA(config-subif)#int g0/0 TUNJA(config-if)#no shutdown TUNJA(config-if)#int s0/0/0 TUNJA(config-if)#ip address 172.31.2.33 255.255.255.252

TUNJA(config-if)#no shutdown

TUNJA(config-if)#int s0/0/1

TUNJA(config-if)#ip address 172.31.2.37 255.255.255.252

TUNJA(config-if)#no shutdown

TUNJA(config-if)#int g0/1

TUNJA(config-if)#ip address 209.165.220.1 255.255.255.0

TUNJA(config-if)#no shutdown

TUNJA(config-if)#router ospf 1

TUNJA(config-router)#network 172.3.2.8 0.0.0.7 area 0

TUNJA(config-router)#network 172.31.0.128 0.0.0.63 area 0

TUNJA(config-router)#network 172.31.0.192 0.0.0.63 area 0

TUNJA(config-router)#network 172.31.2.32 0.0.0.3 area 0

TUNJA(config-router)#network 172.31.2.36 0.0.0.3 area 0

CUNDINAMARCA(config)#no ip domain-lookup CUNDINAMARCA(config)#banner motd #Cuidado Acceso Restringido# CUNDINAMARCA(config)#enable secret class123 CUNDINAMARCA(config)#line console 0 CUNDINAMARCA(config-line)#password cisco123 CUNDINAMARCA(config-line)#login CUNDINAMARCA(config-line)#logging synchronous CUNDINAMARCA(config-line)#logging synchronous CUNDINAMARCA(config-line)#line vty 0 15 CUNDINAMARCA(config-line)#password cisco123 CUNDINAMARCA(config-line)#logging CUNDINAMARCA(config-line)#logging synchronous CUNDINAMARCA(config-line)#logging synchronous CUNDINAMARCA(config-line)#logging synchronous CUNDINAMARCA(config-line)#logging synchronous CUNDINAMARCA(config-subif)#ip address 172.31.2.9 255.255.255.248

CUNDINAMARCA(config-subif)#int g0/0.20

CUNDINAMARCA(config-subif)#encapsulation dot1q 20

CUNDINAMARCA(config-subif)#ip address 172.31.1.65 255.255.255.192

CUNDINAMARCA(config-subif)#int g0/0.30

CUNDINAMARCA(config-subif)#encapsulation dot1q 30

CUNDINAMARCA(config-subif)#ip address 172.31.1.1 255.255.255.192

CUNDINAMARCA(config-subif)#int g0/0.88

CUNDINAMARCA(config-subif)#encapsulation dot1q 88

CUNDINAMARCA(config-subif)#ip address 172.31.2.25 255.255.255.248

CUNDINAMARCA(config-subif)#int g0/0

CUNDINAMARCA(config-if)#no shutdown

CUNDINAMARCA(config-if)#int s0/0/0

CUNDINAMARCA(config-if)#ip address 172.31.2.38 255.255.255.252

CUNDINAMARCA(config-if)#no shutdown

CUNDINAMARCA(config-if)#router ospf 1

CUNDINAMARCA(config-router)#network 172.31.1.0 0.0.0.63 area 0

CUNDINAMARCA(config-router)#network 172.31.1.64 0.0.0.63 area 0 CUNDINAMARCA(config-router)#network 172.31.2.8 0.0.0.7 area 0

CUNDINAMARCA(config-router)#network 172.31.2.24 0.0.0.7 area 0

CUNDINAMARCA(config-router)#network 172.31.2.36 0.0.0.3 area 0 CUNDINAMARCA(config- router)#end

BUCARAMANGASW(config)#vlan 1

BUCARAMANGASW(config-vlan)#vlan 10

BUCARAMANGASW(config-vlan)#vlan 30

BUCARAMANGASW(config-vlan)#int f0/20

BUCARAMANGASW(config-if)#switchport mode access

BUCARAMANGASW(config-if)#switchport access vlan 10 BUCARAMANGASW(config-if)#int f0/24 BUCARAMANGASW(config-if)#switchport mode access BUCARAMANGASW(config-if)#switchport access vlan 30 BUCARAMANGASW(config-if)#int f0/1 BUCARAMANGASW(config-if)#switchport mode trunk BUCARAMANGASW(config-if)#int vlan 1 BUCARAMANGASW(config-if)#ip address 172.31.2.3 255.255.255.248 BUCARAMANGASW(config-if)#ip oshutdown BUCARAMANGASW(config-if)#ip default-gateway 172.31.2.1

TUNJASW(config)#vlan 1 TUNJASW(config-vlan)#vlan 20 TUNJASW(config-vlan)#vlan 30 TUNJASW(config-vlan)#int f0/20 TUNJASW(config-if)#switchport mode access TUNJASW(config-if)#switchport access vlan 20 TUNJASW(config-if)#int f0/24 TUNJASW(config-if)#switchport mode access TUNJASW(config-if)#switchport access vlan 30 TUNJASW(config-if)#int f0/1 TUNJASW(config-if)#switchport mode trunk TUNJASW(config-if)# TUNJASW(config-if)#int vlan 1 TUNJASW(config-if)#ip address 172.3.2.11 255.255.255.248 TUNJASW(config-if)#no shutdown TUNJASW(config-if)#

TUNJASW(config-if)#ip default-gateway 172.3.2.9

CUNDINAMARCASW(config)#vlan 1 CUNDINAMARCASW(config-vlan)#vlan 20 CUNDINAMARCASW(config-vlan)#vlan 30 CUNDINAMARCASW(config-vlan)#vlan 88 CUNDINAMARCASW(config-vlan)#exit CUNDINAMARCASW(config)#int f0/20 CUNDINAMARCASW(config-if)#switchport mode access CUNDINAMARCASW(config-if)#switchport access vlan 20 CUNDINAMARCASW(config-if)#int f0/24 CUNDINAMARCASW(config-if)#switchport mode access CUNDINAMARCASW(config-if)#switchport access vlan 30 CUNDINAMARCASW(config-if)#int f0/10 CUNDINAMARCASW(config-if)#switchport mode access CUNDINAMARCASW(config-if)#switchport access vlan 88 CUNDINAMARCASW(config-if)#int f0/1 CUNDINAMARCASW(config-if)#switchport mode trunk CUNDINAMARCASW(config-if)# CUNDINAMARCASW(config-if)#int vlan 1 CUNDINAMARCASW(config-if)#ip address 172.31.2.11 255.255.255.248 CUNDINAMARCASW(config-if)#no shutdown CUNDINAMARCASW(config-if)# CUNDINAMARCASW(config-if)#ip default-gateway 172.31.2.9

1.4.2 Autenticación local con AAA

BUCARAMANGA(config-line)#username administrador secret cisco12345 BUCARAMANGA(config)#aaa new-model BUCARAMANGA(config)#aaa authentication login AUTH local BUCARAMANGA(config)#line console 0 BUCARAMANGA(config-line)#login authentication AUTH BUCARAMANGA(config-line)#line vty 0 15 BUCARAMANGA(config-line)#login authentication AUTH

TUNJA(config-line)#username administrador secret cisco12345 TUNJA(config)#aaa new-model TUNJA(config)#aaa authentication login AUTH local TUNJA(config)#line console 0 TUNJA(config-line)#login authentication AUTH TUNJA(config-line)#line vty 0 15 TUNJA(config-line)#login authentication AUTH

CUNDINAMARCA(config-line)#username administrador secret cisco12345 CUNDINAMARCA(config)#aaa new-model CUNDINAMARCA(config)#aaa authentication login AUTH local CUNDINAMARCA(config)#line console 0 CUNDINAMARCA(config-line)#login authentication AUTH CUNDINAMARCA(config-line)#line vty 0 15 CUNDINAMARCA(config-line)#login authentication AUTH

1.4.3 Cifrado contraseñas

BUCARAMANGA(config)#service password-encryption TUNJA(config)#service password-encryption CUNDINAMARCA(config)#service password-encryption

1.4.4 Intentos para acceder al router

BUCARAMANGA(config-line)#login block-for 5 attempts 4 within 60 TUNJA(config-line)#login block-for 5 attempts 4 within 60 CUNDINAMARCA(config-line)#login block-for 5 attempts 4 within 60

1.4.5 Máximo tiempo de acceso al detectar ataques

BUCARAMANGA(config-line)#login block-for 5 attempts 4 within 60 TUNJA(config-line)#login block-for 5 attempts 4 within 60 CUNDINAMARCA(config-line)#login block-for 5 attempts 4 within 60

1.4.6 Establezca un servidor TFTP y almacene todos los archivos necesarios de los routers

Ŗ	Server1							
	Physical	Config	Services	Desktop	Program	ning	Attributes	
)) (tatic		
	IP Addres	s			209.	165.22	0.3	
	Subnet M	ask			255.	255.255.255.0		
	Default G	ateway			209.	165.22	0.1	
	DNS Serv	/er			0.0.0).0		
	IPv6 Conf	iguration						
)			o Config			Static
	IPv6 Addr	ess						
	Link Loca	Address			FE8)::20A:	41FF:FEB3:48	3C8

Ilustración 18 Direccionamiento IP servidor TFTP

Ilustración 19 Servicio TFTP activo.

🥐 Server1						
Physical Con	fig S	ervices Desktop Programming Attributes				
SERVICES	•	TFTP				
HTTP						
DHCP		Service On				
DHCPv6						
TFTP		File				
DNS		asa842-k8.bin				
SYSLOG		asa923-k8.bin				
AAA		c1841_advinservicesk9_mz 124_15 T1 hin				
NTP						
EMAIL		c1841-ipbase-mz.123-14.17.bin				
FTP		c1841-ipbasek9-mz.124-12.bin				
IoT		c1900-universalk9-mz.SPA.155-3.M4a.bin				
VM Managem	ent	c2600-advipservicesk9-mz.124-15.T1.bin				
Radius EAP	>	c2600-i-mz.122-28.bin				
		c2600-ipbasek9-mz.124-8.bin				
		c2800nm-advipservicesk9-mz.124-15.T1.bin				
		c2800nm-advipservicesk9-mz.151-4.M4.bin				
		c2800nm-ipbase-mz.123-14.T7.bin				
		c2800nm-ipbasek9-mz.124-8.bin				
	\sim					
_						
Тор						

1.4.7 El DHCP deberá proporcionar solo direcciones a los hosts de Bucaramanga y Cundinamarca.

TUNJA(config)#ip dhcp excluded-address 172.31.0.1

TUNJA(config)#ip dhcp excluded-address 172.31.0.65

TUNJA(config)#ip dhcp excluded-address 172.31.1.65

TUNJA(config)#ip dhcp excluded-address 172.31.1.1

TUNJA(config)#ip dhcp pool V10B

TUNJA(dhcp-config)#network 172.31.0.0 255.255.255.192

TUNJA(dhcp-config)#default-router 172.31.0.1

TUNJA(dhcp-config)#dns-server 172.31.2.28 TUNJA(dhcp-config)#ip dhcp pool V30B TUNJA(dhcp-config)#network 172.31.0.64 255.255.255.192 TUNJA(dhcp-config)#default-router 172.31.0.65 TUNJA(dhcp-config)#dns-server 172.31.2.28 TUNJA(dhcp-config)#ip dhcp pool V20C TUNJA(dhcp-config)#network 172.31.1.64 255.255.255.192 TUNJA(dhcp-config)#default-router 172.31.1.65 TUNJA(dhcp-config)#default-router 172.31.2.28 TUNJA(dhcp-config)#ip dhcp pool V30C TUNJA(dhcp-config)#ip dhcp pool V30C TUNJA(dhcp-config)#network 172.31.1.0 255.255.255.192 TUNJA(dhcp-config)#default-router 172.31.1.1 TUNJA(dhcp-config)#default-router 172.31.2.28 TUNJA(dhcp-config)#default-router 172.31.2.28 TUNJA(dhcp-config)#default-router 172.31.2.28 TUNJA(dhcp-config)#default-router 172.31.2.28 TUNJA(dhcp-config)#default-router 172.31.2.28 TUNJA(dhcp-config)#default-router 172.31.2.28

BUCARAMANGA(config)#int g0/0.10

BUCARAMANGA(config-subif)#ip helper-address 172.31.2.33 BUCARAMANGA(config-subif)#int g0/0.30 BUCARAMANGA(config-subif)#ip helper-address 172.31.2.33 BUCARAMANGA(config-subif)#end

CUNDINAMARCA(config)#int g0/0.20 CUNDINAMARCA(config-subif)#ip helper-address 172.31.2.37 CUNDINAMARCA(config-subif)#int g0/0.30 CUNDINAMARCA(config-subif)#ip helper-address 172.31.2.37 CUNDINAMARCA(config-subif)#end

VLAN 10					
Physical	Config	Desktop	Programming	Attributes	
OHCF)			O Static	
IP Addres	s			172.31.0.2	
Subnet M	ask			255.255.255	.192
Default G	ateway			172.31.0.1	
DNS Serv	/er			172.31.2.28	
-IPv6 Conf	iguration				
	,		🔘 Auto Co	onfig	 Static
IPv6 Add	ress				
Link Loca	Address			FE80::20C:C	FFF:FE58:C649
IPv6 Gate	way				
IPv6 DNS	Server				
-802.1X					
Use 8	02.1X Secu	ırity			
Authentic	ation	MD5			

Ilustración 20 Direccionamiento DHCP VLAN 10 Bucaramanga

🥐 VLAN 30					
Physical	Config	Desktop	Programming	Attributes	
DHCF	0			◯ Static	
IP Addres	s			172.31.0.66	;
Subnet M	ask			255.255.25	5.192
Default G	ateway			172.31.0.65	
DNS Serv	/er			172.31.2.28	}
IPv6 Conf	figuration				
O DHCF			O Auto Cor	nfig	Static
IPv6 Add	ress				
Link Loca	Address			FE80::2D0:0	03FF:FE4B:8C4D
IPv6 Gate	eway				
IPv6 DNS	Server				
-802.1X					
Use 8	302.1X Secu	ırity			

Ilustración 21 Direccionamiento DHCP VLAN 30 Bucaramanga

R VLAN20					
Physical	Config	Desktop	Programming	Attributes	
DHCP				◯ Static	
IP Address	•			172.31.1.66	
Subnet Ma	sk			255.255.255.192	
Default Ga	teway			172.31.1.65	
DNS Serve	er			172.31.2.28	
-IPv6 Config	guration				
O DHCP			O Auto Cor	nfig	 Static
IPv6 Addre	ss				
Link Local	Address			FE80::202:4AFF:FE5	i3:E1C4
IPv6 Gatev	vay				
IPv6 DNS S	Server				
802.1X					

Ilustración 22 Direccionamiento DHCP VLAN 20 Cundinamarca

R VLAN30				
Physical Config	Desktop	Programming	Attributes	
DHCP			O Static	
IP Address			172.31.1.2	
Subnet Mask			255.255.255.192	
Default Gateway			172.31.1.1	
DNS Server			172.31.2.28	
IPv6 Configuration				
O DHCP		O Auto Con	fig 🤅	Static
IPv6 Address				
Link Local Address			FE80::250:FFF:FE36:E523	
IPv6 Gateway				
IPv6 DNS Server				
802.1X				
Use 802.1X Sect	urity			

Ilustración 23 Direccionamiento DHCP VLAN 30 Cundinamarca

1.4.8 El web server deberá tener NAT estático y el resto de los equipos de la topología emplearan NAT de sobrecarga (PAT).

TUNJA(dhcp-config)#ip nat inside source static 172.31.2.28 209.165.220.4

TUNJA(config)#access-list 1 permit 172.0.0.0 0.255.255.255

TUNJA(config)#ip nat inside source list 1 interface g0/1 overload

TUNJA(config)#int g0/1

TUNJA(config-if)#ip nat outside

TUNJA(config-if)#int g0/0.1

TUNJA(config-subif)#ip nat inside

TUNJA(config-subif)#int g0/0.20

TUNJA(config-subif)#ip nat inside TUNJA(config-subif)#int g0/0.30 TUNJA(config-subif)#ip nat inside TUNJA(config-subif)#int s0/0/0 TUNJA(config-if)#ip nat inside TUNJA(config-if)#ip nat inside TUNJA(config-if)#ip nat inside TUNJA(config)#ip route 0.0.0.0 0.0.0 209.165.220.3 TUNJA(config)#router ospf 1 TUNJA(config-router)#default-information originate TUNJA(config-router)# TUNJA(config-router)# TUNJA(show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B – BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route

Gateway of last resort is 209.165.220.3 to network 0.0.0.0

172.3.0.0/16 is variably subnetted, 2 subnets, 2 masks

- C 172.3.2.8/29 is directly connected, GigabitEthernet0/0.1
- L 172.3.2.9/32 is directly connected, GigabitEthernet0/0.1

172.31.0.0/16 is variably subnetted, 15 subnets, 4 masks

0	172.31.0.0/26 [110/65] via 172.31.2.34, 01:39:37, Serial0/0/0
0	172.31.0.64/26 [110/65] via 172.31.2.34, 01:39:37, Serial0/0/0
С	172.31.0.128/26 is directly connected, GigabitEthernet0/0.20
L	172.31.0.129/32 is directly connected, GigabitEthernet0/0.20
С	172.31.0.192/26 is directly connected, GigabitEthernet0/0.30
L	172.31.0.193/32 is directly connected, GigabitEthernet0/0.30
0	172.31.1.0/26 [110/65] via 172.31.2.38, 01:06:28, Serial0/0/1
0	172.31.1.64/26 [110/65] via 172.31.2.38, 01:06:28, Serial0/0/1
0	172.31.2.0/29 [110/65] via 172.31.2.34, 02:25:47, Serial0/0/0
0	172.31.2.8/29 [110/65] via 172.31.2.38, 02:05:49, Serial0/0/1
0	172.31.2.24/29 [110/65] via 172.31.2.38, 01:06:28, Serial0/0/1
С	172.31.2.32/30 is directly connected, Serial0/0/0

- L 172.31.2.33/32 is directly connected, Serial0/0/0
- C 172.31.2.36/30 is directly connected, Serial0/0/1
- L 172.31.2.37/32 is directly connected, Serial0/0/1

209.165.220.0/24 is variably subnetted, 2 subnets, 2 masks

- C 209.165.220.0/24 is directly connected, GigabitEthernet0/1
- L 209.165.220.1/32 is directly connected, GigabitEthernet0/1
- S* 0.0.0.0/0 [1/0] via 209.165.220.3

BUCARAMANGA#show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route

Gateway of last resort is 172.31.2.33 to network 0.0.0.0

172.3.0.0/29 is subnetted, 1 subnets

O 172.3.2.8/29 [110/65] via 172.31.2.33, 02:29:15, Serial0/0/0

172.31.0.0/16 is variably subnetted, 15 subnets, 4 masks

- C 172.31.0.0/26 is directly connected, GigabitEthernet0/0.10
- L 172.31.0.1/32 is directly connected, GigabitEthernet0/0.10
- C 172.31.0.64/26 is directly connected, GigabitEthernet0/0.30
- L 172.31.0.65/32 is directly connected, GigabitEthernet0/0.30
- O 172.31.0.128/26 [110/65] via 172.31.2.33, 02:29:15, Serial0/0/0
- O 172.31.0.192/26 [110/65] via 172.31.2.33, 02:29:15, Serial0/0/0
- O 172.31.1.0/26 [110/129] via 172.31.2.33, 01:09:55, Serial0/0/0
- O 172.31.1.64/26 [110/129] via 172.31.2.33, 01:09:55, Serial0/0/0
- C 172.31.2.0/29 is directly connected, GigabitEthernet0/0.1
- L 172.31.2.1/32 is directly connected, GigabitEthernet0/0.1
- O 172.31.2.8/29 [110/129] via 172.31.2.33, 02:09:16, Serial0/0/0
- O 172.31.2.24/29 [110/129] via 172.31.2.33, 01:09:55, Serial0/0/0
- C 172.31.2.32/30 is directly connected, Serial0/0/0
- L 172.31.2.34/32 is directly connected, Serial0/0/0

O 172.31.2.36/30 [110/128] via 172.31.2.33, 02:12:35, Serial0/0/0 O*E2 0.0.0.0/0 [110/1] via 172.31.2.33, 00:04:22, Serial0/0/0

CUNDINAMARCA#show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is 172.31.2.37 to network 0.0.0.0

172.3.0.0/29 is subnetted, 1 subnets

O 172.3.2.8/29 [110/65] via 172.31.2.37, 02:13:19, Serial0/0/0

172.31.0.0/16 is variably subnetted, 16 subnets, 4 masks

- O 172.31.0.0/26 [110/129] via 172.31.2.37, 01:45:18, Serial0/0/0
- O 172.31.0.64/26 [110/129] via 172.31.2.37, 01:45:18, Serial0/0/0
- O 172.31.0.128/26 [110/65] via 172.31.2.37, 02:13:19, Serial0/0/0
- O 172.31.0.192/26 [110/65] via 172.31.2.37, 02:13:19, Serial0/0/0
- C 172.31.1.0/26 is directly connected, GigabitEthernet0/0.30
- L 172.31.1.1/32 is directly connected, GigabitEthernet0/0.30
- C 172.31.1.64/26 is directly connected, GigabitEthernet0/0.20
- L 172.31.1.65/32 is directly connected, GigabitEthernet0/0.20
- O 172.31.2.0/29 [110/129] via 172.31.2.37, 02:13:19, Serial0/0/0
- C 172.31.2.8/29 is directly connected, GigabitEthernet0/0.1
- L 172.31.2.9/32 is directly connected, GigabitEthernet0/0.1

- C 172.31.2.24/29 is directly connected, GigabitEthernet0/0.88
- L 172.31.2.25/32 is directly connected, GigabitEthernet0/0.88
- O 172.31.2.32/30 [110/128] via 172.31.2.37, 02:13:19, Serial0/0/0
- C 172.31.2.36/30 is directly connected, Serial0/0/0
- L 172.31.2.38/32 is directly connected, Serial0/0/0

O*E2 0.0.0.0/0 [110/1] via 172.31.2.37, 00:06:36, Serial0/0/0

1.4.9 El enrutamiento deberá tener autenticación

BUCARAMANGA#conf t BUCARAMANGA(config)#int s0/0/0 BUCARAMANGA(config-if)#ip ospf authentication message-digest BUCARAMANGA(config-if)#ip ospf message-digest-key 1 md5 cisco123 BUCARAMANGA(config-if)#

CUNDINAMARCA(config)#int s0/0/0

CUNDINAMARCA(config-if)#ip ospf authentication message-digest CUNDINAMARCA(config-if)#ip ospf message-digest-key 1 md5 cisco123 CUNDINAMARCA(config-if)#

TUNJA#conf t TUNJA(config)#int s0/0/0 TUNJA(config-if)#ip ospf authentication message-digest TUNJA(config-if)#ip ospf message-digest-key 1 md5 cisco123 TUNJA(config-if)#int s0/0/1 TUNJA(config-if)#ip ospf authentication message-digest TUNJA(config-if)#ip ospf message-digest-key 1 md5 cisco123

1.4.10 Listas de control de acceso

1.4.10.1 Los hosts de la VLAN 20 en Cundinamarca no acceden a internet solo a la red interna de Tunja.

CUNDINAMARCA(config-if)#access-list 111 deny ip 172.31.1.64 0.0.0.63 209.165.220.0 0.0.0.255

CUNDINAMARCA(config)#access-list 111 permit ip any

CUNDINAMARCA(config)#int g0/0.20

CUNDINAMARCA(config-subif)#ip access-group 111 in

CUNDINAMARCA(config-subif)#

1.4.10.2 Los host de la VLAN 10 en Cundinamarca si acceden a internet y no a la red interna de Tunja

CUNDINAMARCA(config-subif)#access-list 112 permit ip 172.31.1.0 0.0.0.63 209.165.220.0 0.0.0.255

CUNDINAMARCA(config)#access-list 112 deny ip any

CUNDINAMARCA(config)#int g0/0.30

CUNDINAMARCA(config-subif)#ip access-group 112 in

CUNDINAMARCA(config-subif)#

1.4.10.3 Los host de la VLAN 30 en Tunja solo acceden a servidores web y FTP de internet

TUNJA(config)#access-list 111 permit tcp 172.31.0.192 0.0.0.63 209.165.220.0 0.0.0.255 eq 80

TUNJA(config)#access-list 111 permit tcp 172.31.0.192 0.0.0.63 209.165.220.0 0.0.0.255 eq 21

TUNJA(config)#access-list 111 permit tcp 172.31.0.192 0.0.0.63 209.165.220.0 0.0.0.255 eq 20

TUNJA(config)#int g0/0.30

TUNJA(config-subif)#ip access-group 111 in

TUNJA(config-subif)#

1.4.10.4 Los host de la VLAN 20 en Tunja solo acceden a la VLAN 20 de Cundinamarca

TUNJA(config-subif)#access-list 112 permit ip 172.31.0.128 0.0.0.63 172.31.1.64 0.0.0.63

TUNJA(config)#access-list 112 permit ip 172.31.0.128 0.0.0.63 172.31.0.0 0.0.0.63

TUNJA(config)#int g0/0.20

TUNJA(config-subif)#ip access-group 112 in

TUNJA(config-subif)#

1.4.10.5 Los host de la VLAN 30 de Bucaramanga acceden a internet y a cualquier equipo de la VLAN 10

BUCARAMANGA(config)#access-list 111 permit ip 172.31.0.64 0.0.0.63 209.165.220.0 0.0.0.255

BUCARAMANGA(config)#int g0/0.30

BUCARAMANGA(config-subif)#ip access-group 111 in

BUCARAMANGA(config-subif)#

1.4.10.6 Los host de la VLAN 10 en Bucaramanga acceden a la red de Cundinamarca (VLAN20), no internet

BUCARAMANGA(config-subif)#access-list 112 permit ip 172.31.0.0 0.0.0.63 172.31.1.64 0.0.0.63

BUCARAMANGA(config)#access-list 112 permit ip 172.31.0.0 0.0.0.63 172.31.0.128 0.0.0.63

BUCARAMANGA(config)#int g0/0.10

BUCARAMANGA(config-subif)#ip access-group 112 in

BUCARAMANGA(config-subif)#

1.4.10.7 Los host de una VLAN no pueden acceder a los de otra vlan en una ciudad

BUCARAMANGA(config-subif)#access-list 113 deny ip 172.31.2.0 0.0.0.7 172.31.0.0 0.0.0.63

BUCARAMANGA(config)#access-list 113 deny ip 172.31.0.64 0.0.0.63 172.31.0.0 0.0.0.63

BUCARAMANGA(config)#access- list 113 permit ip any

BUCARAMANGA(config)#int g0/0.10

BUCARAMANGA(config-subif)#ip access-group 113 out

BUCARAMANGA(config-subif)#

TUNJA(config)#access-list 113 deny ip 172.3.2.8 0.0.0.7 172.31.0.128 0.0.0.63

TUNJA(config)#access-list 113 deny ip 172.3.0.192 0.0.0.63 172.31.0.128 0.0.0.63

TUNJA(config)#access-list 113 permit ip any

TUNJA(config)#int g0/0.20

TUNJA(config-subif)#ip access-group 113 out

TUNJA(config-subif)#

CUNDINAMARCA(config)#access-list 113 deny ip 172.31.2.8 0.0.0.7 172.31.1.64 0.0.0.63

CUNDINAMARCA(config)#access- list 113 deny ip 172.31.1.0 0.0.0.63 172.31.1.64 0.0.0.63

CUNDINAMARCA(config)#access-list 113 deny ip 172.31.2.24 0.0.0.7 172.31.1.64 0.0.0.63

CUNDINAMARCA(config)#access- list 113 permit ip any

CUNDINAMARCA(config)#int g0/0.20

CUNDINAMARCA(config-subif)#ip access-group 113 out

CUNDINAMARCA(config-subif)#

1.4.10.8 Solo los host de las vlan administrativas y de la vlan de servidores tiene acceso a los routers e internet

BUCARAMANGA(config-subif)#access-list 3 permit 172.31.2.0 0.0.0.7

BUCARAMANGA(config)#access-list 3 permit 172.3.2.8 0.0.0.7

BUCARAMANGA(config)#access-list 3 permit 172.31.2.8 0.0.0.7

BUCARAMANGA(config)#line vty 0 15

BUCARAMANGA(config-line)#access-class 3 in

BUCARAMANGA(config-line)#

TUNJA(config-subif)#access-list 3 permit 172.31.2.0 0.0.0.7

TUNJA(config)#access-list 3 permit 172.3.2.8 0.0.0.7

TUNJA(config)#access-list 3 permit 172.31.2.8 0.0.0.7 TUNJA(config)#line vty 0 15 TUNJA(config-line)#access-class 3 in

CUNDINAMARCA(config-subif)#access-list 3 permit 172.31.2.0 0.0.0.7 CUNDINAMARCA(config)#access-list 3 permit 172.3.2.8 0.0.0.7 CUNDINAMARCA(config)#access-list 3 permit 172.31.2.8 0.0.0.7 CUNDINAMARCA(config)#line vty 0 15 CUNDINAMARCA(config-line)#access-class 3 in CUNDINAMARCA(config-line)#

2. CONCLUSIONES

- Haciendo uso de los comandos ping, traceroute, show ip route del protocolo ICMP, se llevó a cabo la revisión en la configuración de los dispositivos y routers, para cada uno de los escenarios.
- Se definió el direccionamiento para los dispositivos de cada escenario.
- Aplicando los parámetros de enrutamiento, detección de vecinos directamente conectados, los routers lograron intercambiar información de ruteo.
- Se establecen los parámetros de seguridad para la red y las subredes a fin de mantener un entorno seguro.
- Se realizo la configuración de enrutamiento y las listas de control de acceso (ACL) esta permite mejorar la seguridad, haciendo uso de los filtros de tráfico de una lista de redes y acciones correlacionadas, permitiendo el acceso negado a algunos dispositivos de red.

BIBLIOGRAFÍA

CISCO. (2014). OSPF de una sola área. Principios de Enrutamiento y Conmutación. Recuperado de <u>https://static-course-assets.s3.amazonaws.com/RSE50ES/module8/index.html#8.0.1.1</u>

CISCO. (2014). Enrutamiento Dinámico. Principios de Enrutamiento y Conmutación. Recuperado de <u>https://static-course-</u> assets.s3.amazonaws.com/RSE50ES/module7/index.html#7.0.1.1

CISCO. (2014). Listas de control de acceso. Principios de Enrutamiento y Conmutación. Recuperado de <u>https://static-course-assets.s3.amazonaws.com/RSE50ES/module9/index.html#9.0.1.1</u>

CISCO. (2014). DHCP. Principios de Enrutamiento y Conmutación. Recuperado de <u>https://static-course-</u> assets.s3.amazonaws.com/RSE50ES/module10/index.html#10.0.1.1

CISCO. (2014). Traducción de direcciones IP para IPv4. Principios de Enrutamiento y Conmutación. Recuperado de <u>https://static-course-assets.s3.amazonaws.com/RSE50ES/module11/index.html#11.0.1.1</u>

CISCO. (2014). Enrutamiento entre VLANs. Principios de Enrutamiento y Conmutación. Recuperado de <u>https://static-course-assets.s3.amazonaws.com/RSE50ES/module5/index.html#5.0.1.1</u>

CISCO. (2014). Enrutamiento Estático. Principios de Enrutamiento y Conmutación. Recuperado de <u>https://static-course-assets.s3.amazonaws.com/RSE50ES/module6/index.html#6.0.1.1</u>

Vesga, J. (2014). Configuración de Switches y Routers [OVA]. Recuperado de <u>https://1drv.ms/u/s!AmIJYei-NT1IhgL9QChD1m9EuGqC</u>

CISCO. (2014). SubNetting. Fundamentos de Networking. Recuperado de <u>https://static-course-</u> assets.s3.amazonaws.com/ITN50ES/module9/index.html#9.0.1.1

Vesga, J. (2014). PING y TRACER como estrategia en procesos de Networking [OVA]. Recuperado de <u>https://1drv.ms/u/s!AmIJYei-NT1IhgTCtKY-7F5KIRC3</u>