ESTUDIO TEORICO DE LAS PROPIEDADES EN MEDIO SOLVENTE DE DERIVADOS DE N-FENILMALEIMIDAS

YORLY SMITH CARRERO GELVES

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS BÁSICAS TECNOLOGÍAS E INGENIERÍA PROGRAMA DE QUÍMICA BUCARAMANGA

2019

ESTUDIO TEORICO DE LAS PROPIEDADES EN MEDIO SOLVENTE DE DERIVADOS DE N-FENILMALEIMIDAS

YORLY SMITH CARRERO GELVES

Trabajo de grado como requisito parcial para optar el título de Químico

Asesor:

HECTOR FABIO CORTES HERNANDEZ

Doctor en Ciencias Químicas

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS BÁSICAS TECNOLOGÍAS E INGENIERÍA PROGRAMA DE QUÍMICA BUCARAMANGA

2019

"En la vida no existe nada que temer, solo cosas que comprender".

Marie Curie

Dedicada a:

Mi querida madre Rosa Gelves Jaimes, por ser el pilar fundamental de

todo lo que soy, en toda mi educación, tanto académica como de la vida y por su

incondicional apoyo y cariño.

Agradecimientos

Un sincero agradecimiento:

- Al Dr. Hector Fabio Cortes por asesorarme y permitir ser participe en su grupo de investigación. Además, muchas gracias por compartir sus conocimientos y ayudarme a crecer en este mundo de la química computacional.
- A todas las personas que, con sus palabras, me brindaron ánimo y apoyo durante todo este proceso.

Tabla de Contenido

Pá	ág.
Resumen	12
1. Introducción	13
2. Planteamiento del Problema	16
3. Objetivos	17
3.1. Objetivo general	17
3.2. Objetivos específicos	17
4. Justificación	18
5. Marco Teórico	19
5.1. Derivados de la N-fenilmaleimidas	19
5.2. Teoría de los funcionales de la densidad (DFT)	21
5.3. Métodos de la Teoría del funcional de la densidad (DFT)	21
5.3.1. Funcional hibrido B3LYP	23
5.3.2. Funcional M06-2X	25
5.4. Descriptores de reactividad	27
5.4.1. Descriptores globales de reactividad	27
5.5. Potencial electrostático molecular (MEP)	29
6. Metodología	30
7. Resultados y análisis	31
7.1. Comparación de valores experimentales y calculados de los derivados de las	N-
fenilmaleimidas sustituidas	31
7.2. Análisis vibracional de la N-fenilmaleimida	35
7.3. Análisis de orbitales y descriptores globales	40
7.4. Potencial electrostático	49
7.5. Cargas NBO	52
8. Conclusiones	56
9. Recomendaciones	57
10. Referencias Bibliográficas	58
11. Anexos	63

Lista de Tablas

Pág.
Tabla 1 . Errores de los parámetros estructurales de la N-fenilmaleimida. 31
Tabla 2. Errores promedio de los parámetros estructurales. 34
Tabla 3. Errores de las frecuencias vibracionales calculadas y frecuencias corregidas con el factor
de escala de frecuencia vibracional vs experimental para la N-fenilmaleimida y algunos de sus
derivados
Tabla 4. Descriptores Globales de los diferentes compuestos derivados de la N-fenilmaleimida
con los funcionales B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p) en fase gas y fase solvente.
Tabla 5. Carga electroestática total en el grupo de la maleimida y fenilo de la N-fenilmaleimida y
sus derivados en fase gas y medio solvente por el método de B3LYP/6-311+G(d,p) y M06-2X/6-
311+G(d,p)

Lista de Figuras

Pág.
Figura 1. Fórmula estructural de una maleimida13
Figura 2. Reacción de formación de la N-fenilmaleimida14
Figura 3. Activación por resonancia de N-fenilmaleimidas14
Figura 4. <i>p</i> -nitrofenilmaleimida19
Figura 5. N-(3-nitrofenil)maleimida
Figura 6. 4-Carboxyphenylmaleimide 20
Figura 7. N-(4-fluorofenil)maleimida
Figura 8. Estructura optimizada de la N-fenilmaleimida en fase gas por el método B3LYP/6-
311+G(d,p)
Figura 9. Orbitales Moleculares LUMO de la N-fenilmaleimida y algunos derivados en fase gas
y medio solvente acetona por el método B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p) 42
Figura 10. Orbitales Moleculares HOMO de la N-fenilmaleimida y algunos derivados en fase gas
y medio solvente acetona por el método B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p) 45
Figura 11. Potencial electrostático de la N-fenilmaleimida y algunos derivados en fase gas y medio
solvente por el método B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p)
Figura 12. Distribución de carga atómica NBO de la N-fenilmaleimida y algunos de sus derivados
en fase gas y medio solvente por el método de B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p).

Lista de anexos

Pág.
Anexo 1. Estructura optimizada de la para-carboxifenilmaleimida en fase gas por el método
B3LYP/6-311+G(d,p)
Anexo 2. Errores de los parámetros estructurales de la <i>para</i> -carboxifenilmaleimida
Anexo 3. Estructura optimizada de la para-fluorfenilmaleimida en fase gas por el método
B3LYP/6-311+G(d,p)
Anexo 4. Errores de los parámetros estructurales de la para-fluorfenilmaleimida
Anexo 5. Estructura optimizada de la orto-metoxifenilmaleimida en fase gas por el método
B3LYP/6-311+G(d,p)67
Anexo 6. Errores de los parámetros estructurales de la <i>orto</i> -metoxifenilmaleimida
Anexo 7. Estructura optimizada de la para-metoxifenilmaleimida en fase gas por el método
B3LYP/6-311+G(d,p)
Anexo 8. Errores de los parámetros estructurales de la <i>para</i> -metoxifenilmaleimida
Anexo 9. Estructura optimizada de la meta-nitrofenilmaleimida en fase gas por el método

Anexo 11. Estructura optimizada de la para-nitrofenilmaleimida en fase gas por el método Anexo 12. Errores promedio de los parámetros estructurales de la para-nitrofenilmaleimida, Anexo 13. Errores de los parámetros estructurales de la para-nitrofenilmaleimida, CCDC 226980.

Anexo 14. Espectro Infrarrojo de la estructura optimizada de la N-fenilmaleimida en fase gas por el método B3LYP/6-311+G(d,p)......77 Anexo 15. Espectro Infrarrojo de la estructura optimizada de la N-fenilmaleimida en solvente por Anexo 16. Espectro Infrarrojo de la estructura optimizada de la N-fenilmaleimida en fase gas por Anexo 17. Espectro Infrarrojo de la estructura optimizada de la N-fenilmaleimida en solvente por

Anexo 18. Espectro Infrarrojo de la estructura optimizada de la <i>para</i> -aminofenilmaleimida en fase
gas por el método B3LYP/6-311+G(d,p)
Anexo 19. Espectro Infrarrojo de la estructura optimizada de la para-aminofenilmaleimida en
solvente por el método B3LYP/6-311+G(d,p)
Anexo 20. Espectro Infrarrojo de la estructura optimizada de la <i>para</i> -aminofenilmaleimida en fase
gas por el método M06-2X/6-311+G(d,p)
Anexo 21. Espectro Infrarrojo de la estructura optimizada de la para-aminofenilmaleimida en
solvente por el método M06-2X/6-311+G(d,p)
Anexo 22. Espectro Infrarrojo de la estructura optimizada de la para-metoxifenilmaleimida en
fase gas por el método B3LYP/6-311+G(d,p)
Anexo 23. Espectro Infrarrojo de la estructura optimizada de la para-metoxifenilmaleimida en
solvente por el método B3LYP/6-311+G(d,p)
Anexo 24. Espectro Infrarrojo de la estructura optimizada de la para-metoxifenilmaleimida en
fase gas por el método M06-2X/6-311+G(d,p)
Anexo 25. Espectro Infrarrojo de la estructura optimizada de la para-metoxifenilmaleimida en
solvente por el método M06-2X/6-311+G(d,p)
Anexo 26. Espectro Infrarrojo de la estructura optimizada de la <i>para</i> -nitrofenilmaleimida en fase
gas por el método B3LYP/6-311+G(d,p)
Anexo 27. Espectro Infrarrojo de la estructura optimizada de la para-nitrofenilmaleimida en
solvente por el método B3LYP/6-311+G(d,p)
Anexo 28. Espectro Infrarrojo de la estructura optimizada de la <i>para</i> -nitrofenilmaleimida en fase
gas por el método M06-2X/6-311+G(d,p)
Anexo 29. Espectro Infrarrojo de la estructura optimizada de la para-nitrofenilmaleimida en
solvente por el método M06-2X/6-311+G(d,p)
Anexo 30. Orbitales Moleculares LUMO de la N-fenilmaleimida y sus derivados
Anexo 31. Orbitales Moleculares HOMO de la N-fenilmaleimida y sus derivados
Anexo 32. Potencial electrostático de la N-fenilmaleimida y sus derivados en fase gas y medio
solvente por el método de B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p)
Anexo 33. Distribución de carga atómica NBO de la N-fenilmaleimida y sus derivados en fase gas
y medio solvente por el método de B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p), átomos
coloreado por carga

Resumen

En el presente trabajo se estudiaron las propiedades estructurales, electrónicas y energéticas de los diferentes isómeros en posición orto, meta y para de las N-nitrofenilmaleimidas, N-N-fluorfenilmaleimidas, carboxifenilmalemidas, N-metoxifenilmaleimidas Nv aminofenilmaleimidas con respecto al anillo de maleimida, con la finalidad de evaluar su reactividad química al estar disueltas en acetona. La investigación se realizó mediante cálculos de optimización de geometría de los funcionales de la densidad B3LYP y M06-2X en conjunto con la base gaussiana 6-311+G(d,p). Luego de optimizar las moléculas, se determinaron los parámetros estructurales y frecuencias vibracionales de los isómeros de N-fenilmaleimidas (NFM) previamente seleccionados, los cuales concuerdan razonablemente con datos experimentales. Además, se utilizó las energías de las orbitales moleculares fronteras (FMO's) para estimar los descriptores de reactividad global como: potencial químico (μ), dureza (η), blandura (S), electrofilicidad (ω), hiperdureza (γ) y función de respuesta de la electrofilicidad (μ^+). Adicionalmente, se analizó los potenciales electrostáticos (MPE's) y la población electrónica sobre los átomos (cargas NBO) de los diferentes derivados de la N-fenilmaleimida, evaluando sus variaciones con respecto a la posición y el tipo de sustituyente tomando como referente a la Nfenilmaleimida sin sustituir en fase gas y medio solvente (acetona). Cabe resaltar, que el derivado de la N-fenilmaleimida con el mayor valor de electrofilicidad (ω) y probabilidad de interactuar con especies nucleofílicas corresponde a la para-nitrofenilmaleimida por los dos métodos en fase gas. Sin embargo, en medio solvente cambian las moléculas, siendo la orto-aminofenilmaleimida y orto-nitrofenilmaleimida en B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p) respectivamente. Por su parte, el ángulo de torsión exhibe una relación con los cambios de las propiedades electrónicas, energéticas y de reactividad de los isómeros de las N-fenilmaleimidas en ambas fases, y con los dos funcionales evaluados.

1. Introducción

Las maleimidas son moléculas de N-imidas cíclicas, cuyo grupo funcional es –CO-N(R)-CO-, donde además de hidrógeno, R corresponde a grupos alquilo o arilo (ver figura 1). Estas se clasifican como N-alquilmaleimidas y N-arilmaleimidas; estos últimos están conformados por dos anillos, un aromático sustituido y otro una imida (Cortes Hernandez & Castro, 2016). Las Narilmaleimidas son de mayor utilidad, baja toxicidad y menos costosas en su síntesis comparada con las N-alifáticas, por este motivo, son más utilizadas. Además, actúan en reacciones de Diels-Alder como dienófilo y reactivo de Michael, por tener en su estructura un carbonilo α - β insaturado. Estas reacciones producen compuestos con actividad biológica para uso medicinal, igualmente ayuda en procesos de fotopolimerización y reacciones de copolimerización por radicales libres debido a sus propiedades fotoquímicas (Valencia, Hernández, & Yépes, 2007).

Por otro lado, se ha demostrado que las N-maleimidas alifáticas son fotoiniciadores de radicales libres copolimerizables, útiles por excitación directa o sensibilizada. No obstante, son más difíciles y costosas de preparar en comparación de las N-maleimidas aromáticas, que presentan ventajas adicionales por dependencia del grupo sustituyente, pueden ser menos tóxicas y con mayor disponibilidad de proveedores comerciales (Miller, Hoyle, Valente, Zubkowski, & Jönsson, 2000).

Figura 1. Fórmula estructural de una maleimida.

Las imidas cíclicas tales como las N-fenilmaleimidas, son un tipo de cetona cíclica α , β insaturada, que contienen un anillo imida y una estructura general -CO-N(R)-CO- que confiere características hidrofóbicas y neutras. Estos compuestos muestran sólidos color amarillo en su mayoría de casos, además se obtienen por reacción de ácidos maleámicos y anhídrido acético en un medio que contenga acetato de sodio como agente catalítico (ver figura 2). Las Nfenilmaleimidas han reportado actividad farmacológica contra agentes antibacterianos, antimicóticos, antinociceptivos, antiespasmódico y antitumoral (Noldin et al., 2011).

Figura 2. Reacción de formación de la N-fenilmaleimida

Asimismo, las N-fenilmaleimidas exhiben una amplia variedad de aplicaciones, dado que su versatilidad se manifiesta porque puede actuar como dienófilo en las reacciones de Diels-Alder o por polimerización del doble enlace mediante su activación por resonancia (ver figura 3). Algunos de sus derivados son intermedios en las reacciones de reticulación de poliimidas, también es un importante copolimero en las clases de resina/fibra de materiales avanzados que se basan en bismaleimidas (Parker, 2006).

Figura 3. Activación por resonancia de N-fenilmaleimidas

A nivel de cálculos teóricos se han evaluado las propiedades estructurales, electrónicas y de reactividad de los derivados de N-fenilmaleimida, utilizando cálculos de la teoría de los funcionales de la densidad, B3LYP/6-311+G(d,p), en fase gas. En el estudio de Cortes & Castro (Cortes Hernandez & Castro, 2016) observaron las diferentes posiciones (*orto, meta y para*), grupos electro-dadores y electro-atractores, que muestran la relación de los efectos de carga sobre las propiedades estructurales, energéticas y de reactividad de los compuestos. De hecho, se encontró que las estructuras del estado basal exhiben una correlación entre el ángulo de torsión de los anillos de la fenilmaleimida con las propiedades estudiadas, este parámetro estructural revela dependencia con el tipo y posición del grupo seleccionado. Asimismo, se observaron en las N-fenilmaleimidas neutras que el ataque electrofílico procede principalmente a través del anillo

fenilo, mientras que el ataque nucleofílico procede en su mayor parte por el anillo de imida. Los comportamientos son potencializados en el catión y anión, respectivamente (Cortes Hernandez & Castro, 2016). Cabe resaltar que en la actualidad no se han reportado cálculos DFT en medio solvente para este tipo de sistemas.

En el presente trabajo de grado se evaluó la N-fenilmaleimida y sus derivados en posición *orto*, *meta* y *para*, sustituida por grupos electro-atractores como nitro y carboxi, grupo atractor débil como fluor y grupo donadores como amino y metoxi, por métodos de la teoría de la teoría de los funcionales de la densidad B3LYP/3-611+G(d,p) y M06-2X/3-611+G (d,p) en fase gas y medio solvente con acetona. En el estudio se determinaron parámetros estructurales, vibracionales, potencial electroestático, cargas de Orbitales Naturales de Enlace (NBO) y descriptores globales de la reactividad como el potencial químico (μ), dureza (η), suavidad (*S*), electrofilicidad (ω), hiperdureza (γ) y función de respuesta de la electrofilicidad (μ^+), que contribuyen al análisis de los isómeros de la N-fenilmaleimida donde se relaciona el tipo de sustituyente, parámetros estructurales y propiedades moleculares que describen su reactividad a nivel teórico.

2. Planteamiento del Problema

Los derivados de N-fenilmaleimidas son unidades moleculares utilizadas para la síntesis de nuevos compuestos orgánicos, derivados farmacológicos, materiales innovadores para procesos de fotopolimerización y sorción de metales, además, por su doble enlace en el anillo de maleimida actúa como dienófilo en las reacciones de Diels-Alder. Actualmente, se han obtenido cálculos teóricos de las N-fenilmaleimidas en fase gaseosa, los cuales son comparables con lo reportado a nivel experimental, no obstante, hacen falta estudios de estas moléculas en medio solvente. El estudio de las propiedades en medio solvente es importante porque la gran mayoría de reacciones en el área de la química y bioquímica tienen lugar en fase liquida, es por ello que las estructuras de estudio al entrar en interacción con el disolvente podrían presentar cambios de reactividad, propiedades moleculares y estructurales. En consecuencia, es importante revisar los cambios que ocurre en los derivados de la N-fenilmaleimida cuando se estudian en un modelo continúo polarizado. Asimismo, como lo plantea Rueda Ramírez (Rueda Ramírez, 2013), *uno de los retos de la química computacional es conseguir la comprensión y predicción de los fenómenos en medio solventes con el mismo éxito que para los fenómenos en fase gas.* De lo anterior, surge la siguiente pregunta de investigación:

¿Existe variaciones en la reactividad, propiedades estructurales, electrónicas y energéticas de los isómeros de la N-fenilmaleimidas en medio solvente al compararlas con la fase gas por cálculos de la teoría de los funcional de la densidad (DFT)?

3. Objetivos

3.1. Objetivo general

Estudiar mediante cálculos de DFT, las propiedades estructurales, electrónicas, energéticas y de reactividad química de las N-fenilmaleimidas sustituidas en un medio solvente acetona.

3.2. Objetivos específicos

- Comparar los parámetros estructurales de las N-fenilmaleimidas sustituidas optimizadas en medio solvente acetona con los reportados a nivel experimental y en cálculos en fase gas.
- Determinar la relación de los descriptores de reactividad globales de las N-fenilmaleimidas sustituidas en medio solvente acetona con el sistema sin sustituir.
- Analizar los descriptores de reactividad de las N-fenilmaleimidas en medio solvente acetona para predecir las propiedades de estos sistemas en interacciones con otras moléculas derivadas de la N-fenilmaleimidas.

4. Justificación

Las N-fenilmaleimidas son utilizadas como fotoiniciadores de radicales libres en procesos de copolimerización, presentan ventajas adicionales por dependencia del grupo sustituyente, pueden ser menos tóxicas y con mayor disponibilidad de proveedores comerciales. También, han reportado actividad farmacológica contra agentes antibacterianos, antimicóticos, antinociceptivos, antiespasmódico y antitumoral. Asimismo, las N-fenilmaleimidas exhiben una amplia variedad de aplicaciones, dado que su versatilidad se manifiesta porque puede actuar como dienófilo en las reacciones de Diels-Alder, lo cual lo hace muy prometedor en la búsqueda de nuevas síntesis de compuestos orgánicos. Además, algunos de sus derivados son intermediarios en las reacciones de reticulación de poliimidas (Miller et al., 2000; Noldin et al., 2011; Parker, 2006; Valencia et al., 2007).

Diferentes autores han estudiado los derivados de las N-fenilmaleimidas mediante cálculos teóricos, dando explicación a algunos mecanismos de reacción de las N-fenilmaleimidas. De aquí la importancia del uso de bases gaussianas como 6-311+G(d, p) con los funcionales B3LYP y M06-2X. Un ejemplo, con el funcional B3LYP es el análisis de los procesos de cicloadición de Diels-Alder y la enantioselectividad de la adición de Michael. La optimización de moléculas a través de métodos basados en DFT ayuda a determinar los descriptores de reactividad global y local entre ellos parámetros estructurales, electrónicos y energéticos, que logran predecir las propiedades de estos sistemas en interacciones con otras moléculas.

En el desarrollo del proyecto se realizó la optimización y cálculos teóricos de las Nfenilmaleimida sustituidas por los métodos de B3LYP y M06-2X con base gaussiana 6-311+G(d, p). Los anteriores cálculos buscan demostrar los cambios de las propiedades estructurales, electrónicas, energéticas y reactividad química de la N-fenilmaleimida sustituida en un medio solvente (acetona). De hecho, el estudio permite comparar con los cálculos en fase gas las variaciones más significativas a nivel molecular de las N-fenilmaleimidas sustituidas, proporcionando explicaciones de fenómenos moleculares a nivel experimental de estos sistemas.

5. Marco Teórico

5.1. Derivados de la N-fenilmaleimidas

Las estructuras cristalinas permiten verificar que el método utilizado en cálculos teóricos reproduzca la estructura covalente y no covalente de las moléculas a estudiar. A continuación, se menciona el resultado de algunos trabajos cristalinos (importantes en la comparación de parámetros estructurales covalentes que ayudan a calibrar el funcional) para los derivados de las N-fenilmaleimidas que son importantes en la discusión de la presente investigación:

• **N-(4-nitrofenilmaleimida).** La p-nitrofenilmaleimida (figura 4) tiene un grupo espacial C2/c, con longitudes y ángulos de celda: a=10.535 Å, b=11.624 Å, c=8.148 Å, $\alpha=90^{\circ}$, $\beta=109.69^{\circ}$, $\gamma=90^{\circ}$. La molécula presenta una simetría de rotación cristalográfica doble, además, el ángulo diedro entre los planos del benceno y el anillo de imida es 42.98° (Moreno-Fuquen, Valencia, Abonia, Kennedy, & Graham, 2003).

Figura 4. p-nitrofenilmaleimida

N-(3-Nitrofenil)maleimida. La m-nitrofenilmaleimida (figura 5) presenta ángulos diedros entre los planos del benceno y el anillo de imida en 56.2 y 52.9°. La unidad cristalina contiene dos moléculas independientes por unidad asimétrica (Moreno-Fuquen, Valencia, Pardo, D'Vries, & Kennedy, 2006b).

Figura 5. N-(3-nitrofenil)maleimida

N-(4-carboxifenilmaleimida). La p-carboxifenilmaleimida (figura 6), presenta un grupo espacial P2₁2₁2₁, con ángulos y lados de la celda: *a*=7.3326 Å, *b*=9.8832 Å, *c*=13.3922 Å, *α*= β=γ=90°. La molécula evidencia un ángulo diedro de 45,80° entre los planos del benceno y anillo de maleimida. La presencia de enlaces de hidrogeno O-H•••O e interacciones débiles C-H•••O permite la formación de anillos conectados de forma paralela en el plano (Moreno-Fuquen, Tenorio, Ellena, De Simone, & Ribeiro, 2011).

Figura 6. 4-Carboxyphenylmaleimide

N-(4-fluorofenil)maleimida. La p-fluorofenilmaleimida (figura 7), evidencia ángulos y lados de la celda en su estructura cristalina: *a*=10.6834 (10) Å, *b*=3.7658 (3) Å, *c*=20.6001 (16) Å, *α*=90°, *β*=93.708 (3)°, *γ*=90° (Schwarzer & Weber, 2008).

Figura 7. N-(4-fluorofenil)maleimida

5.2. Teoría de los funcionales de la densidad (DFT)

La teoría de los funcionales de la densidad o DFT es un método muy utilizado en la química computacional, cuyo principio es formular el problema mecanocuántico de la estructura electrónica en términos de una magnitud observable (la densidad electrónica, ρ), a diferencia de la función de onda polielectrónica independiente del tiempo Ψ . Al aplicar este método la energía electrónica del sistema pasa a ser un funcional de la densidad, E[ρ], donde su implementación conduce a las ecuaciones de Kohn-Sham (Kohn & Sham, 1965), muy semejantes a las ecuaciones Hartree-Fock (Fock, 1930). De hecho, en la práctica, un cálculo DFT es similar a un cálculo de orbitales moleculares de Hartree-Fock (Suárez, 2012).

En la actualidad existe un alto número de métodos DFT basados en el componente de la energía denominado funcional de correlación-intercambio, $E_{XC}[\rho]$, cuya forma analítica es desconocida. Por eso, existen tantos funcionales DFT como aproximaciones a $E_{XC}[\rho]$ han sido propuestas. Cabe destacar que muchos métodos DFT contienen parámetros de ajuste a datos experimentales los cuales los hacen en cierto modo semiempíricos (Suárez, 2012).

5.3. Métodos de la Teoría del funcional de la densidad (DFT)

En la actualidad los funcionales de la densidad se encuentran clasificados según el funcional de intercambio y correlación, cuyas aproximaciones son:

Aproximación de la Densidad Local y Aproximación de la Densidad Local de Spin (LDA y LSDA): Funcionales que sólo dependen de la densidad (ρ, densidad local) o de la densidad de espín (ρα, ρβ, densidad local del espín). El LDA, constituye el enfoque más simple para representar la función de correlación e intercambio, y supone implícitamente que la energía de correlación de intercambio en cualquier punto en el espacio es una función de la densidad de electrones y puede representarse como un gas homogéneo de electrones de la misma densidad. La aproximación de densidad de espín local (LSDA), constituye una aplicación más general de LDA, que introduce la dependencia de espín en los funcionales, esta aproximación es útil

para sistemas con campos magnéticos externos, sistemas polarizados y efectos relativistas (Sousa, Fernandes, & Ramos, 2007).

- Aproximación del gradiente generalizado (GGA): El GGA se caracterizan por incluir en los funcionales de intercambio y correlación la densidad y el gradiente de la densidad electrónica (∇ρα, ∇ρβ) (Tsuneda, 2014). Este funcional ha seguido dos líneas principales, el primero propuesto por Becke de naturaleza empírica, basado en procedimientos numéricos de ajuste de energías de atomización y barreras de reacción, entre ellos se destacan los funcionales de intercambio: Becke88 (B), Perdew-Wang (PW), Perdew-Wang modificado (mPW), densidad de intercambio funcional optimizada de Handy-Cohen [OptX (O)], entre otros. La segunda línea es propuesta por Perdew donde los desarrollos de los funcionales son basados en principios básicos derivados de la mecánica cuántica, entre los funcionales de intercambio y correlación se encuentran: Becke86 (B86), Perdew86 (P), Perdew-Burke-Ernzerhof (PBE) y modificado-Perdew-Burke-Ernzerhof (mPBE), entre otros (Sousa et al., 2007).
- Aproximación del gradiente meta-generalizado (meta-GGA): El meta-GGA utiliza en los funcionales de correlación e intercambio de la densidad, el gradiente de la densidad, y términos relacionados con el laplaciano de la energía cinética (∇²ρ), lo que implica orbitales ocupados de Kohn-Sham (Tsuneda, 2014). Estos métodos representan mejoras significativas en la determinación de propiedades tales como las energías de atomización. Se han desarrollado varios funcionales meta-GGA como: B95, KCIS, TPSS, y VSXC, entre otros (Sousa et al., 2007).
- Aproximación de gradiente generalizado hibrido (H-GGA) y hibrido meta-GGA (mH-GGA) o hyper-GGA: Estos funcionales combinan la correlación de intercambio de un método de GGA convencional con un porcentaje de intercambio exacto de Hartree-Fock (Sousa et al., 2007), explícitamente dependen de los orbitales ocupados. Los funcionales híbridos han permitido una mejora significativa sobre los GGA para muchas propiedades moleculares. Para esto, se han convertido en una opción muy popular en química cuántica y ahora se usan ampliamente. Algunos de estos funcionales son: B3LYP, B3P86, B3PW91, B97-1, B97-2, B98, BH y HLYP, MPW1K, mPW3LYP, O3LYP, X3LYP, entre otros (Sousa et al., 2007).

Los métodos híbridos meta-GGA (mH-GGA) o hyper-GGA representan una nueva clase de funcionales de densidad, basados en un concepto similar a los funcionales m-GGA. La diferencia radica en el hecho de que parten de m-GGA en lugar de GGA. Por lo tanto, estos métodos dependen del intercambio de Hartree-Fock, la densidad de electrones y su gradiente, y la densidad de energía cinética. Algunos de estos funcionales de correlación e intercambio son: B1B95, BB1K, MPW1B95, MPW1KCIS, PBE1KCIS, TPSS1KCIS, TPSSh, entre otros. Estos métodos representan una mejora sobre los formalismos previos, particularmente en la determinación de las alturas de barrera y las energías de atomización (Sousa et al., 2007). Un componente fundamental para los funcionales hyper-GGA es la energía de la densidad exacta de intercambio, una totalmente no local de los orbitales ocupados de Kohn-Sham. Entre la cual se destaca la familia de los funcionales M06 (funcionales de Thrular):

- M06-L: funcional local con 0% de energía de intercambio de HF.
- M06: funcional híbrido con 27% de energía de intercambio de HF.
- M06-2X: funcional hibrido con 54% de energía de intercambio de HF.
- Intercambio exacto y correlación parcial exacta, Aproximación de fase aleatoria o RPA: Estos funcionales incluyen términos de dispersión de largo alcance del tipo Van der-Waals. Además, incluyen una dependencia explícita de los orbitales desocupados y representa una función no local (Royal Society of Chemistry, 2003). Existen dos enfoques son utilizados: interpolación de la fuerza de interacción o aproximación de fase aleatoria más correcciones (RPA). Esta ultima utiliza los orbitales de Kohn-Sham y no HF, donde trata exactamente la correlación de largo alcance y, por lo tanto, es compatible con el intercambio exacto. El RPA proporciona la mayor parte de la interacción de van der Waals entre dos densidades separadas. Sin embargo, RPA falla en la correlación de corto alcance (Perdew, 2001).

5.3.1. Funcional hibrido B3LYP

Entre los métodos de la teoría de los funcionales de la densidad se resalta el B3LYP, donde el B3 indica la correlación de intercambio de Becke 88 con 3 parámetros que mezcla la correlación

de intercambio de exacto de Hartree-Fock y el termino LYP es la correlación funcional de Lee, Yang y Parr que recupera la correlación dinámica de electrones. El método B3LYP pertenece a los métodos híbridos y contiene el 20% de intercambio exacto de Hartree-Fock, y se mezcla con cierta cantidad de correlación obtenida por otros funcionales (Becke, 1993).

En el esquema funcional híbrido B3LYP, el enfoque no local de Hartree-Fock (HF) se mezcla con la energía funcional del GGA. Aquí, la energía de correlación corregida por gradiente de Perdew-Wang, que se utilizó en el trabajo original de Becke, se reemplaza por la energía de correlación de Lee-Yang-Parr. La función de energía de intercambio y correlación se puede escribir como lo muestra la ecuación 1:

$$E_{xc} = (1 - A)(E_x^{LDA} + BE_x^{Becke}) + AE_x^{HF} + (1 - C)E_c^{VWN} + CE_c^{LYP}$$
(1)

En el funcional B3LYP se utiliza la densidad local funcional de Vosko, Wilk y Nusair para E_x^{LDA} y E_c^{VWN} . E_x^{HF} es la energía de intercambio de HF no local exacta. E_x^{Becke} y E_c^{LYP} son las correcciones de gradiente de Becke y Lee-Yang-Parr para el intercambio local y las energías de correlación, respectivamente. Los coeficientes para la energía de correlación con gradiente, la energía de intercambio local y los términos de intercambio de HF exactos se determinaron mediante un ajuste lineal por mínimos cuadrados de las propiedades termoquímicas de algunos átomos y moléculas en los experimentos. Los valores óptimos para los parámetros *A* (porcentaje de intercambio de Fock), *B* (peso de intercambio de la parte no local del intercambio) y *C* (peso de la correlación no local) son 0.20, 0.9 y 0.81, respectivamente (Chen & Yang, 2006). De igual manera, el funcional B3LYP es un método popular en química, aplicándose en cálculos con átomos de carbono (Adewale & Banjo, 2013) e hidrocarburos insaturados (Zhang, Wu, & Xu, 2010). Sin embargo, pierde precisión cuando el tamaño es mayor, subestima las alturas de la barrera de reacción, produce entalpías de disociación de enlaces demasiado bajas y estima energías de Van der Waals adecuadas (Zhang et al., 2010).

5.3.2. Funcional M06-2X

La familia de los funcionales M06 proporciona actualmente la más alta precisión con una amplia aplicabilidad para la química (Zhang et al., 2010). Los términos locales de los funcionales M06 y M06-2X dependen de tres variables: densidad de giro (ρ_{σ}), gradiente de densidad de giro reducido (x_{σ} , ecuación 2) y densidad de energía cinética de giro (τ_{σ} , ecuación 3) (Zhao & Truhlar, 2008b).

$$x_{\sigma} = \frac{|\nabla \rho_{\sigma}|}{\rho_{\sigma}^{4/3}}, \ \sigma = \alpha, \beta$$
(2)
$$\tau_{\sigma} = \frac{1}{2} \sum_{i}^{occup} |\nabla \Psi_{i\sigma}|^{2}$$
(3)

El funcional M06 incluye términos basados en el funcional VSXC (Correlación de intercambio dependiente de la energía cinética de Voorhis y Scuseria), y estos términos implican una variable de trabajo z_{σ} (ecuación 4) y dos funciones de trabajo γ y *h* (ecuaciones 5 y 6):

$$z_{\sigma} = \frac{2\tau_{\sigma}}{\rho_{\sigma}^{5/3}} - C_F, \quad C_F = \frac{3}{5} (6\pi^2)^{2/3}$$
(4)

$$\gamma(x_{\sigma} - z_{\sigma}) = 1 + \alpha(x_{\sigma}^2 + z_{\sigma})$$
(5)
$$h(x_{\sigma} - z_{\sigma}) = \left(\frac{d_0}{\gamma(x_{\sigma}, z_{\sigma})} + \frac{d_1 x_{\sigma}^2 + d_2 z_{\sigma}}{\gamma_{\sigma}^2(x_{\sigma}, z_{\sigma})} + \frac{d_3 x_{\sigma}^4 + d_4 x_{\sigma}^2 z_{\sigma} + d_5 z_{\sigma}^2}{\gamma_{\sigma}^3(x_{\sigma}, z_{\sigma})}\right)$$
(6)

 σ denota el componente a lo largo de un eje arbitrario fijo al espacio del impulso angular de giro de electrones. La ecuación general para el M06 se muestra en la ecuación 7.

$$E_X^{M06} = \sum_{\sigma} \int dr \left[F_{X_{\sigma}}^{PBE} \left(\rho_{\sigma}, \nabla \rho_{\sigma} \right) f(\omega_{\sigma}) + \varepsilon_{X_{\sigma}}^{LSDA} h_x(x_{\sigma}, z_{\sigma}) \right]$$
(7)

Donde $F_{X_{\sigma}}^{PBE}$ ($\rho_{\sigma}, \nabla \rho_{\sigma}$) es la densidad de energía de intercambio del funcional PBE (que es en sí misma una versión modificada del B86), $\varepsilon_{X_{\sigma}}^{LSDA}$ es la aproximación de la densidad de giro local para el intercambio. La energía de correlación de intercambio híbrida se puede escribir de la siguiente manera (ecuación 8):

$$E_{XC}^{hyb} = \frac{X}{100} E_X^{HF} + \left(1 - \frac{X}{100}\right) E_X^{DFT} + E_C^{DFT}$$
(8)

En donde E_{XC}^{hyb} es la energía de intercambio no local de Hartree – Fock (HF), X es el porcentaje del intercambio de Hartree – Fock en el funcional híbrido, E_X^{DFT} es la energía de intercambio de DFT local y E_C^{DFT} es la energía de correlación de DFT local. X se optimiza junto con los parámetros en los nuevos funcionales de intercambio de meta y correlación.

El M06-2X, es un funcional clasificado como un hibrido meta-GGA, es decir, un híbrido con un 54% de intercambio de Hartree – Fock (Zhao & Truhlar, 2008a) que se impone sobre las funciones estándar de intercambio-correlación (*xc*) en términos de tratamiento de las fuerzas de dispersión de electrones. El funcional calcula barreras de energía más confiables en comparación con las obtenidas con el método B3LYP (Monajemi, Mohd. Zain, Ishida, & Wan Abdullah, 2018).

El M06-2X es un funcional de Truhlar que determina mejor las propiedades por el tratamiento de la energía de correlación de mediano alcance, que incluye interacciones de dispersión de superposición, es decir, interacciones atractivas similares a la dispersión en geometrías donde la superposición orbital (y, por tanto, la repulsión de intercambio) de los subsistemas que interactúan no puede ser despreciada (Zhao & Truhlar, 2011). Este funcional es recomendado para aplicaciones que involucren la termoquímica, la cinética, las interacciones no covalentes y las energías de excitación electrónica de grupos principales para los estados de valencia y Rydberg (Zhao & Truhlar, 2008b), pero no es adecuado para para describir la química de los metales de transición (Zhao & Truhlar, 2011)

De otro lado, la solvatación en química computacional puede ser calculada en base a modelos simplificados eficientes que pueden tratar implícitamente las diversas influencias físicas de las moléculas de disolvente en el soluto. Estas influencias a menudo se clasifican fenomenológicamente como electrostáticas (incluida la inducción), cavitación, repulsión de intercambio y atracción de dispersión. Por ejemplo, las interacciones electrostáticas en un soluto a partir del solvente a menudo se tratan con modelos dieléctricos continuos. Estos modelos tienen la gran ventaja de que la respuesta del dieléctrico continuo puede formularse para representar la

respuesta de un solvente promediado estadísticamente, de modo que se puedan obtener resultados significativos a partir de un solo cálculo (Cramer, 2004).

5.4. Descriptores de reactividad

Dentro de la teoría de los funcionales de la densidad existe un enfoque en la reactividad química, en el que se intenta extraer de la densidad electrónica conceptos relevantes y principios, que nos ayudan a comprender y predecir el comportamiento químico de una molécula (Geerlings, De Proft, & Langenaeker, 2003). Por lo tanto, dentro de los términos de la reactividad cabe mencionar la electronegatividad, potencial químico, la dureza, función de Fukui, función respuesta de electrofilicidad, como conceptos que han contribuido al entendimiento de la reactividad química y selectividad de sitio de diversos sistemas moleculares (Figueredo López, Páez, & Torres, 2017).

5.4.1. Descriptores globales de reactividad

Estos descriptores permiten medir la respuesta global de un sistema a diferentes perturbaciones manteniendo el potencial externo constate (Ruiz, Calvo, Incháustegui, & Pumachagua, 2013). Entre las propiedades electrónicas globales se tiene el potencial químico electrónico (μ), la dureza (η), la suavidad (S) y la electrofilicidad (ω). Por su parte, el potencial químico, μ , que mide la tendencia de los electrones a escapar desde un sistema, en el μ los electrones tienden a fluir de mayor a menor potencial químico hasta que μ se vuelve constante en el espacio (ecuación 9). Asimismo, el potencial químico es igual a menos la electronegatividad; χ , referenciada a la electronegatividad de Mulliken (Geerlings et al., 2003).

$$\mu = -\frac{1}{2}(IP + EA) = -\chi$$
 (9)

Otros descriptores globales son definidos como la dureza química, η (ecuación 10), de un sistema electrónico y su reciproco que se conoce como la suavidad global, *S*. La dureza química evalúa la resistencia de un sistema al cambio en el número de electrones, además también puede ser relacionada con la diferencia de energía (gap) entre los orbitales moleculares desocupado de

más baja energía (LUMO) y ocupado de mayor energía (HOMO) (Figueredo López et al., 2017; Vivas-Reyes & Zapata, 2008) (ecuación 12).

$$\eta = \frac{1}{2}(IP - EA) = \frac{1}{S}$$
 (10)

En muchas aplicaciones numéricas el potencial químico electrónico y la dureza se calculan mediante la energía de ionización (*IP*) y la afinidad electrónica (*EA*), respectivamente. No obstante, las ecuaciones 9 y 10, se pueden calcular en términos de las energías orbitales basadas en la aproximación de diferencias finitas a tres puntos y el teorema de Koopmans:

$$\mu \approx \frac{1}{2} (\varepsilon_{LUMO} + \varepsilon_{HOMO}) \tag{11}$$

$$\eta \approx \frac{1}{2} (\varepsilon_{LUMO} - \varepsilon_{HOMO}) \tag{12}$$

Donde ε_{LUMO} , ε_{HOMO} son las energías de los orbitales LUMO's y HOMO's respectivamente. Otra propiedad global es la híperdureza (γ , ecuación 13) que es una función de respuesta de tercer orden. En particular, se considera que valores positivos grandes de híperdureza corresponden a sistemas moleculares que son altamente estables, mientras que los sistemas más reactivos tenderán a exhibir valores pequeños de γ , cuando se tiene un sistema de referencia en base a isómeros estructurales (Figueredo López et al., 2017).

$$\gamma = \epsilon_{LUMO} - 2(\mathcal{E}_{HOMO}) + \mathcal{E}_{HOMO-1}$$
(13)

Uno de los predictores de reactividad más ampliamente utilizado ha sido el índice de electrofilicidad, ω (ecuación 14), que se define como la energía de estabilización de un sistema electrónico cuando es saturado con electrones provenientes de los alrededores (Figueredo López et al., 2017), es decir, se considera una especie química inmersa en un baño idealizado de electrones, con potencial químico cero (Geerlings et al., 2003). Se define la electrofilicidad como:

$$\omega = \frac{\mu^2}{2\eta} \tag{14}$$

Por lo tanto, valores altos de ω serán característicos para los sistemas moleculares más propensos a interactuar covalentemente con especies nucleofílicas.

5.5. Potencial electrostático molecular (MEP)

El potencial electrostático molecular (MEP) está relacionado con la densidad electrónica y es un descriptor muy útil para comprender los sitios de ataque electrofílico y reacciones nucleofílicas, así como las interacciones de enlace de hidrógeno (Tabbi, Abbaz, Bendjeddou, & Villemin, s. f.). Además, está definido como la energía de interacción entre sistemas en los cuales se desprecian la polarizabilidad y los efectos de rearreglo nuclear con una carga puntual situada en una posición *r* (ecuación 15).

$$V_{(r)} = \sum_{A} \frac{Z_A}{|R_A - r|} - \int \frac{\rho(r')}{|r' - r|} dr'$$
(15)

Donde Z_A es la carga sobre el núcleo *A*, localizada a R_A , $\rho(r)$ es la densidad electrónica funcional de la molécula. El potencial electrostático molecular (MEP) es una herramienta usada en la interpretación de reactividad molecular de especies electrófilas. Un electrófilo tiende a ir a aquellas regiones en las que el potencial $V_{(r)}$ tenga los valores más negativos (mínimo local) (Vivas-Reyes & Zapata, 2008). A nivel grafico el potencial disminuye en el orden azul > verde > amarillo > naranja > rojo. Las regiones electrofílicas están representadas por rojo, las nucleófilas por azul y verde indican un potencial electrostático neutro (Abbaz, Bendjeddou, & Villemin, 2018).

6. Metodología

Este estudio se realizó por medio del funcional de la densidad B3LYP (Becke, 1993) y M06-2X (Zhao & Truhlar, 2008b) en conjunto con la base gaussiana 6-311+G(d,p) (McLean & Chandler, 1980). El efecto solvente se propuso con el modelo continuo polarizable (PCM) utilizando la constante dieléctrica del medio. Se utilizó el paquete de química cuántica computacional Gaussian 09 (software comercial que será utilizado bajo el permiso expuesto en la carta de intención de la red de química computacional con la UNAM-México a cargo del Dr. Francisco Miguel de Jesús Castro Martinez) para todos los cálculos. Un estricto criterio de convergencia se usó para la minimización de la energía total hasta 10⁻⁸ unidades atómicas, sin imponer restricciones de simetría para las estructuras de N-nitrofenilmaleimidas, Ncarboxifenilmalemidas, N-fluorfenilmaleimidas, N-metoxifenilmaleimidas V Naminofenilmaleimidas en posición orto, meta y para. Se estimó las frecuencias vibracionales con la aproximación armónica en las geometrías optimizadas. La evolución de la geometría durante el proceso de optimización, frecuencias vibracionales, orbitales moleculares y potenciales electrostáticos se analizó usando el paquete GaussView (software comercial que se utilizó bajo el permiso expuesto en la carta de intención de la red de química computacional con la UNAM-México a cargo del Dr. Francisco Miguel de Jesús Castro Martinez) o Avogadro (software libre). Una vez optimizadas las estructuras, se utilizó la energía de los orbitales moleculares, que se usó para el método de diferencias finitas en los descriptores de reactividad global (μ , η , S, ω). A partir de la comparación y el análisis de las propiedades estructurales, electrónicas y energéticas resultantes, se describieron las características y condiciones que el presente estudio identifica para los derivados de la N-fenilmaleimida como su reactividad al ser optimizado en un medio solvente como la acetona.

7. Resultados y análisis

7.1. Comparación de valores experimentales y calculados de los derivados de las Nfenilmaleimidas sustituidas

Las longitudes de enlace, ángulos de enlace y ángulo de torsión calculados con los métodos B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p) en fase gas y solvente comparados con los valores experimentales se reportan en los anexos 1 a 13 para los derivados de N-fenilmaleimidas. Sin embargo, la tabla 1 y 2 muestran los porcentajes de error y de error promedio de los parámetros estructurales de la N-fenilmaleimida y de algunos de sus derivados en posición orto, meta y para.

Figura 8. Estructura optimizada de la N-fenilmaleimida en fase gas por el método B3LYP/6-311+G(d,p).

		Método				
Parámetro	B3LYP/6-3	B3LYP/6-311+G(d,p)		M06-2X/6-311+G(d,p)		
	fase gas	solvente	fase gas	solvente	Experimental	
Longitud de enlace	e (Å)					
C1-C2	1.396 (0.8 %)	1.395 (0.7 %)	1.392 (0.5 %)	1.392 (0.5 %)	1.385	
C1-C3	1.396 (0.6 %)	1.395 (0.6 %)	1.392 (0.4 %)	1.392 (0.3 %)	1.387	
C2-C4	1.392 (0.7 %)	1.394 (0.8 %)	1.389 (0.5 %)	1.390 (0.5 %)	1.383	
C3-C6	1.392 (0.5 %)	1.394 (0.6 %)	1.389 (0.3 %)	1.390 (0.4 %)	1.385	

1.395 (0.9 %)

1.395 (1.0 %)

1.391 (0.6 %)

1.391 (0.7 %)

1.392 (0.7 %)

1.392 (0.8 %)

 Tabla 1. Errores de los parámetros estructurales de la N-fenilmaleimida

1.394 (0.8 %)

1.394 (0.9 %)

C4-C8

C6-C8

1.383

1.381

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						
fase gas solvente fase gas solvente Experimental C2-H5 1.082 (16.2 %) 1.083 (16.5 %) 1.082 (16.2 %) 1.083 (16.5 %) 1.083 (16.5 %) 0.930 C4-H9 1.084 (16.5 %) 1.083 (16.5 %) 1.083 (16.5 %) 1.083 (16.5 %) 0.930 C6-H10 1.084 (16.5 %) 1.084 (16.5 %) 1.083 (16.5 %) 1.083 (16.5 %) 0.930 C6-H11 1.084 (16.5 %) 1.084 (16.5 %) 1.083 (16.5 %) 1.083 (16.5 %) 0.930 N20-C1 1.429 (0.4 %) 1.431 (0.2 %) 1.424 (0.7 %) 1.434 N20-C19 1.410 (0.6 %) 1.405 (0.2 %) 1.404 (0.3 %) 1.400 (0.0 %) 1.402 C14-C15 1.499 (0.8 %) 1.498 (0.7 %) 1.502 (1.0 %) 1.327 (0.6 %) 1.331 C15-C17 1.331 (0.9 %) 1.498 (0.4 %) 1.302 (0.6 %) 1.327 (0.6 %) 1.327 (0.6 %) 1.327 C15-C17 1.331 (0.9 %) 1.498 (0.4 %) 1.080 (16.1 %) 10.80 (16.1 %) 1.98 (0.8 %) 1.202 (0.4 %) 1.207 C15-C17 1.331 (0.9 %)	Parámetro	B3LYP/6-311+G(d.p)		M06-2X/6-3	311+G(d,p)	
		fase gas	solvente	fase gas	solvente	Experimental
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-H5	1.082 (16.2 %)	1.083 (16.3 %)	1.082 (16.2 %)	1.083 (16.3 %)	0.931
$ \begin{array}{c} \text{C4-H9} & 1.084 \left(16.5 \ \%\right) \ 1.083 \left(16.5 \ \%\right) \ 1.083 \left(16.5 \ \%\right) \ 1.083 \left(16.5 \ \%\right) \ 0.930 \\ \text{C6-H10} & 1.084 \left(16.5 \ \%\right) \ 1.084 \left(16.5 \ \%\right) \ 1.083 \left(16.5 \ \%\right) \ 1.083 \left(16.5 \ \%\right) \ 0.930 \\ \text{C6-H11} & 1.084 \left(16.5 \ \%\right) \ 1.084 \left(16.5 \ \%\right) \ 1.083 \left(16.5 \ \%\right) \ 1.083 \left(16.5 \ \%\right) \ 0.930 \\ \text{N20-C1} & 1.429 \left(0.4 \ \%\right) \ 1.431 \left(0.2 \ \%\right) \ 1.424 \left(0.7 \ \%\right) \ 1.434 \\ \text{N20-C14} & 1.410 \left(0.6 \ \%\right) \ 1.405 \left(0.3 \ \%\right) \ 1.404 \left(0.3 \ \%\right) \ 1.400 \left(0.2 \ \%\right) \ 1.402 \\ \text{N20-C19} & 1.410 \left(0.6 \ \%\right) \ 1.498 \left(0.7 \ \%\right) \ 1.502 \left(1.0 \ \%\right) \ 1.400 \left(0.2 \ \%\right) \ 1.402 \\ \text{C14-C15} & 1.499 \left(0.8 \ \%\right) \ 1.498 \left(0.7 \ \%\right) \ 1.502 \left(1.0 \ \%\right) \ 1.500 \left(0.5 \ \%\right) \ 1.492 \\ \text{C15-C17} & 1.331 \left(0.9 \ \%\right) \ 1.322 \left(1.0 \ \%\right) \ 1.327 \left(0.6 \ \%\right) \ 1.327 \left(0.6 \ \%\right) \ 1.327 \\ \text{C14-C12} & 1.206 \left(0.1 \ \%\right) \ 1.210 \left(0.2 \ \%\right) \ 1.198 \left(0.7 \ \%\right) \ 1.202 \left(0.4 \ \%\right) \ 1.207 \\ \text{C19-C13} & 1.206 \left(0.0 \ \%\right) \ 1.210 \left(0.2 \ \%\right) \ 1.198 \left(0.7 \ \%\right) \ 1.202 \left(0.4 \ \%\right) \ 1.207 \\ \text{C19-C13} & 1.206 \left(0.0 \ \%\right) \ 1.210 \left(0.3 \ \%\right) \ 1.080 \left(16.1 \ \%\right) \ 1.080 \left(16.2 \ \%\right) \ 0.220 \\ \text{C15-H16} & 1.080 \left(16.2 \ \%\right) \ 1.080 \left(16.1 \ \%\right) \ 1.080 \left(16.1 \ \%\right) \ 0.200 \\ \text{C15-H16} & 1.080 \left(16.2 \ \%\right) \ 1.080 \left(16.2 \ \%\right) \ 1.080 \left(16.2 \ \%\right) \ 1.202 \left(0.4 \ \%\right) \ 1.206 \\ \text{C17-H18} & 1.080 \left(16.2 \ \%\right) \ 1.080 \left(16.2 \ \%\right) \ 1.080 \left(16.2 \ \%\right) \ 0.2778 \\ \text{C17-C2-C4} & 119.6 \left(0.1 \ \%\right) \ 119.5 \left(0.1 \ \%\right) \ 119.4 \left(0.0 \ \%\right) \ 119.3 \left(0.1 \ \%\right) \ 119.4 \\ \text{C1-C3-C6} & 119.6 \left(0.1 \ \%\right) \ 119.5 \left(0.1 \ \%\right) \ 119.4 \left(0.2 \ \%\right) \ 119.3 \left(0.1 \ \%\right) \ 119.4 \\ \text{C2-C4-C8} & 120.4 \left(0.3 \ \%\right) \ 120.4 \left(0.3 \ \%\right) \ 119.4 \left(0.2 \ \%\right) \ 119.3 \left(0.1 \ \%\right) \ 120.4 \\ \text{C2-C4-C8} & 120.4 \left(0.3 \ \%\right) \ 120.4 \left(0.3 \ \%\right) \ 119.8 \left(0.4 \ \%\right) \ 120.4 \\ \text{C2-C4-H9} & 119.4 \left(0.4 \ \%\right) \ 119.8 \left(0.4 \ \%\right) \ 120.4 \\ \text{C2-C4-H9} & 119.4 \left(0.4 \ \%\right) \ 119.8 \left(0.4 \ \%\right) \ 120.4 \\ \text{C2-C4-H9} & 119.4 \left(0.4 \ \%\right) \ 119.4 \left(0.2 \ \%\right) \ 119.8 \left(0.4 \ \%\right) \ 120.4 \\ \text{C2-C4-H9} & 119.4 \left(0.4 \ \%\right) \ 119.4 \left(0.2 \ \%\right) \ 119.8 \left(0.4 \ \%\right$	C3-H7	1.082 (16.3 %)	1.083 (16.5 %)	1.082 (16.3 %)	1.083 (16.4 %)	0.930
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-H9	1.084 (16.5 %)	1.084 (16.5 %)	1.083 (16.5 %)	1.083 (16.5 %)	0.930
$\begin{array}{c} C8-H11 & 1.084 \left(165 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	C6-H10	1.084 (16.5 %)	1.084 (16.5 %)	1.083 (16.5 %)	1.083 (16.5 %)	0.930
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C8-H11	1.084 (16.5 %)	1.084 (16.5 %)	1.083 (16.5 %)	1.083 (16.5 %)	0.930
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N20-C1	1.429 (0.4 %)	1.431 (0.2 %)	1.424 (0.7 %)	1.424 (0.7 %)	1.434
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N20-C14	1.410 (0.7 %)	1.405 (0.3 %)	1.404 (0.3 %)	1.400 (0.0 %)	1.400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N20-C19	1.410 (0.6 %)	1.405 (0.2 %)	1.404 (0.1 %)	1.400 (0.2 %)	1.402
$\begin{array}{c} C17-C19 & 1.499 (0.5 \ \%) & 1.498 (0.4 \ \%) & 1.502 (0.7 \ \%) & 1.500 (0.5 \ \%) & 1.492 \\ C15-C17 & 1.331 (0.9 \ \%) & 1.332 (1.0 \ \%) & 1.327 (0.6 \ \%) & 1.327 (0.6 \ \%) & 1.327 \\ C14-O12 & 1.206 (0.1 \ \%) & 1.210 (0.2 \ \%) & 1.198 (0.7 \ \%) & 1.202 (0.4 \ \%) & 1.207 \\ C19-O13 & 1.206 (0.0 \ \%) & 1.210 (0.3 \ \%) & 1.198 (0.7 \ \%) & 1.202 (0.4 \ \%) & 1.206 \\ C15-H16 & 1.080 (16.2 \ \%) & 1.080 (16.1 \ \%) & 1.080 (16.1 \ \%) & 1.080 (16.1 \ \%) & 0.930 \\ C17-H18 & 1.080 (16.3 \ \%) & 1.080 (16.1 \ \%) & 1.080 (16.1 \ \%) & 1.080 (16.2 \ \%) & 0.929 \\ \hline \begin{array}{c} Longitud de enlace intermolecular (Å) \\ \hline O13-H7 & 2.666 (4.0 \ \%) & 3.137 (12.9 \ \%) & 2.558 (5.7 \ \%) & 2.789 (0.4 \ \%) & 2.778 \\ O12-H5 & 2.666 (1.7 \ \%) & 3.137 (15.7 \ \%) & 2.558 (5.7 \ \%) & 2.789 (0.4 \ \%) & 2.712 \\ \hline \begin{array}{c} Angulo de enlace (!) \\ \hline C1-C3-C6 & 119.6 (0.1 \ \%) & 119.5 (0.1 \ \%) & 119.4 (0.0 \ \%) & 119.3 (0.1 \ \%) & 119.4 \\ C2-C4-C8 & 120.4 (0.3 \ \%) & 120.2 (0.1 \ \%) & 119.4 (0.2 \ \%) & 120.3 (0.1 \ \%) & 119.2 \\ C2-C4-C8 & 120.4 (0.3 \ \%) & 120.2 (0.1 \ \%) & 120.4 (0.3 \ \%) & 120.2 (0.1 \ \%) & 120.4 \\ C1-C3-C6 & 119.7 (0.6 \ \%) & 120.0 (0.3 \ \%) & 1120.4 (0.3 \ \%) & 120.2 (0.1 \ \%) & 120.4 \\ C1-C2-H5 & 120.0 (0.2 \ \%) & 119.8 (0.5 \ \%) & 110.9 (0.1 \ \%) & 120.4 \\ C1-C2-H5 & 120.0 (0.2 \ \%) & 119.8 (0.5 \ \%) & 119.8 (0.5 \ \%) & 120.4 \\ C1-C2-H5 & 120.0 (0.2 \ \%) & 119.8 (0.5 \ \%) & 119.8 (0.5 \ \%) & 120.4 \\ C2-C4-H9 & 119.4 (0.4 \ \%) & 119.8 (0.5 \ \%) & 1120.4 (0.3 \ \%) & 120.4 \\ C2-C4-H9 & 119.4 (0.4 \ \%) & 119.6 (0.3 \ \%) & 119.8 (0.5 \ \%) & 1120.4 (0.3 \ \%) & 120.4 \\ C2-C4-H9 & 119.4 (0.4 \ \%) & 119.6 (0.3 \ \%) & 119.8 (0.5 \ \%) & 1120.4 (0.3 \ \%) & 120.4 \\ C2-C4-H9 & 119.4 (0.4 \ \%) & 119.8 (0.5 \ \%) & 119.8 (0.5 \ \%) & 1120.4 \\ C2-C4-H9 & 119.4 (0.4 \ \%) & 119.6 (0.3 \ \%) & 119.4 (0.4 \ \%) & 119.6 (0.3 \ \%) & 1120.4 \\ C2-C4-H9 & 119.4 (0.4 \ \%) & 119.6 (0.3 \ \%) & 119.4 (0.4 \ \%)$	C14-C15	1.499 (0.8 %)	1.498 (0.7 %)	1.502 (1.0 %)	1.500 (0.9 %)	1.487
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17-C19	1.499 (0.5 %)	1.498 (0.4 %)	1.502 (0.7 %)	1.500 (0.5 %)	1.492
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15-C17	1.331 (0.9 %)	1.332 (1.0 %)	1.327 (0.6 %)	1.327 (0.6 %)	1.319
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14-O12	1.206 (0.1 %)	1.210 (0.2 %)	1.198 (0.8 %)	1.202 (0.4 %)	1.207
C15-H16 1.080 (16.2 %) 1.080 (16.1 %) 1.080 (16.1 %) 1.080 (16.1 %) 0.080 (16.2 %) 0.080 (16.2 %) 0.080 (16.2 %) 0.080 (16.2 %) 0.080 (16.2 %) 0.080 (16.2 %) 0.080 (16.2 %) 0.080 (16.2 %) 0.080 (16.2 %) 0.080 (16.2 %) 0.080 (16.2 %) 0.080 (16.2 %) 0.080 (16.2 %) 0.0929 Longitud de enlace intermolecular (A) 2.656 (1.7 %) 3.137 (12.9 %) 2.558 (5.7 %) 2.789 (0.4 %) 2.778 O12-H5 2.666 (1.7 %) 3.137 (15.7 %) 2.558 (5.7 %) 2.789 (2.8 %) 2.712 Anguio de enlace (?) 119.4 (0.0 %) 119.3 (0.1 %) 119.4 C1-C3-C6 119.6 (0.1 %) 119.5 (0.3 %) 119.4 (0.2 %) 120.2 (0.2 %) 120.0 C2-C4-C8 120.4 (0.3 %) 120.2 (0.1 %) 120.4 (0.3 %) 120.4 (0.3 %) 120.4 (0.2 %) 120.2 (0.1 %) 120.1 (0.2 %) 120.0 (0.4 %) 120.1 (0.2 %) 120.2 (0.1 %) 120.1 (0.2 %) 120.1 (0.1 %) 120.4 (0.1 %) 120.4 (0.2 %) 120.9 (0.5 %) 120.1 (0.2 %) 120.1 (0.3 %) 120.4 (0.4 %)	C19-O13	1.206 (0.0 %)	1.210 (0.3 %)	1.198 (0.7 %)	1.202 (0.4 %)	1.206
C17-H18 1.080 (16.3 %) 1.080 (16.2 %) 1.080 (16.2 %) 1.080 (16.2 %) 0.0929 Longitud de enlace intermolecular (Å) 2.778 O13-H7 2.666 (4.0 %) 3.137 (12.9 %) 2.558 (5.7 %) 2.789 (0.4 %) 2.778 O12-H5 2.666 (1.7 %) 3.137 (15.7 %) 2.558 (5.7 %) 2.789 (0.4 %) 2.778 Angulo de enlace (?) C C1-C2-C4 119.6 (0.1 %) 119.5 (0.1 %) 119.4 (0.0 %) 119.3 (0.1 %) 119.4 C1-C2-C4 119.6 (0.4 %) 119.5 (0.1 %) 119.4 (0.2 %) 120.2 (0.2 %) 120.0 C2-C4-C8 120.4 (0.3 %) 120.2 (0.0 %) 120.4 (0.2 %) 120.2 (0.1 %) 120.4 (0.2 %) 120.1 % C2-C4-C8 120.4 (0.4 %) 120.2 (0.0 %) 120.4 (0.2 %) 120.4 (0.2 %) 120.4 (0.2 %) 120.4 (0.2 %) 120.4 (0.2 %) 120.4 (0.2 %) 120.4 (0.2 %) 120.4 (0.4 %) 120.4 (0.2 %) 120.4 (0.4 %) 120.4 (0.2 %) 120.4 (0.4 %) 120.4 (0.2 %) 120.4 (0.4 %) 120.4 (0.4 %) 120.4 (0.4 %) 120.4 (0.4 %) 120.4 (0.4 %) 120.4 (0.4 %) 120.4	C15-H16	1.080 (16.2 %)	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	0.930
Characteristic intermolecular (Å) Construction Construction <thconstruction< th=""> Construction</thconstruction<>	C17-H18	1 080 (16 3 %)	1 080 (16 2 %)	1 080 (16 2 %)	1 080 (16 2 %)	0.929
O13-H7 2.666 (4.0 %) 3.137 (12.9 %) 2.558 (7.9 %) 2.789 (0.4 %) 2.778 O12-H5 2.666 (1.7 %) 3.137 (15.7 %) 2.558 (5.7 %) 2.789 (2.8 %) 2.712 Angulo de enlace (?) C1-C2-C4 119.6 (0.1 %) 119.5 (0.1 %) 119.4 (0.0 %) 119.3 (0.1 %) 119.2 C2-C4-C8 120.4 (0.3 %) 120.2 (0.1 %) 120.4 (0.2 %) 120.2 (0.1 %) 120.4 (0.2 %) 120.0 C3-C6-C8 120.4 (0.2 %) 120.2 (0.0 %) 120.4 (0.2 %) 120.2 (0.1 %) 120.1 C2-C4-C3 120.4 (0.2 %) 120.2 (0.0 %) 120.4 (0.2 %) 120.2 (0.1 %) 120.1 C2-C4-C3 120.4 (0.2 %) 120.2 (0.0 %) 120.4 (0.2 %) 120.2 (0.1 %) 120.1 C2-C4-C3 120.4 (0.2 %) 120.2 (0.0 %) 120.4 (0.2 %) 120.9 (0.3 %) 120.4 C1-C3-C4 120.4 (0.2 %) 120.2 (0.1 %) 120.4 (0.1 %) 120.7 (0.2 %) 120.4 (0.4 %) 120.3 C1-C2-C4 120.4 (0.1 %) 120.4 (0.1 %) 120.7 (0.2 %) 120.4 (0.4 %) 119.8 (0.5 %) 120.4 (0.4 %) <th>Longitud de enlace in</th> <th>termolecular (Å</th> <th>)</th> <th>1000 (1012 70)</th> <th>1000 (1012 70)</th> <th>0.020</th>	Longitud de enlace in	termolecular (Å)	1000 (1012 70)	1000 (1012 70)	0.020
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	013-H7	2.666 (4.0 %)	, 3.137 (12.9 %)	2.558 (7.9 %)	2.789 (0.4 %)	2.778
Angulo de enlace (?)InterferenceInterferenceInterferenceC1-C2-C4119.6 (0.1 %)119.5 (0.1 %)119.4 (0.0 %)119.3 (0.1 %)119.4C1-C3-C6119.6 (0.4 %)119.5 (0.3 %)119.4 (0.2 %)119.3 (0.1 %)119.2C2-C4-C8120.4 (0.3 %)120.2 (0.1 %)120.4 (0.3 %)120.2 (0.2 %)120.0C3-C6-C8120.4 (0.2 %)120.7 (0.2 %)120.9 (0.0 %)120.1C2-C1-C3120.4 (0.4 %)120.7 (0.2 %)120.0 (0.3 %)120.4C4-C8-C6119.7 (0.6 %)120.0 (0.3 %)119.8 (0.5 %)120.0 (0.3 %)C1-C2-H5120.0 (0.2 %)119.8 (0.4 %)119.8 (0.5 %)120.3C1-C3-H7120.0 (0.4 %)119.8 (0.5 %)120.9 (0.5 %)120.3H5-C2-C4120.4 (0.1 %)120.4 (0.1 %)120.7 (0.2 %)120.9 (0.5 %)120.3H7-C3-C6120.4 (0.0 %)120.4 (0.1 %)120.7 (0.2 %)120.9 (0.5 %)120.3H7-C3-C6120.4 (0.1 %)120.7 (0.2 %)120.9 (0.4 %)120.4120.4C2-C4-H9119.4 (0.4 %)119.6 (0.3 %)119.4 (0.4 %)119.6 (0.3 %)119.9C3-C6-H10119.4 (0.4 %)119.6 (0.2 %)120.2 (0.1 %)120.2 (0.1 %)120.1H9-C4-C8120.2 (0.1 %)120.2 (0.1 %)120.2 (0.1 %)120.1 (0.3 %)120.0 (0.2 %)119.8C4-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)119.8120.1 (0.3 %)120.0 (0.2 %)119.8C1-N20-C14125.1 (0.2 %) <td>O12-H5</td> <td>2.666 (1.7 %)</td> <td>3.137 (15.7 %)</td> <td>2.558 (5.7 %)</td> <td>2.789 (2.8 %)</td> <td>2.712</td>	O12-H5	2.666 (1.7 %)	3.137 (15.7 %)	2.558 (5.7 %)	2.789 (2.8 %)	2.712
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ángulo de enlace (°)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C2-C4	119.6 (0.1 %)	119.5 (0.1 %)	119.4 (0.0 %)	119.3 (0.1 %)	119.4
C2-C4-C8120.4 (0.3%) 120.2 (0.1%) 120.4 (0.3%) 120.2 (0.2%) 120.0C3-C6-C8120.4 (0.2%) 120.2 (0.0%) 120.4 (0.2%) 120.2 (0.1%) 120.1C2-C1-C3120.4 (0.4%) 120.7 (0.2%) 120.7 (0.2%) 120.9 (0.0%) 120.9C4-C8-C6119.7 (0.6%) 120.0 (0.3%) 119.8 (0.5%) 120.0 (0.3%) 120.3C1-C2-H5120.0 (0.2%) 119.8 (0.4%) 119.9 (0.3%) 119.8 (0.4%) 120.3C1-C3-H7120.0 (0.4%) 119.4 (0.1%) 120.7 (0.3%) 120.9 (0.5%) 120.3H7-C3-C6120.4 (0.0%) 120.4 (0.0%) 120.7 (0.2%) 120.9 (0.4%) 120.4C2-C4-H9119.4 (0.4%) 119.6 (0.3%) 119.4 (0.4%) 119.6 (0.3%) 119.9C3-C6-H10119.4 (0.4%) 119.6 (0.2%) 119.6 (0.2%) 119.9H9-C4-C8120.2 (0.1%) 120.2 (0.1%) 120.2 (0.1%) 120.1H10-C6-C8120.2 (0.2%) 120.0 (0.2%) 120.0 (0.2%) 119.8C4-C8-H11120.1 (0.3%) 120.0 (0.2%) 120.0 (0.2%) 120.9C4-C8-H11120.1 (0.3%) 120.0 (0.2%) 125.0 (0.2%) 125.4N20-C1+C2119.8 (0.6%) 119.7 (0.5%) 119.5 (0.4%) 119.1N20-C1-C2119.8 (0.6%) 119.7 (0.5%) 119.5 (0.4%) 119.1N20-C1+C3119.8 (0.2%) 125.0 (0.2%) 125.4N20-C1+C15106.2 (0.3%) 106.3 (0.1%) 106.	C1-C3-C6	119.6 (0.4 %)	119.5 (0.3 %)	119.4 (0.2 %)	119.3 (0.1 %)	119.2
C3-C6-C8120.4 (0.2%) 120.2 (0.0%) 120.4 (0.2%) 120.2 (0.1%) 120.1C2-C1-C3120.4 (0.4%) 120.7 (0.2%) 120.7 (0.2%) 120.0 (0.3%) 120.9C4-C8-C6119.7 (0.6%) 120.0 (0.3%) 119.8 (0.5%) 120.0 (0.3%) 120.3C1-C2-H5120.0 (0.2%) 119.8 (0.4%) 119.9 (0.3%) 119.8 (0.4%) 120.3C1-C3-H7120.0 (0.4%) 119.8 (0.5%) 120.9 (0.5%) 120.3H5-C2-C4120.4 (0.1%) 120.4 (0.1%) 120.7 (0.3%) 120.9 (0.5%) 120.4C2-C4-H9119.4 (0.4%) 119.6 (0.3%) 119.6 (0.3%) 119.9120.4C2-C4-H9119.4 (0.4%) 119.6 (0.2%) 119.6 (0.2%) 119.9C3-C6-H10119.4 (0.4%) 119.6 (0.2%) 119.6 (0.2%) 119.9H9-C4-C8120.2 (0.1%) 120.2 (0.1%) 120.2 (0.1%) 120.1H10-C6-C8120.2 (0.2%) 120.0 (0.2%) 120.0 (0.2%) 120.0C4-C8-H11120.1 (0.3%) 120.0 (0.2%) 120.0 (0.2%) 120.8C1-N20-C14125.1 (0.2%) 125.1 (0.2%) 125.0 (0.3%) 125.0 (0.2%) 120.4N20-C1-C2119.8 (0.6%) 119.7 (0.3%) 119.5 (0.4%) 119.1N20-C1-C3119.8 (0.2%) 119.7 (0.3%) 119.5 (0.4%) 120.1N20-C14-C15106.2 (0.3%) 106.3 (0.2%) 106.3 (0.2%) 106.5N20-C14-C15106.2 (0.3%) 106.3 (0.2%) 1	C2-C4-C8	120.4 (0.3 %)	120.2 (0.1 %)	120.4 (0.3 %)	120.2 (0.2 %)	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C6-C8	120.4 (0.2 %)	120.2 (0.0 %)	120.4 (0.2 %)	120.2 (0.1 %)	120.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-C3	120.4 (0.4 %)	120.7 (0.2 %)	120.7 (0.2 %)	120.9 (0.0 %)	120.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C8-C6	119.7 (0.6 %)	120.0 (0.3 %)	119.8 (0.5 %)	120.0 (0.3 %)	120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C2-H5	120.0 (0.2 %)	119.8 (0.4 %)	119.9 (0.3 %)	1198(04%)	120.3
H5-C2-C4120.4 (0.1 %)120.4 (0.1 %)120.7 (0.3 %)120.9 (0.5 %)120.3H7-C3-C6120.4 (0.0 %)120.4 (0.0 %)120.7 (0.2 %)120.9 (0.4 %)120.4C2-C4-H9119.4 (0.4 %)119.6 (0.3 %)119.4 (0.5 %)119.6 (0.3 %)119.9C3-C6-H10119.4 (0.4 %)119.6 (0.2 %)119.4 (0.4 %)119.9120.2 (0.1 %)120.2 (0.1 %)H9-C4-C8120.2 (0.1 %)120.2 (0.1 %)120.2 (0.1 %)120.2 (0.1 %)120.2 (0.1 %)120.0H10-C6-C8120.2 (0.2 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)120.0120.0C4-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)120.0120.0C4-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)119.8C6-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)124.8C1-N20-C14125.1 (0.2 %)125.1 (0.2 %)125.0 (0.2 %)125.0 (0.3 %)125.4N20-C1-C2119.8 (0.6 %)119.7 (0.5 %)119.7 (0.3 %)119.5 (0.4 %)119.1N20-C1-C3119.8 (0.2 %)109.8 (0.3 %)109.9 (0.4 %)109.9 (0.4 %)109.5N20-C14-C15106.2 (0.3 %)106.3 (0.1 %)106.3 (0.1 %)106.3106.3125.7 (0.2 %)125.5N20-C19-C17106.2 (0.0 %)106.3 (0.1 %)106.2 (0.0 %)125.7 (0.2 %)125.5125.5N20-C14-C12126.4 (0.8 %)125.8 (0.3 %)126.4 (0.8 %)125.7 (0.2 %)1	C1-C3-H7	120.0 (0.4 %)	119.8 (0.5 %)	119.9 (0.4 %)	119.8 (0.5 %)	120.4
H7-C3-C6120.1 (0.1 %)120.1 (0.1 %)120.1 (0.1 %)120.7 (0.2 %)120.9 (0.4 %)120.4C2-C4-H9119.4 (0.4 %)119.6 (0.3 %)119.4 (0.5 %)119.6 (0.3 %)119.9C3-C6-H10119.4 (0.4 %)119.6 (0.2 %)119.4 (0.4 %)119.6 (0.2 %)119.9H9-C4-C8120.2 (0.1 %)120.2 (0.1 %)120.2 (0.1 %)120.2 (0.1 %)120.1H10-C6-C8120.2 (0.2 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)120.0C4-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)120.0C4-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)119.8C6-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)119.8C1-N20-C14125.1 (0.2 %)125.1 (0.2 %)125.0 (0.2 %)125.0125.4N20-C1-C2119.8 (0.6 %)119.7 (0.5 %)119.5 (0.4 %)119.1N20-C1-C3119.8 (0.2 %)109.8 (0.3 %)109.9 (0.4 %)109.5N20-C14-C15106.2 (0.3 %)106.3 (0.2 %)106.3 (0.2 %)106.5N20-C19-C17106.2 (0.0 %)106.3 (0.1 %)106.1105.7 (0.2 %)125.8 (0.3 %)125.7 (0.2 %)125.7N20-C14-O12126.4 (0.8 %)125.8 (0.3 %)126.4 (0.8 %)125.7 (0.2 %)125.5N20-C19-C17106.2 (0.0 %)106.3 (0.1 %)106.1N20-C14-O12126.4 (0.5 %)125.8 (0.3 %)126.4 (0.5 %)125.7 (0.2 %)N20-C14-O12126.4 (0.5 %	H5-C2-C4	120 4 (0 1 %)	120 4 (0 1 %)	120 7 (0.3 %)	120.9 (0.5 %)	120.3
C2-C4-H9119.4 (0.4%) 119.6 (0.3%) 119.4 (0.5%) 119.6 (0.3%) 119.9C3-C6-H10119.4 (0.4%) 119.6 (0.2%) 119.4 (0.4%) 119.6 (0.2%) 119.9H9-C4-C8120.2 (0.1%) 120.2 (0.1%) 120.2 (0.1%) 120.2 (0.1%) 120.1H10-C6-C8120.2 (0.2%) 120.2 (0.2%) 120.2 (0.2%) 120.0 (0.2%) 120.0 (0.2%) 120.0 (0.2%) C4-C8-H11120.1 (0.3%) 120.0 (0.2%) 120.1 (0.3%) 120.0 (0.2%) 120.0 (0.2%) 120.0 (0.2%) C6-C8-H11120.1 (0.3%) 120.0 (0.2%) 120.0 (0.2%) 125.0 (0.2%) 125.0 (0.2%) 124.8C1-N20-C14125.1 (0.2%) 125.1 (0.2%) 125.0 (0.3%) 125.4125.4N20-C1-C2119.8 (0.6%) 119.7 (0.5%) 119.7 (0.3%) 119.5 (0.4%) 119.1N20-C1-C3119.8 (0.2%) 109.8 (0.3%) 109.9 (0.4%) 109.9 (0.4%) 109.5N20-C14-C15106.2 (0.3%) 106.3 (0.2%) 106.3 (0.2%) 106.5106.5N20-C19-C17106.2 (0.0%) 106.3 (0.1%) 106.3 (0.1%) 106.1N20-C14-C12126.4 (0.8%) 125.8 (0.0%) 126.4 (0.8%) 125.7 (0.2%) 125.5N20-C19-C13126.4 (0.5%) 125.8 (0.0%) 126.4 (0.5%) 125.7 (0.0%) 125.5	H7-C3-C6	120 4 (0 0 %)	120 4 (0 0 %)	120 7 (0 2 %)	120.9 (0.4 %)	120.4
C2-C6-H10119.4 (0.4 %)119.6 (0.2 %)119.4 (0.4 %)119.6 (0.2 %)119.4 (0.4 %)H9-C4-C8120.2 (0.1 %)120.2 (0.1 %)120.2 (0.1 %)120.2 (0.1 %)120.2 (0.2 %)H10-C6-C8120.2 (0.2 %)120.2 (0.2 %)120.2 (0.2 %)120.0 (0.2 %)120.0 (0.2 %)C4-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)120.0 (0.2 %)C6-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)119.8C1-N20-C14125.1 (0.2 %)125.1 (0.2 %)125.0 (0.2 %)125.0 (0.2 %)124.8C1-N20-C19125.1 (0.2 %)125.1 (0.2 %)125.0 (0.3 %)125.0 (0.3 %)125.4N20-C1-C2119.8 (0.6 %)119.7 (0.5 %)119.7 (0.5 %)119.5 (0.4 %)119.1N20-C1-C3119.8 (0.2 %)109.8 (0.3 %)109.9 (0.4 %)109.5109.5N20-C14-C15106.2 (0.3 %)106.3 (0.2 %)106.3 (0.2 %)106.5106.5N20-C19-C17106.2 (0.0 %)106.3 (0.1 %)106.2 (0.0 %)106.3 (0.1 %)106.1N20-C14-O12126.4 (0.8 %)125.8 (0.3 %)126.4 (0.8 %)125.7 (0.2 %)125.5N20-C14-O12126.4 (0.5 %)125.8 (0.0 %)126.4 (0.5 %)125.7 (0.2 %)125.5	C2-C4-H9	1194 (04%)	1196(0.3%)	1194 (0.5 %)	1196(0.3%)	119.9
H9-C4-C8120.2 (0.1 %)120.2 (0.1 %)120.2 (0.1 %)120.2 (0.1 %)120.2 (0.1 %)H10-C6-C8120.2 (0.2 %)120.2 (0.2 %)120.2 (0.2 %)120.2 (0.2 %)120.0 (0.2 %)120.0 (0.2 %)C4-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)120.0 (0.2 %)120.0 (0.2 %)C6-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)120.0 (0.2 %)119.8C6-C8-H11120.1 (0.3 %)120.0 (0.2 %)125.0 (0.2 %)125.0 (0.2 %)124.8C1-N20-C14125.1 (0.2 %)125.1 (0.2 %)125.0 (0.3 %)125.0 (0.3 %)125.4N20-C1-C2119.8 (0.6 %)119.7 (0.5 %)119.7 (0.5 %)119.5 (0.4 %)119.1N20-C1-C3119.8 (0.2 %)109.8 (0.3 %)109.9 (0.4 %)109.9 (0.4 %)109.5N20-C14-C15106.2 (0.3 %)106.3 (0.2 %)106.3 (0.2 %)106.5106.1 (0.3 %)125.7 (0.2 %)125.7 (0.2 %)N20-C14-C12126.4 (0.8 %)125.8 (0.3 %)126.4 (0.8 %)125.7 (0.2 %)125.5N20-C14-O12126.4 (0.5 %)125.8 (0.0 %)126.4 (0.5 %)125.7 (0.0 %)125.8	C3-C6-H10	119 4 (0 4 %)	119.6 (0.2 %)	119 4 (0 4 %)	1196(02%)	119.9
H10-C6-C8120.2 (0.2 %)120.2 (0.2 %)120.2 (0.2 %)120.2 (0.2 %)120.2 (0.2 %)C4-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)120.0 (0.2 %)C6-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)119.8C1-N20-C14125.1 (0.2 %)125.1 (0.2 %)125.0 (0.2 %)125.0 (0.2 %)124.8C1-N20-C19125.1 (0.2 %)125.1 (0.2 %)125.0 (0.3 %)125.0 (0.3 %)125.4N20-C1-C2119.8 (0.6 %)119.7 (0.5 %)119.7 (0.5 %)119.5 (0.4 %)119.1N20-C1-C3119.8 (0.2 %)109.8 (0.3 %)109.9 (0.4 %)109.9109.5N20-C14-C15106.2 (0.3 %)106.3 (0.2 %)106.2 (0.3 %)106.3 (0.2 %)106.5N20-C19-C17106.2 (0.0 %)106.3 (0.1 %)106.3 (0.1 %)106.1105.5N20-C14-O12126.4 (0.8 %)125.8 (0.3 %)126.4 (0.8 %)125.7 (0.2 %)125.5N20-C19-C13126.4 (0.5 %)125.8 (0.0 %)126.4 (0.5 %)125.7 (0.0 %)125.8	H9-C4-C8	120 2 (0 1 %)	120 2 (0 1 %)	120.2 (0.1 %)	120 2 (0 1 %)	120.1
C4-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)119.8C6-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)119.8C1-N20-C14125.1 (0.2 %)125.1 (0.2 %)125.0 (0.2 %)125.0 (0.2 %)124.8C1-N20-C19125.1 (0.2 %)125.1 (0.2 %)125.0 (0.3 %)125.0 (0.3 %)125.4N20-C1-C2119.8 (0.6 %)119.7 (0.5 %)119.7 (0.5 %)119.5 (0.4 %)119.1N20-C1-C3119.8 (0.2 %)109.8 (0.3 %)109.9 (0.4 %)109.9 (0.4 %)109.5N20-C14-C15106.2 (0.3 %)106.3 (0.2 %)106.2 (0.3 %)106.3 (0.2 %)106.5N20-C19-C17106.2 (0.0 %)106.3 (0.1 %)106.3 (0.1 %)106.1106.1N20-C14-O12126.4 (0.8 %)125.8 (0.3 %)126.4 (0.8 %)125.7 (0.2 %)125.5N20-C19-C13126.4 (0.5 %)125.8 (0.0 %)126.4 (0.5 %)125.7 (0.0 %)125.8	H10-C6-C8	120 2 (0 2 %)	120 2 (0 2 %)	120 2 (0 2 %)	120 2 (0 2 %)	120.0
C6-C8-H11120.1 (0.3 %)120.0 (0.2 %)120.1 (0.3 %)120.0 (0.2 %)120.0 (0.2 %)C1-N20-C14125.1 (0.2 %)125.1 (0.2 %)125.0 (0.2 %)125.0 (0.2 %)124.8C1-N20-C19125.1 (0.2 %)125.1 (0.2 %)125.0 (0.3 %)125.0 (0.3 %)125.4N20-C1-C2119.8 (0.6 %)119.7 (0.5 %)119.7 (0.5 %)119.5 (0.4 %)119.1N20-C1-C3119.8 (0.2 %)109.8 (0.3 %)109.9 (0.4 %)109.5109.5N20-C14-C15106.2 (0.3 %)106.3 (0.2 %)106.2 (0.3 %)106.3 (0.2 %)106.5N20-C19-C17106.2 (0.0 %)106.3 (0.1 %)106.3 (0.1 %)106.1105.5N20-C14-O12126.4 (0.8 %)125.8 (0.3 %)126.4 (0.8 %)125.7 (0.2 %)125.5N20-C19-C13126.4 (0.5 %)125.8 (0.0 %)126.4 (0.5 %)125.7 (0.0 %)125.8	C4-C8-H11	120.1 (0.3 %)	120.0 (0.2 %)	120 1 (0.3 %)	120.0 (0.2 %)	119.8
C1-N20-C14125.1 (0.2 %)125.1 (0.2 %)125.0 (0.2 %)125.0 (0.2 %)C1-N20-C19125.1 (0.2 %)125.1 (0.2 %)125.0 (0.3 %)125.0 (0.3 %)N20-C1-C2119.8 (0.6 %)119.7 (0.5 %)119.7 (0.5 %)119.5 (0.4 %)N20-C1-C3119.8 (0.2 %)119.7 (0.3 %)119.7 (0.3 %)119.5 (0.4 %)C1-N20-C19109.7 (0.2 %)109.8 (0.3 %)109.9 (0.4 %)109.5N20-C14-C15106.2 (0.3 %)106.3 (0.2 %)106.3 (0.2 %)106.5N20-C19-C17106.2 (0.0 %)106.3 (0.1 %)106.3 (0.1 %)106.1N20-C14-O12126.4 (0.8 %)125.8 (0.3 %)126.4 (0.8 %)125.7 (0.2 %)125.8N20-C19-C13126.4 (0.5 %)125.8 (0.0 %)126.4 (0.5 %)125.7 (0.0 %)125.8	C6-C8-H11	120.1 (0.3 %)	120.0 (0.2 %)	120.1 (0.3 %)	120.0 (0.2 %)	119.8
C1-N20-C19125.1 (0.2 %)125.1 (0.2 %)125.0 (0.3 %)125.0 (0.3 %)125.4N20-C1-C2119.8 (0.6 %)119.7 (0.5 %)119.7 (0.5 %)119.5 (0.4 %)119.1N20-C1-C3119.8 (0.2 %)119.7 (0.3 %)119.7 (0.3 %)119.5 (0.4 %)120.0C14-N20-C19109.7 (0.2 %)109.8 (0.3 %)109.9 (0.4 %)109.9 (0.4 %)109.5N20-C14-C15106.2 (0.3 %)106.3 (0.2 %)106.2 (0.3 %)106.3 (0.2 %)106.5N20-C19-C17106.2 (0.0 %)106.3 (0.1 %)106.2 (0.0 %)106.3 (0.1 %)106.1N20-C14-O12126.4 (0.8 %)125.8 (0.3 %)126.4 (0.8 %)125.7 (0.2 %)125.8N20-C19-C13126.4 (0.5 %)125.8 (0.0 %)126.4 (0.5 %)125.7 (0.0 %)125.8	C1-N20-C14	125 1 (0 2 %)	125 1 (0 2 %)	125.0 (0.2 %)	125.0 (0.2 %)	124.8
N20-C1-C2 119.8 (0.6 %) 119.7 (0.5 %) 119.7 (0.5 %) 119.5 (0.4 %) 119.1 N20-C1-C3 119.8 (0.2 %) 119.7 (0.3 %) 119.7 (0.3 %) 119.5 (0.4 %) 120.0 C14-N20-C19 109.7 (0.2 %) 109.8 (0.3 %) 109.9 (0.4 %) 109.9 (0.4 %) 109.5 N20-C14-C15 106.2 (0.3 %) 106.3 (0.2 %) 106.2 (0.3 %) 106.3 (0.2 %) 106.3 (0.2 %) 106.5 N20-C19-C17 106.2 (0.0 %) 106.3 (0.1 %) 106.2 (0.0 %) 125.8 (0.3 %) 125.7 (0.2 %) 125.5 N20-C19-Q13 126.4 (0.5 %) 125.8 (0.0 %) 126.4 (0.5 %) 125.8 (0.0 %) 125.	C1-N20-C19	125 1 (0 2 %)	125 1 (0 2 %)	125.0 (0.3 %)	125.0 (0.3 %)	125.4
N20-C1-C3 119.8 (0.2 %) 119.7 (0.3 %) 119.7 (0.3 %) 119.5 (0.4 %) 120.0 C14-N20-C19 109.7 (0.2 %) 109.8 (0.3 %) 109.9 (0.4 %) 109.9 (0.4 %) 109.5 N20-C14-C15 106.2 (0.3 %) 106.3 (0.2 %) 106.2 (0.3 %) 106.2 (0.3 %) 106.3 (0.2 %) 106.3 (0.2 %) N20-C19-C17 106.2 (0.0 %) 106.3 (0.1 %) 106.2 (0.0 %) 125.8 (0.3 %) 125.7 (0.2 %) 125.5 N20-C19-Q13 126.4 (0.5 %) 125.8 (0.0 %) 126.4 (0.5 %) 125.8 (0.0 %) 125.8 (0.0 %) 125.8 (0.0 %)	N20-C1-C2	119.8 (0.6 %)	1197(05%)	1197 (05%)	119 5 (0.4 %)	119.1
C14-N20-C19109.7 (0.2 %)109.8 (0.3 %)109.9 (0.4 %)109.9 (0.4 %)109.5N20-C14-C15106.2 (0.3 %)106.3 (0.2 %)106.2 (0.3 %)106.3 (0.2 %)106.3 (0.2 %)N20-C19-C17106.2 (0.0 %)106.3 (0.1 %)106.2 (0.0 %)106.3 (0.1 %)106.1N20-C14-O12126.4 (0.8 %)125.8 (0.3 %)126.4 (0.8 %)125.7 (0.2 %)125.8N20-C19-O13126.4 (0.5 %)125.8 (0.0 %)126.4 (0.5 %)125.8 (0.0 %)125.8 (0.0 %)	N20-C1-C3	119.8 (0.2 %)	119 7 (0 3 %)	1197(03%)	119 5 (0 4 %)	120.0
N20-C14-C15 106.2 (0.3 %) 106.3 (0.2 %) 106.2 (0.3 %) 106.3 (0.2 %) 106.3 (0.2 %) N20-C19-C17 106.2 (0.0 %) 106.3 (0.1 %) 106.2 (0.0 %) 106.3 (0.1 %) 106.3 (0.1 %) N20-C14-O12 126.4 (0.8 %) 125.8 (0.3 %) 126.4 (0.5 %) 125.8 (0.0 %) 125.7 (0.0 %) 125.8	C14-N20-C19	109 7 (0 2 %)	109 8 (0 3 %)	109 9 (0 4 %)	109 9 (0 4 %)	109 5
N20-C19-C17 106.2 (0.0 %) 106.3 (0.1 %) 106.2 (0.0 %) 106.3 (0.1 %) 106.1 N20-C14-O12 126.4 (0.8 %) 125.8 (0.3 %) 126.4 (0.8 %) 125.7 (0.2 %) 125.8 N20-C19-O13 126.4 (0.5 %) 125.8 (0.0 %) 126.4 (0.5 %) 125.8 (0.0 %) 126.4 (0.5 %) 125.8	N20-C14-C15	106.2 (0.2 %)	106.3 (0.2 %)	106.2 (0.3 %)	106.3 (0.2 %)	106.5
N20-C14-O12 126.4 (0.8 %) 125.8 (0.3 %) 126.4 (0.8 %) 125.7 (0.2 %) 125.5 N20-C19-O13 126.4 (0.5 %) 125.8 (0.0 %) 126.4 (0.5 %) 125.8 (0.0 %) 126.4 (0.5 %) 125.8 (0.0 %)	N20-C19-C17	106.2 (0.0 %)	106 3 (0.2 %)	106.2 (0.0 %)	106 3 (0.2 %)	106.5
N20-C19-O13 126.4 (0.5 %) 125.8 (0.0 %) 126.4 (0.5 %) 125.7 (0.0 %) 125.8	N20-C14-O12	126 4 (0.8 %)	125 8 (0 3 %)	126 4 (0.8 %)	125 7 (0.2 %)	105.1
	N20-C19-O13	126.4 (0.5 %)	125.8 (0.0 %)	126.4 (0.5 %)	125.7 (0.2 %)	125.5 125.8
C15-C14-O12 127 4 (0.5 %) 127 9 (0.1 %) 127 4 (0.5 %) 128 0 (0.1 %) 128 1	C15-C14-O12	127 4 (0 5 %)	127.9 (0.1 %)	127 4 (0 5 %)	128.0 (0.1 %)	128.0

		Valar			
Parámetro	B3LYP/6-311+G(d,p)		M06-2X/6-311+G(d,p)		- valor Experimentel
	fase gas	solvente	fase gas	solvente	Experimental
C17-C19-O13	127.4 (0.5 %)	127.9 (0.1 %)	127.4 (0.6 %)	128.0 (0.1 %)	128.1
C14-C15-H16	121.4 (3.3 %)	121.9 (2.9 %)	121.2 (3.4 %)	121.7 (3.0 %)	125.5
C19-C17-H18	121.4 (3.2 %)	121.9 (2.8 %)	121.2 (3.4 %)	121.7 (3.0 %)	125.5
C14-C15-C17	109.0 (0.1 %)	108.8 (0.1 %)	108.9 (0.0 %)	108.7 (0.1 %)	108.9
C19-C17-C15	109.0 (0.0 %)	108.8 (0.2 %)	108.9 (0.1 %)	108.7 (0.3 %)	109.0
C15-C17-H18	129.6 (3.3 %)	129.3 (3.0 %)	129.9 (3.5 %)	129.5 (3.2 %)	125.5
C17-C15-H16	129.6 (3.2 %)	129.3 (2.9 %)	129.9 (3.4 %)	129.5 (3.1 %)	125.6
Ángulo de Torsión (º)					
C2-C1-N20-C14	46.4 (10.3 %)	66.0 (27.4 %)	42.5 (18.0 %)	52.8 (1.8 %)	51.8
C2-C1-N20-C14	46.4 (2.2 %)	66.0 (45.1 %)	42.5 (6.5 %)	52.8 (16.0 %)	45.5
C3-C1-N20-C19	46.4 (10.4 %)	66.0 (27.3 %)	42.5 (18.0 %)	52.8 (1.8 %)	51.8
C3-C1-N20-C19	46.4 (2.1 %)	66.0 (45.1 %)	42.5 (6.5 %)	52.8 (16.0 %)	45.5

Fuente: Adaptado de T. Kajfez, B. Kamenar, V. Pilizota, D. Fles. CCDC 205841: Experimental Crystal Structure Determination, 2014, DOI: 10.5517/cc6x61b

La longitud de enlace con las mayores desviaciones se presenta en los enlaces C-H, mostrando errores entre el 16.1% a 16.5% (tabla 1) para todos los métodos en fase gas y solvente, los altos porcentajes de error en estas distancias de enlace se debe a errores del método y en la estructura cristalina de monocristal de los hidrógenos asignados por ajuste de densidad a la estructura molecular. Además, se observa errores mayores al 1% que corresponden a los enlaces intermoleculares O-H (tabla 1), ubicados cerca de la unión de la maleimida con el benceno, con diferencias menores a 0.43 Å entre el valor calculado y el experimental, pero excluyendo el método M06-2X/6-311+G(d,p) en medio solvente acetona que presenta un error del 0.4%.

Sin embargo, las longitudes de enlace C=C, C-C, C=O y C-N, ubicadas en la anillo de benceno donde se efectúa el enlace con los diferentes grupos electroatractores (N-fluorfenilmaleimida, N-nitrofenilmaliemida y N-carboxifenilmaleimida) y electrodonadores (N-metoxifenilmaleimida y N-aminofenilmaleimida) en posición *orto, meta* y *para*, y en la región del anillo de la maleimida, los porcentajes de error no superan más del 1.0% y/o diferencia menor a 0.02 Å (Riley, Op't Holt, & Merz, 2007) en la estructura sin sustituir y en algunos de sus derivados mencionados como se observa en la tabla 1, y se soporta en los anexos.

Por otro lado, en los ángulos de enlace covalentes los máximos porcentajes de error se reflejan sobre C=C-H y C-C-H del anillo de la maleimida, los cuales se encuentran entre 2.8% a 3.5%. A

pesar de ello, los errores promedios de los ángulos de enlace de la N-fenilmaleimida y algunos de sus derivados mencionados en la tabla 2 no superan más del 1.2% en los diferentes métodos calculados y presentando concordancia en sus valores (ángulos de enlace covalentes menores de 2.0°) porque se encuentra dentro del error del método (Riley et al., 2007) al comparar contra datos reportados experimentalmente. Asimismo, al comparar los ángulos de enlace de los derivados mencionados en la tabla 2, el medio solvente contra fase gas de cada método, el promedio de las diferencias no prevalece a errores mayores de 2.0 ° para los ángulos de enlace.

	Errores promedio (%)						
Parámetro	Método B3LY	P/6-311+G(d,p)	Método M06-2X/6-311+G(d,p)				
	fase gas	solvente	fase gas	solvente			
N-fenilmaleimida							
Longitud de enlace	5.6	6.6	5.9	5.4			
Ángulo de enlace	0.7	0.5	0.7	0.6			
Ángulo de torsión	2.1	45.1	6.5	16.0			
para-carboxifenilmaleimida							
Longitud de enlace	5.5	5.3	5.6	5.2			
Ángulo de enlace	0.8	0.7	0.9	0.8			
Ángulo de torsión	9.7	11.5	15.0	4.8			
para-fluorfenilmaleimida							
Longitud de enlace	4.8	5.9	5.2	4.7			
Ángulo de enlace	0.8	0.6	0.8	0.6			
Ángulo de torsión	5.4	16.9	10.9	4.0			
orto-metoxifenilmaleimida							
Longitud de enlace	6.7	6.7	6.6	6.1			
Ángulo de enlace	0.8	0.7	0.8	0.7			
Ángulo de torsión	11.8	11.8	21.9	9.8			
para-metoxifenilmaleimida							
Longitud de enlace	6.4	7.3	6.8	6.2			
Ángulo de enlace	0.8	0.7	1.2	0.7			
Ángulo de torsión	18.2	45.6	28.5	12.6			
meta-nitrofenilmaleimida							
Longitud de enlace	4.4	3.8	4.8	4.3			
Ángulo de enlace	0.8	0.6	0.7	0.6			
Ángulo de torsión	13.4	6.6	20.6	8.2			
para-nitrofenilmaleimida, CCDC 212029							
Longitud de enlace	4.7	4.6	4.9	4.4			
Ángulo de enlace	0.8	0.6	0.8	0.7			
Ángulo de torsión	11.0	4.0	13.8	0.4			
para-nitrofenilmaleimida, CCDC 226980							
Longitud de enlace	3.7	3.6	3.8	3.3			
Ángulo de enlace	0.6	0.4	0.6	0.4			
Ángulo de torsión	10.5	4.6	13.3	0.2			

Tabla 2. Errores promedio de los parámetros estructurales.

Errores promedio obtenidos de la tabla 1 y tablas de los anexos.

Por otra parte, la N-fenilmaleimida presenta simetría para el ángulo de torsión, C_{fenil}-C_{fenil}-N_{maleimida}-C_{maleimida}, sin embargo, los datos experimentales para la molécula exhiben diferencia entre los ángulos derecho e izquierdo de la estructura (Kajfež, Kamenar, Piližota, & Fleš, 2003). No obstante, en la tabla 1, los ángulos de torsión para los métodos en fase gas presentan errores menores al 6.5%, teniendo en cuenta como base para el cálculo del error el ángulo de torsión experimental de 45.5°. En las tablas de los anexos 1 al 13 y anexo 34 se observa que según el grupo sustituyente (metoxi > fluor), o la posición del grupo (*orto > para*), estos compuestos exhiben un aumento en el ángulo de torsión en comparación con el de la N-fenilmaleimida y sus derivados con grupos electrodadores, las diferencias encontradas están relacionadas en los cálculos teóricos como reporta Cortes (Cortes Hernandez & Castro, 2016).

Frente a los datos estructurales de las moléculas comparadas, se encontró que la mayor dispersión de errores promedio (tabla 2) se presenta en los ángulos de torsión para el método B3LYP/6-311+G(d,p) en solvente. La longitud de enlace y ángulo de enlace, en general se observa una buena correlación entre los datos experimentales y teóricos para los dos métodos en fase gas y solvente de la N-fenilmaleimida (Kajfež, Kamenar, Piližota, & Fleš, 2004) y sus derivados como la *para*-carboxifenilmaleimida (Moreno-Fuquen et al., 2011), *para*-fluorfenilmaleimida (Schwarzer & Weber, 2009), *orto*-metoxifenilmaleimida (Sirajuddin, Ali, & Tahir, 2012), *para*-metoxifenilmaleimida (Miller, Hoyle, Valente, Zubkowski, & Jonsson, 2001), *meta*-nitrofeninlomaleimida (Fruk, & Graham, 2004; Moreno-Fuquen, Valencia, Abonia, Kennedy, & Graham, 2004), disponibles en base de datos.

7.2. Análisis vibracional de la N-fenilmaleimida

Los valores experimentales y teóricos de la N-fenilmaleimida y algunos de sus derivados se muestran en la Tabla 3 que se obtiene de los espectros de infrarrojo disponibles en los anexos 14-29. En las frecuencias vibracionales calculadas por el método B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p) en fase gas y solvente se utilizó un factor a escala obtenido por la relación banda de vibración experimental/teórica de mayor intensidad de cada molécula para la corrección de la bandas.

En la Tabla 3, se disponen los datos de las vibraciones utilizadas para la verificación de los métodos en la N-fenilmaleimida y algunos de sus derivados con sustituyentes en posición *para* (aminofenilmaleimida, metoxifenilmaleimida y nitrofenilmaleimida). En las moléculas se eligió la banda de tensión asimétrica del carbonilo, C=O, debido a que representa a la frecuencia con mayor intensidad en los espectros de infrarrojo, cuyo factor de escala de frecuencia de vibración para la N-fenilmaleimida por el método de B3LYP/6-311+G(d,p) en fase gas corresponde a 0.9668, para otros autores el factor de escala para frecuencias vibracionales por este método es 0.9679 (Andersson & Uvdal, 2005). Sin embargo, los otros métodos utilizados en el estudio no reportan referentes bibliográficos del factor a escala, pero se obtuvo la relación de la misma manera que el método B3LYP/6-311+G(d,p), generando los siguientes factores: 0.9908 para B3LYP/6-311+G(d,p) en medio solvente, 0.9276 para M06-2X/6-311+G(d,p) en fase gas y 0.9507 para M06-2X/6-311+G(d,p) en medio solvente. Las frecuencias vibracionales calculadas sin corregir y corregidas con el factor de escala se comparan con las frecuencias experimentales en la Tabla 3.

En los valores obtenidos, la banda vibracional del carbonilo C=O ubicado en el anillo de la maleimida de la N-fenilmaleimida y sus derivados, los métodos B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p) presentan las menores desviaciones en medio solvente con intervalos de variación entre 15.9 - 33.1 y 89.3 - 105.2 cm⁻¹, al ser comparadas con la frecuencia experimental y la calculada sin corregir con el factor escala para cada método respectivamente. Por su parte, en fase gas las moléculas de estudio aumentan el valor de las bandas de IR obtenidas al ser comparadas con los mismos valores, generando un intervalo de 56.6 – 76.3 cm⁻¹ en B3LYP/6-311+G(d,p) y 133.9 – 151.2 cm⁻¹ en M06-2X/6-311+G(d,p), y el efecto se debe a la polarización adicional que genera la constante dieléctrica del medio en la molécula. Cabe resaltar, que el método B3LYP/6-311+G(d,p) tanto en fase gas como medio solvente presenta las menores diferencias para esta banda a comparación del método de M06-2X/6-311+G(d,p).

De igual manera, para el método de B3LYP/6-311+G(d,p) fase gas y en medio solvente, los menores porcentajes de error de las frecuencias vibracionales para la N-fenilmaleimida sin corrección de factor escala se reflejan en la tensión C=C de la maleimida, tensión asimétrica C-C del fenilo, tensión del C-N-C de la maleimida y flexión de C-H del fenilo, errores que se encuentran por debajo del error de la banda de carbonilo a excepción de la tensión C=C (2.9%) de la maleimida
en medio solvente en el que se presenta un error superior a la banda del carbonilo (0.9%). Además, las bandas de tensión C-N-C y flexión C-H presentan los valores más cercanos con respecto a los valores experimentales (National Institute of Advanced Industrial Science and Technology, 2018). Para el método de M06-2X los errores de los diferentes modos de vibración se encuentran por debajo (2.6 - 5.6 %) de los errores de la banda de mayor frecuencia que oscila entre 5.2 - 7.8 % para medio solvente y fase gas respectivamente, no obstante, la tensión asimétrica del fenilo (2.8 - 2.6 %) exponen que su valor es muy cercano al valor experimental.

Por otra parte, la banda de tensión asimétrica y simétrica de N-H en el grupo amino de la *para*aminofenilmaleimida evidencia errores con desviaciones bajas entre 5.3 - 5.8 % y 6.3 - 6.8 % en fase gas y medio solvente para los dos métodos, respectivamente. Aunque cabe destacar que estos errores disminuyen al aplicar el factor escala como corrección a las frecuencias calculadas, en el cual sobresale el M06-2X/6-311+G(d,p) en medio solvente con un error de 0.1 – 0.3 % para las dos tensiones de N-H. Sin embargo, la N-fenilmaleimida al ser sustituida con el grupo amino se observa notoriamente que los errores para la mayoría de bandas son más bajos o aproximados a los valores de la N-fenilmaleimida, a excepción de las bandas de C=O en todos los métodos trabajados y flexión C-H del fenilo para el método B3LYP/6-311+G(d,p). De igual manera, al observar estas frecuencias calculadas con la corrección de factor escala estos errores son superiores, por lo cual que no se es necesario aplicar corrección para esta molécula.

La banda de tensión de C-N-C de la *para*-nitrofenilmaleimida obtuvo una desviación un poco superior a la calculada para la N-fenilmaleimida y otros derivados con respecto al valor experimental. Al mismo tiempo, para la *para*-metoxifenilmaleimida y *para*-nitrofenilmaleimida se evidencia que con la corrección del factor escala en las frecuencias calculadas disminuyen los errores en las mayorías de las bandas a excepción de la tensión en C-N-C de la maleimida para B3LYP/6-311+G(d,p) que manifiesta una tendencia alta. El estiramiento de esta banda de C-N-C se encuentra influenciado por el ángulo de torsión y de la posición del grupo sustituyente en el anillo del fenilo. En general las estructuras estudiadas en la Tabla 3, indican sesgos bajos para los dos métodos en medio solvente en comparación a la fase gas.

Tabla 3. Errores de las frecuencias vibracionales calculadas y frecuencias corregidas con el factor de escala de frecuencia vibracional vs experimental para la N-fenilmaleimida y algunos de sus derivados.

	Frecuencias Vibracionales (cm ⁻¹)									
	Calculada s	sin Corregir		Calcul	ada Corregida o	con el factor a	escala	_	Modo de	
B3LYP/6-3	11+G(d,p)	M06-2X/6-3	811+G(d,p)	B3LYP/6-3	11+G(d,p)	M06-2X/6-3	811+G(d,p)	Experimental	vibración ¹	
fase gas	solvente	fase gas	solvente	fase gas	solvente	fase gas	solvente		VIDIACION	
N-fenilmaleimid	la ²									
3249 (4.6 %)	3254 (4.7 %)	3259 (4.9 %)	3233 (4.0 %)	3141 (1.1 %)	3224 (3.8 %)	3023 (2.7 %)	3073 (1.1 %)	3107	v_s C-H sp^2 (mal)	
3228 (4.3 %)	3234 (4.5 %)	3237 (4.6 %)	3239 (4.6 %)	3121 (0.8 %)	3205 (3.5 %)	3003 (3.0 %)	3078 (0.5 %)	3095	v _{as} C-H sp ² (mal)	
3191 (3.8 %)	3190 (3.8 %)	3213 (4.5 %)	3203 (4.2 %)	3085 (0.4 %)	3160 (2.8 %)	2981 (3.0 %)	3044 (1.0 %)	3074	v C-H sp ² (fen)	
1776 (3.4 %)	1733 (0.9 %)	1851 (7.8 %)	1806 (5.2 %)	1717 (0.0 %)	1717 (0.0 %)	1717 (0.0 %)	1717 (0.0 %)	1717	v_{as} C=O (mal)	
1648 (3.1 %)	1645 (2.9 %)	1688 (5.6 %)	1688 (5.6 %)	1594 (0.3 %)	1630 (1.9 %)	1566 (2.1 %)	1604 (0.3 %)	1599	v C=C (mal)	
1530 (1.4 %)	1525 (1.1 %)	1551 (2.8 %)	1548 (2.6 %)	1479 (2.0 %)	1511 (0.2 %)	1439 (4.6 %)	1472 (2.5 %)	1509	v_{as} C-C (fen)	
1394 (0.1 %)	1399 (0.2 %)	1439 (3.1 %)	1439 (3.1 %)	1348 (3.4 %)	1386 (0.7 %)	1335 (4.4 %)	1368 (2.0 %)	1396	v C-N-C (mal)	
1142 (0.3 %)	1143 (0.2 %)	1191 (3.9 %)	1188 (3.7 %)	1104 (3.6 %)	1133 (1.2 %)	1104 (3.6 %)	1129 (1.4 %)	1146	δ C-H (fen)	
para-aminofenil	maleimida ³									
3672 (5.6 %)	3662 (5.3 %)	3709 (6.6 %)	3697 (6.3 %)	3514 (1.0 %)	3592 (3.3 %)	3406 (2.1 %)	3481 (0.1 %)	3478	v _{as} N-H (amino)	
3574 (5.8 %)	3566 (5.6 %)	3606 (6.8 %)	3596 (6.5 %)	3420 (1.3 %)	3497 (3.6 %)	3311 (2.0 %)	3386 (0.3 %)	3377	v_s N-H (amino)	
3200 (0.6 %)	3189 (0.9 %)	3234 (0.5 %)	3199 (0.6 %)	3062 (4.8 %)	3128 (2.8 %)	2969 (7.7 %)	3012 (6.4 %)	3218	v _s C-H sp ² (mal)	
3165 (2.5 %)	3171 (2.7 %)	3200 (3.6 %)	3181 (3.0 %)	3028 (1.9 %)	3110 (0.7 %)	2938 (4.9 %)	2996 (3.0 %)	3088	vas C-H sp ² (mal)	
3165 (2.8 %)	3171 (3.0 %)	3200 (4.0 %)	3181 (3.4 %)	3028 (1.6 %)	3110 (1.0 %)	2938 (4.5 %)	2996 (2.7 %)	3078	v C-H sp ² (fen)	
1772 (4.5 %)	1729 (2.0 %)	1847 (8.9 %)	1801 (6.2 %)	1696 (0.0 %)	1696 (0.0 %)	1696 (0.0 %)	1696 (0.0 %)	1696	v_{as} C=O (mal)	
1667 (0.8 %)	1659 (1.3 %)	1705 (1.5 %)	1690 (0.6 %)	1596 (5.0 %)	1627 (3.2 %)	1565 (6.8 %)	1592 (5.3 %)	1680	δ N-H	
1647 (2.0 %)	1644 (2.2 %)	1689 (0.5 %)	1688 (0.5 %)	1576 (6.2 %)	1612 (4.0 %)	1551 (7.7 %)	1589 (5.4 %)	1609	v C=C (mal)	
1549 (1.6 %)	1544 (1.3 %)	1574 (3.3 %)	1563 (2.5 %)	1482 (2.8 %)	1514 (0.6 %)	1446 (5.1 %)	1471 (3.5 %)	1524	vas C-C (fen)	
1405 (0.0 %)	1408 (0.2 %)	1452 (3.4 %)	1452 (3.4 %)	1344 (4.3 %)	1381 (1.7 %)	1333 (5.1 %)	1367 (2.7 %)	1405	v C-N-C (mal)	
1141 (2.4 %)	1147 (1.9 %)	1193 (2.1 %)	1191 (1.9 %)	1092 (6.6 %)	1125 (3.8 %)	1096 (6.3 %)	1122 (4.0 %)	1169	δ C-H (fen)	
para-metoxifeni	lmaleimida ⁴									
3247 (4.4 %)	3253 (4.6 %)	3270 (5.1 %)	3273 (5.2 %)	3133 (0.7 %)	3215 (3.4 %)	3029 (2.6 %)	3107 (0.1 %)	3110	v_s C-H sp^2 (mal)	
3226 (7.2 %)	3233 (7.4 %)	3243 (7.7 %)	3252 (8.0 %)	3112 (3.4 %)	3196 (6.2 %)	3004 (0.2 %)	3087 (2.6 %)	3010	vas C-H sp ² (mal)	
3191 (7.8 %)	3184 (7.6 %)	3218 (8.7 %)	3201 (8.1 %)	3078 (4.0 %)	3148 (6.3 %)	2981 (0.7 %)	3039 (2.7 %)	2960	v C-H sp ² (fen)	
3006 (5.8 %)	3022 (6.4 %)	3039 (7.0 %)	3045 (7.2 %)	2900 (2.1 %)	2988 (5.2 %)	2816 (0.9 %)	2891 (1.8 %)	2840	v C-H (metilo)	
1774 (3.7 %)	1731 (1.2 %)	1847 (7.9 %)	1802 (5.3 %)	1711 (0.0 %)	1711 (0.0 %)	1711 (0.0 %)	1711 (0.0 %)	1711	v_{as} C=O (mal)	
1654 (2.8 %)	1645 (2.3 %)	1698 (5.6 %)	1690 (5.1 %)	1595 (0.8 %)	1626 (1.1 %)	1573 (2.2 %)	1604 (0.2 %)	1608	v_s C-C (fen)	
1647 (3.7 %)	1644 (3.5 %)	1687 (6.2 %)	1685 (6.1 %)	1589 (0.1 %)	1625 (2.3 %)	1563 (1.6 %)	1600 (0.7 %)	1588	v C=C (mal)	
1545 (2.2 %)	1539 (1.8 %)	1571 (3.9 %)	1563 (3.5 %)	1490 (1.4 %)	1521 (0.7 %)	1455 (3.7 %)	1484 (1.8 %)	1511	v_{as} C-C (fen)	
1505 (4.4 %)	1497 (3.9 %)	1523 (5.7 %)	1506 (4.5 %)	1452 (0.7 %)	1479 (2.7 %)	1411 (2.1 %)	1430 (0.8 %)	1441	δ CH₃	
1404 (0.2 %)	1407 (0.4 %)	1450 (3.5 %)	1449 (3.4 %)	1354 (3.4 %)	1391 (0.7 %)	1343 (4.1 %)	1375 (1.8 %)	1401	v C-N-C (mal)	
1276 (2.2 %)	1266 (1.3 %)	1305 (4.5 %)	1296 (3.8 %)	1231 (1.4 %)	1251 (0.2 %)	1209 (3.2 %)	1231 (1.5 %)	1249	v C-O (mal)	
1194 (3.6 %)	1187 (3.0 %)	1190 (3.3 %)	1187 (3.1 %)	1151 (0.0 %)	1173 (1.8 %)	1102 (4.3 %)	1127 (2.2 %)	1152	δ C-H (fen)	
para-nitrofeniln	naleimida ⁵									
3251 (4.2 %)	3256 (4.4 %)	3258 (4.5 %)	3260 (4.5 %)	3148 (0.9 %)	3222 (3.3 %)	3023 (3.1 %)	3097 (0.7 %)	3119	v_s C-H sp^2 (mal)	
3231 (4.2 %)	3237 (4.4 %)	3236 (4.4 %)	3241 (4.5 %)	3128 (0.9 %)	3203 (3.3 %)	3004 (3.1 %)	3078 (0.7 %)	3101	v _{as} C-H sp ² (mal)	

	Frecuencias Vibracionales (cm ⁻¹)										
Calculada sin Corregir				Calcula	ada Corregida o	con el factor a e	escala	_	Mada da		
B3LYP/6-3	B3LYP/6-311+G(d,p) M06-2X/6-311+G(d,p)		B3LYP/6-311+G(d,p)		M06-2X/6-311+G(d,p)		Experimental	vibración ¹			
fase gas	solvente	fase gas	solvente	fase gas	solvente	fase gas	solvente	-	VIDIACION		
3221 (4.2 %)	3233 (4.6 %)	3234 (4.7 %)	3233 (4.6 %)	3119 (0.9 %)	3198 (3.5 %)	3001 (2.9 %)	3071 (0.6 %)	3090	v C-H sp ² (fen)		
1783 (3.3 %)	1745 (1.1 %)	1860 (7.8 %)	1817 (5.3 %)	1726 (0.0 %)	1726 (0.0 %)	1726 (0.0 %)	1726 (0.0 %)	1726	v_{as} C=O (mal)		
1649 (3.2 %)	1646 (3.0 %)	1692 (5.9 %)	1690 (5.8 %)	1597 (0.1 %)	1629 (1.9 %)	1571 (1.7 %)	1605 (0.5 %)	1598	v C=C (fen)		
1578 (3.6 %)	1536 (0.9 %)	1666 (9.4 %)	1639 (7.6 %)	1528 (0.3 %)	1520 (0.2 %)	1546 (1.5 %)	1557 (2.2 %)	1523	v NO ₂		
1530 (1.8 %)	1525 (1.5 %)	1555 (3.5 %)	1550 (3.1 %)	1481 (1.5 %)	1509 (0.4 %)	1443 (4.0 %)	1472 (2.1 %)	1503	v_{as} C-C (fen)		
1361 (0.1 %)	1343 (1.4 %)	1428 (4.8 %)	1420 (4.3 %)	1318 (3.2 %)	1329 (2.4 %)	1325 (2.7 %)	1349 (1.0 %)	1362	vas C-N-C (mal)		
1120 (2.4 %)	1118 (2.6 %)	1178 (2.6 %)	1137 (1.0 %)	1085 (5.5 %)	1106 (3.7 %)	1093 (4.8 %)	1080 (5.9 %)	1148	δ C-H (fen)		

Fuente: Adaptado de Spectral Database for Organic Compounds SDBS. Recuperado de: https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi

¹ v, tensión; v_{as} tensión asimétrica; v_{s} tensión simétrica; δ , flexión; (fen), anillo del fenilo; (mal), anillo de la maleimida.

² Factor de escala de frecuencia vibratoria: Método B3LYP/6-311+G(d,p) fase gas 0.9668; Método B3LYP/6-311+G(d,p) medio solvente acetona 0.9908; Método M06-2X/6-311+G(d,p) fase gas 0.9276; Método M06-2X/6-311+G(d,p) medio solvente acetona 0.9507.

³ Factor de escala de frecuencia vibratoria: Método B3LYP/6-311+G(d,p) fase gas 0.9571; Método B3LYP/6-311+G(d,p) medio solvente acetona 0.9809; Método M06-2X/6-311+G(d,p) fase gas 0.9182; Método M06-2X/6-311+G(d,p) medio solvente acetona 0.9417.

⁴ Factor de escala de frecuencia vibratoria: Método B3LYP/6-311+G(d,p) fase gas 0.9645; Método B3LYP/6-311+G(d,p) medio solvente acetona 0.9884; Método M06-2X/6-311+G(d,p) fase gas 0.9264; Método M06-2X/6-311+G(d,p) medio solvente acetona 0.9495.

⁵ Factor de escala de frecuencia vibratoria: Método B3LYP/6-311+G(d,p) fase gas 0.9680; Método B3LYP/6-311+G(d,p) medio solvente acetona 0.9891; Método M06-2X/6-311+G(d,p) fase gas 0.9280; Método M06-2X/6-311+G(d,p) medio solvente acetona 0.9499.

7.3. Análisis de orbitales y descriptores globales

La energía de los orbitales moleculares desocupados de más baja energía, LUMO, y ocupado de mayor energía, HOMO (Figueredo López et al., 2017), se muestran en la Tabla 4, de igual manera que los descriptores globales en relación a sus valores energéticos como: potencial químico (μ) , dureza (η) , suavidad (S), electrofilicidad (ω) , hiperdureza (γ) y función de respuesta de la electrofilicidad (μ^+) para la N-fenilmaleimida y sus derivados en posición *orto, meta y para*.

Tabla 4. Descriptores Globales de los diferentes compuestos derivados de la N-fenilmaleimida con los funcionales $B3LYP/6-311+G(d,p) ext{ y M06-2X/6-311+G(d,p)}$ en fase gas y fase solvente.

	Energías Descriptores Globales								
Compuestos	Е LUMO	Е номо	Е НОМО-1	μ	η	S	ω	γ	μ^+
	(eV)	(eV)	(eV)	(eV)	(eV)	(1/eV)	(eV)	(eV)	(eV)
			B3	LYP/6-311+0	G(d,p)				
Fase Gas									
N-fenilmaleimida	-3.08	-6.93	-7.28	-5.01	1.92	0.52	6.52	3.50	-4.05
orto-aminoFM	-3.11	-6.08	-7.02	-4.59	1.48	0.67	7.10	2.03	-3.85
meta-aminoFM	-2.99	-5.94	-6.88	-4.46	1.48	0.68	6.74	2.00	-3.72
para-aminoFM	-2.91	-5.90	-7.20	-4.40	1.50	0.67	6.47	1.70	-3.65
orto-carboxiFM	-3.05	-7.47	-7.70	-5.26	2.21	0.45	6.27	4.18	-4.16
meta-carboxiFM	-3.24	-7.23	-7.68	-5.24	1.99	0.50	6.88	3.54	-4.24
para-carboxiFM	-3.31	-7.23	-7.60	-5.27	1.96	0.51	7.08	3.55	-4.29
orto-fluorFM	-3.07	-7.26	-7.55	-5.16	2.10	0.48	6.35	3.92	-4.12
meta-fluorFM	-3.23	-7.08	-7.39	-5.16	1.92	0.52	6.92	3.53	-4.20
para-fluorFM	-3.21	-6.95	-7.65	-5.08	1.87	0.53	6.88	3.06	-4.14
orto-metoxiFM	-2.81	-6.54	-7.31	-4.67	1.87	0.54	5.85	2.96	-3.74
meta-metoxiFM	-3.01	-6.39	-6.98	-4.70	1.69	0.59	6.52	2.81	-3.85
para-metoxiFM	-2.99	-6.28	-7.30	-4.64	1.65	0.61	6.53	2.28	-3.81
orto-nitroFM	-3.22	-7.68	-8.01	-5.45	2.23	0.45	6.67	4.14	-4.34
meta-nitroFM	-3.46	-7.58	-8.14	-5.52	2.06	0.48	7.39	3.57	-4.49
para-nitroFM	-3.55	-7.63	-8.03	-5.59	2.04	0.49	7.67	3.67	-4.57
Medio Solvente	Acetona								
N-fenilmaleimida	-3.04	-7.25	-7.42	-5.14	2.10	0.48	6.30	4.02	-4.09
orto-aminoFM	-3.05	-6.14	-7.35	-4.59	1.54	0.65	6.83	1.88	-3.82
meta-aminoFM	-3.01	-6.10	-7.37	-4.56	1.55	0.65	6.70	1.83	-3.78
<i>para</i> -aminoFM	-2.98	-6.10	-7.37	-4.54	1.56	0.64	6.60	1.86	-3.76
orto-carboxiFM	-3.06	-7.60	-7.75	-5.33	2.27	0.44	6.26	4.40	-4.20
<i>meta</i> -carboxiFM	-3.11	-7.37	-7.74	-5.24	2.13	0.47	6.44	3.89	-4.17
para-carboxiFM	-3.14	-7.33	-7.66	-5.24	2.10	0.48	6.53	3.88	-4.19
orto-fluorFM	-3.10	-7.34	-7.60	-5.22	2.12	0.47	6.42	3.98	-4.16
meta-fluorFM	-3.10	-7.27	-7.52	-5.18	2.08	0.48	6.44	3.92	-4.14
para-fluorFM	-3.07	-7.23	-7.71	-5.15	2.08	0.48	6.37	3.68	-4.11
orto-metoxiFM	-3.00	-6.62	-7.46	-4.81	1.81	0.55	6.39	2.78	-3.90
meta-metoxiFM	-3.03	-6.58	-7.36	-4.81	1.77	0.56	6.52	2.76	-3.92
para-metoxiFM	-3.01	-6.61	-7.49	-4.81	1.80	0.56	6.42	2.72	-3.91
orto-nitroFM	-3.24	-7.66	-7.98	-5.45	2.21	0.45	6.71	4.10	-4.34
<i>meta-</i> nitroFM	-3.20	-7.54	-8.06	-5.37	2.17	0.46	6.63	3.83	-4.28
para-nitroFM	-3.21	-7.52	-7.92	-5.37	2.15	0.46	6.69	3.91	-4.29
			MO	6-2X/6-311+(G(d,p)				
Fase Gas									
N-fenilmaleimida	-1.93	-8.19	-8.63	-5.06	3.13	0.32	4.08	5.82	-3.49
orto-aminoFM	-1.95	-7.41	-8.36	-4.68	2.73	0.37	4.00	4.51	-3.31
meta-aminoFM	-1.85	-7.23	-8.18	-4.54	2.69	0.37	3.83	4.43	-3.19

		Energía	S		D	escriptore	s Globale	s	
Compuestos	Е LUMO	Е НОМО	Е НОМО-1	μ	η	S	ω	γ	μ^+
	(eV)	(eV)	(eV)	(eV)	(eV)	(1/eV)	(eV)	(eV)	(eV)
para-aminoFM	-1.78	-7.12	-8.57	-4.45	2.67	0.37	3.71	3.89	-3.11
orto-carboxiFM	-1.94	-8.63	-8.99	-5.29	3.34	0.30	4.18	6.31	-3.61
meta-carboxiFM	-2.08	-8.47	-9.01	-5.27	3.19	0.31	4.35	5.84	-3.68
para-carboxiFM	-2.13	-8.49	-8.95	-5.31	3.18	0.31	4.43	5.90	-3.72
orto-fluorFM	-1.91	-8.48	-8.82	-5.20	3.29	0.30	4.11	6.23	-3.56
meta-fluorFM	-2.07	-8.35	-8.73	-5.21	3.14	0.32	4.33	5.89	-3.64
para-fluorFM	-2.05	-8.21	-9.01	-5.13	3.08	0.32	4.26	5.37	-3.59
orto-metoxiFM	-1.67	-7.79	-8.52	-4.73	3.06	0.33	3.65	5.39	-3.20
meta-metoxiFM	-1.86	-7.72	-8.26	-4.79	2.93	0.34	3.92	5.32	-3.33
para-metoxiFM	-1.85	-7.54	-8.67	-4.70	2.84	0.35	3.88	4.55	-3.27
orto-nitroFM	-2.08	-8.94	-9.43	-5.51	3.43	0.29	4.43	6.36	-3.80
meta-nitroFM	-2.29	-8.86	-9.51	-5.58	3.28	0.30	4.74	5.91	-3.93
para-nitroFM	-2.37	-8.92	-9.42	-5.64	3.28	0.31	4.86	6.05	-4.01
Medio Solvente	Acetona								
N-fenilmaleimida	-1.90	-8.41	-8.78	-5.15	3.26	0.31	4.08	6.15	-3.53
orto-aminoFM	-1.95	-7.53	-8.57	-4.74	2.79	0.36	4.02	4.53	-3.34
meta-aminoFM	-1.87	-7.40	-8.46	-4.64	2.76	0.36	3.89	4.46	-3.25
para-aminoFM	-1.84	-7.33	-8.77	-4.58	2.75	0.36	3.82	4.06	-3.21
orto-carboxiFM	-1.95	-8.74	-9.07	-5.34	3.39	0.29	4.20	6.45	-3.65
meta-carboxiFM	-1.95	-8.60	-9.10	-5.28	3.32	0.30	4.19	6.14	-3.62
para-carboxiFM	-1.97	-8.59	-9.03	-5.28	3.31	0.30	4.22	6.18	-3.63
orto-fluorFM	-1.94	-8.60	-8.90	-5.27	3.33	0.30	4.17	6.37	-3.60
meta-fluorFM	-1.95	-8.49	-8.84	-5.22	3.27	0.31	4.17	6.19	-3.59
para-fluorFM	-1.92	-8.39	-9.07	-5.15	3.23	0.31	4.11	5.77	-3.54
orto-metoxiFM	-1.84	-7.97	-8.77	-4.90	3.07	0.33	3.92	5.32	-3.37
meta-metoxiFM	-1.90	-7.91	-8.52	-4.90	3.01	0.33	4.00	5.40	-3.40
para-metoxiFM	-1.87	-7.76	-8.86	-4.82	2.94	0.34	3.94	4.79	-3.35
orto-nitroFM	-2.09	-8.90	-9.39	-5.49	3.41	0.29	4.43	6.32	-3.79
meta-nitroFM	-2.02	-8.80	-9.44	-5.41	3.39	0.30	4.32	6.13	-3.72
para-nitroFM	-2.04	-8.83	-9.32	-5.44	3.40	0.29	4.35	6.31	-3.74

FM: Fenimaleimida.

Las energías de los orbitales LUMO's para la N-fenilmaleimida en fase gas y medio solvente acetona, no manifiestan una diferencia significativa entre las fases para los métodos de B3LYP/6-311+G(d,p) como el método de M06-2X/6-311+G(d,p). Además, cabe resaltar que, según el grupo sustituyente, se genera la siguiente tendencia de menor a mayor energía en los LUMO's según el grupo sustituyente, nitro < carboxi < fluor < sin sustitución < amino < metoxi, teniendo como referencia los valores del LUMO de la N-fenilmaleimida, por lo cual los grupos desactivantes manifiestan los menores valores energéticos y los activantes los mayores valores de energía. Por lo tanto, la N-fenilmaleimida al ser sustituida por grupos desactivantes manifiesta bajas energías en su orbitales moleculares desocupados, ataques nucleofílicos como lo expone Cortes & Castro en el análisis de estos sistemas (Cortes Hernandez & Castro, 2016).

Figura 9. Orbitales Moleculares LUMO de la N-fenilmaleimida y algunos derivados en fase gas y medio solvente acetona por el método B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p).

En la figura 9 y anexo 30 se puede visualizar que la función de onda para el orbital LUMO's de los derivados de la N-fenilmaleimida se localiza en los átomos de C, H y O del anillo de la maleimida donde se exhibe un solapamiento simétrico de C-C-H sp². La función de onda de la

orto-nitroFM en medio solvente presenta un comportamiento similar en la maleimida a lo mencionado anteriormente, sin embargo, la función de onda también se localiza en el grupo nitro con solapamiento sp²en C-N-O y muy débilmente en los carbonos del anillo del fenilo, la distribución del orbital es independiente del método utilizado.

Por su parte, al comparar entre las posiciones *orto, meta* y *para* en fase gas para los dos métodos, los orbitales LUMO's de la N-carboxifenilmaleimida y N-nitrofenilmaleimida correspondientes al grupo desactivantes fuertes, se observa que el LUMO es menos profundo en la posición *orto* y más profundo en *para*; en la N-aminofenilmaleimida y N-metoxifenilmaleimida a pesar de pertenecer al grupo de activantes fuertes su tendencia es diferente, en la N-aminofenilmaleimida el LUMO con menor valor energético corresponde a la posición *orto*, y el más energético para la sustitución *para*, lo contrario a la tendencia del grupo desactivante, por otro lado para la N-metoxifenilmaleimida la posición más profunda corresponde a la *meta* y menos profunda *orto*, esta diferencia entre activantes es debido a que la N-metoxifenilmaleimida presenta una densidad electrónica más alta que la N-aminofenilmaleimida. La N-fluorfenilmaleimida exhibe una tendencia semejante a la N-metoxifenilmaleimida. Además, en cada derivado mostrado en la Tabla 4, la posición *orto* (mayores ángulos de torsión) está asociada con grandes energías en los orbitales LUMO's para los derivados de N-fenilmaleimida (excepto la *orto*-aminoFM) en fase gas y en medio solvente (a excepción de la *orto*-aminoFM, *orto*-fluorFM y *orto*-nitroFM).

En contraste, las energías de los orbitales ocupados HOMO's de la N-fenilmaleimida para los métodos B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p) en fase gas y medio solvente, evidencian una diferencia energética entre fase gas y medio solvente. Lo anterior es debido actuación del solvente (polar aprótico) que no forma enlaces de hidrógeno con los nucleófilos, lo que genera libertad de reaccionar con los electrófilos en disolución y por lo tanto ocasiona que la N-fenilmaleimida presente orbitales HOMO's menos profundos en medio solvente que en fase gas. En los isómeros de posición *orto, meta y para*, de las demás moléculas se presenta la misma tendencia de la N-fenilmaleimida, energía HOMO en fase acuosa < fase gas, a excepción de la N-nitrofenilmaleimida que no se observa una diferencia significativa entre las fases.

Para los métodos de B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p), los orbitales HOMO's de las diferentes posiciones *orto, meta* y *para* de los derivados de la N-fenilmaleimida (tabla 4) en fase gas y medio solvente, se observa que los orbitales HOMO's más profundos se ubican en la posición *orto*. Además, se distingue que los orbitales HOMO's menos profundos de la N-fenilmaleimida sustituida pertenecen a la posición *meta* cuando los sustituyentes corresponden a los grupos carboxi y nitro (grupos desactivantes), y posición *para* para los derivados con grupos amino, metoxi (grupos activantes) y flúor (desactivante débil). Cabe mencionar, la siguiente tendencia que se presenta al comparar los valores energéticos de los HOMO's de la N-fenilmaleimida con sus derivados, siendo, nitro < carboxi < fluor < sin sustitución < metoxi < amino, por lo cual la N-nitrofenilmaleimida, es la estructura con la menor energía en el HOMO, y N-aminofenilmaleimida con la mayor energía en el HOMO, que se relaciona con energía necesaria para sustraer un electrón del sistema es decir con el mayor potencial de ionización. La tendencia de la energía en los orbitales HOMO se relaciona con el ángulo de torsión, en donde, el valor más profundo de energía de orbital se relaciona con el mayor ángulo diedro.

En la figura 10 y anexo 31, se visualiza la localización de la función de onda para los orbitales moleculares HOMO's de la N-fenilmaleimida y sus derivados. La función de onda en el caso de los grupos activantes prevalece en los carbonos del grupo fenilo, presentando una distribución en los carbonos paralelos a la posición de los grupos sustituyentes. En los grupos desactivantes fuertes y débiles la localización de la onda es muy similar a la fenilmalemida sin sustituir, el orbital se localiza en los C_{fenilo}-C_{fenilo}-C_{fenilo}-N_{maleimida} cercanos al ángulo de torsión, C_{fenilo}-C_{feni}

A partir de la aproximación de las diferencias finitas y los valores energéticos de los orbitales LUMO y HOMO, se ha calculado descriptores globales como el potencial químico, dureza, electrofilicidad y función de respuesta de la electrofilicidad. Los resultados se exponen en la tabla 4, mostrando que la N-fenilmaleimida en fase gas presenta valores altos de potencial químico en comparación al medio solvente.

Figura 10. Orbitales Moleculares HOMO de la N-fenilmaleimida y algunos derivados en fase gas y medio solvente acetona por el método B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p).

Igualmente, al comparar los isómeros de posición *orto*, *meta* y *para*, la posición *para* en los grupos activadores es la que exhibe mayor μ , excepto en los derivados de la fenilmaleimida en medio solvente con método B3LYP/6-311+G(d,p), en el cual la diferencia energética entre las distintas posiciones es mínima. De hecho, en el grupo desactivante débil (N-fluorFM) la posición *para* presenta mayor valor de μ . Para los grupos desactivantes fuertes la posición con mayor μ es la *meta*, sin embargo, la N-carboxiFM en medio solvente exhibe en las posiciones *meta* y *para* el mismo valor de μ . En fase gas la diferencia entre las tres posiciones es muy pequeña (aunque

predomina la posición *meta*), no obstante, la N-nitroFM en posición *orto* es la de mayor μ . Si comparamos el μ de la N-fenilmaleimida con respecto a sus derivados, la tendencia es la siguiente: μ nitro $< \mu$ carboxi $< \mu$ fluor $< \mu$ sin sustituir $< \mu$ metoxi $< \mu$ amino. Por lo cual, la estructura de mayor μ corresponde a la *para*-aminofenilmaleimida en fase gas para los dos métodos, es decir, este compuesto presenta la mayor capacidad de donar electrones.

Otro descriptor importante es la dureza, que está relacionada con la disminución de la reactividad química (López, Ensuncho, & Robles, 2013b). Según la tabla 4, al comparar la Nfenilmaleimida y sus derivados en diferentes fases, se encuentra en el medio solvente los mayores valores η . Además, la posición *orto* en comparación de *meta* y *para* presenta los mayores valores de dureza, por ende, la posición orto es más resistente a transferir carga al sistema y es menos reactiva (relacionado con el ángulo de torsión que presentan en esta posición), a excepción de la N-aminoFM para el método B3LYP/6-311+G(d,p), donde la posición más dura corresponde a la posición para. Cabe resaltar que las posiciones orto, meta y para presenta diferencias bajas en la dureza. La comparación entre los derivados de la fenilmaleimida contra la N-FM como patrón de referencia genera la siguiente tendencia: η amino $< \eta$ metoxi $< \eta$ sin sustituir $< \eta$ fluor $< \eta$ carboxi $< \eta$ nitro, donde las sustituciones por grupos electroatractores se consideran moléculas duras específicamente derivados en la posición orto con mayores ángulos de torsión (ver tablas de los anexos). En efecto, la orto-nitrofenilmaleimida (2.23, 2.21, 3.43 y 3.41 eV) para los métodos B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p) en fase gas y medio solvente acetona respectivamente, se considera la molécula más dura, por lo tanto, se esperaría que tuviera menor reactividad química.

La suavidad es el inverso de la dureza, por ello, al comparar entre las fases, la suavidad de la N-fenilmaleimida y sus derivados, con poca diferencia entre los valores predomina la fase gas sobre el medio solvente. Además, entre las posiciones de los sustituyentes la suavidad es muy cercano por lo que no hay diferencia significativa, para el M06-2X/6-311+G(d,p) en ambas fases y en medio solvente para B3LYP/6-311+G(d,p), a excepción en la posición *para* en fase gas con B3LYP/6-311+G(d,p). No obstante, al comparar la suavidad de la N-FM contra los diferentes grupos que la sustituyen, exhibe la siguiente tendencia: *S* nitro < *S* carboxi < *S* fluor ≤ *S* sin sustituir < *S* metoxi < *S* amino, por lo cual se determina que los grupos activantes son las moléculas blandas,

las más suave y las de mayor reactividad. Destacando a la N-aminofenilmaleimida como la molécula más suave seguida de la *para*-metoxifenilmaleimida. En caso contrario de la dureza los ángulos de torsión menores favorecen la suavidad por su libre rotación.

La hiperdureza (γ) es otro descriptor global que relaciona la reactividad de los sistemas moleculares. Al comparar entre las fases, para el método de M06-2X/6-311+G(d,p), se observa una tendencia donde la γ en medio solvente > γ en fase gas, a excepción de las moléculas de *orto*metoxiFM y *orto*-nitroFM. Igualmente, en el método de B3LYP/6-311+G(d,p) entre fases, la γ en medio solvente presenta mayor valor, sin embargo, los grupos activantes en posición orto y meta, ocurre lo contrario, la γ en fase gas > γ en medio solvente. Por otro lado, al comparar la γ de los derivados de la N-FM entre posiciones en ambos métodos, la posición orto exhibe los valores más altos correspondiente a la γ , por lo tanto, estas estructuras al estar en esta posición adquieren la característica de ser menos reactivas. En caso contrario, los menores valores de γ se presentan en los grupos activantes y desactivantes débil en la posición para y en los grupos desactivantes fuertes en *meta*, por ende, estos grupos son más reactivos. Al comparar las γ de los derivados de la N-FM, se origina la siguiente tendencia en referencia a la N-FM: γ amino $\langle \gamma$ metoxi $\langle \gamma$ para-fluor $\langle \gamma$ sin sustituir $< \gamma$ orto-fluor, γ meta-fluor $< \gamma$ carboxi $< \gamma$ nitro, a excepción para el método B3LYP/6-311+G(d,p) en medio solvente acetona, cuya tendencia corresponde: γ amino $< \gamma$ metoxi $< \gamma$ fluor $< \gamma$ meta-nitro, γ meta-carboxi $< \gamma$ para-carboxi, γ para-nitro $< \gamma$ N-FM $< \gamma$ orto-nitro, γ ortocarboxi. Por consiguiente, las estructuras de mayor hiperdureza para el método de B3LYP/6-311+G(d,p) en fase gas y medio solvente corresponde a la *orto*-carboxiFM de igual manera en medio solvente para M06-2X/6-311+G(d,p) sin embargo en fase gas corresponde a la ortonitroFM, siendo los derivados menos reactivos, y la molécula que exhibe el valor más pequeño de γ para ambos métodos es la *para*-aminoFM lo que la define como el derivado de la N-FM más reactivo.

Con respecto a la función de respuesta de la electrofilicidad (μ^+), en la tabla 4 se evidencia que entre la fase gas y el medio solvente para la N-FM y algunos de sus derivados las desviaciones son mínimas para los dos métodos, a excepción de la *para*-nitroFM, *meta*-nitroFM y *orto*-metoxiFM que presentan los máximos valores en medio solvente. Los grupos activantes presentan mayor μ^+ en fase gas, mientras que los grupos desactivantes en medio solvente. De otro lado, según la posición del sustituyente, los grupos desactivantes muestran mayor valor en la posición *orto* en fase gas, y *meta* en medio solvente, no obstante, los grupos desactivantes débiles en medio solvente la posición *para* corresponde a la posición con mayor μ^+ ; en los grupos activantes cuando el sustituyente se refiere a la N-metoxiFM la posición de mayor energía es la *orto* y para la N-aminoFM es la *para*. Con respecto al grupo sustituyente, se presenta la siguiente tendencia de mayor a menor: μ^+ amino > μ^+ metoxi > μ^+ N-FM > μ^+ fluor > μ^+ carboxi > μ^+ nitro, en fase gas como solvente para los dos métodos, tomando como referencia a la N-FM. Por lo anterior, se determina que la molécula de *para*-aminoFM presenta el mayor μ^+ en ambas fases y los menores valo res de μ^+ en fase gas exhiben a la *para*-nitroFM, y en medio solvente el *orto*-nitroFM.

El índice de electrofilicidad es uno de los descriptores que mejor ayuda a entender el comportamiento electrofílico en las moléculas. Para el método de B3LYP/6-311+G(d,p), la Nfenilmaleimida presenta un mayor valor en fase gas que en medio solvente, y para el M06-2X/6-311+G(d,p) no hay una diferencia significativa entre fases. Asimismo, al comparar las posiciones de los sustituyentes de los derivados de la N-fenilmaleimida para ambos métodos y fases, se obtuvo para la N-aminoFM que ω orto > ω meta > ω para, en la N-metoxiFM ω meta > ω para > ω orto, N-carboxiFM ω para > ω meta > ω orto, sin embargo para la N-fluorFM y N-nitroFM la tendencia de ω según la posición del grupo sustituyente varía según la fase en que se encuentre, por lo tanto para N-fluorFM en fase gas la tendencia es la siguiente ω meta > ω para > ω orto y en medio solvente es ω *meta* > ω *orto* > ω *para*, a pesar de presentar diferencia, la posición *meta* exhibe los mayores valores de ω ; en la N-nitroFM la tendencia en fase gas es igual a la del N-carboxiFM, pero en medio solvente es ω orto > ω para > ω meta. Al comparar la N-FM con sus derivados se manifiesta la siguiente tendencia para el método de B3LYP/6-311+G(d,p) fase gas ω metoxi < ω sin sustituir < ω fluor < ω carboxi < ω amino < ω nitro y en medio solvente acetona ω sin sustituir $< \omega$ fluor $< \omega$ carboxi $< \omega$ metoxi $< \omega$ nitro $< \omega$ amino; para el M06-2X/6-311+G(d,p) fase gas ω metoxi < ω amino < ω sin sustituir < ω fluor < ω carboxi < ω nitro y en medio solvente ω amino $< \omega$ metoxi $< \omega$ sin sustituir $< \omega$ fluor $< \omega$ carboxi $< \omega$ nitro. Por lo cual, el derivado de fenilmaleimida con el mayor valor de electrofilicidad, más electrofílica y con mayor probabilidad de interactuar con especies nucleofílicas corresponde a la para-nitroFM para los dos métodos en fase gas, y en medio solvente corresponde a la orto-aminoFM y orto-nitroFM en B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p) respectivamente. De forma contraria, la molécula de menor

valor de ω y más nucleofílica en ambos métodos en fase gas corresponde a la *orto*-metoxiFM, y en medio solvente la *orto*-carboxiFM y *para*-aminoFM para los métodos B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p) respectivamente. Es decir que los derivados de la fenilmaleimida al encontrarse en medio solvente acetona cambian algunas propiedades globales y por ende su reactividad.

Por último, cabe resaltar que el ángulo de torsión es un parámetro estructural que influye en la tendencia de los descriptores globales. En la tabla de los anexos se destaca que la posición *orto* de los derivados de la N-FM en fase gas en los dos métodos reflejan los mayores ángulos de torsión. En concordancia con los resultados obtenidos de los descriptores globales analizados anteriormente se manifiestan una correlación con los ángulos de torsión. Si el ángulo de torsión es mayor en la posición *orto* esto implica impedimento estérico en las estructuras y bajas energía en los orbitales HOMO's, bajos valores para el potencial químico y la suavidad, sin embargo, también refleja los valores más elevados de dureza e hiperdureza.

7.4. Potencial electrostático

Para analizar un poco la reactividad de los derivados de la N-fenilmaleimida frente al ataque nucleofílico, se calcularon los mapas de potencial molecular electrostático (MEP) tanto en fase gas como medio solvente para los métodos de B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p). El potencial electrostático molecular es una herramienta básica para la interpretación de la reactividad molecular de especies electrofílicas, ya que, permite visualizar aquellas regiones de una molécula susceptibles a un ataque nucleofílico, es decir identificación de los sitios reactivos (López, Ensuncho, & Robles, 2013a). En la figura 11 y el anexo 32, se presentan los MEPs obtenidos para los derivados de la N-fenilmaleimida. La gama de colores adoptado en las figuras muestra que las regiones con potenciales positivos son aquellas con croma azul y las regiones con potencial negativo corresponden al croma rojo.

Figura 11. Potencial electrostático de la N-fenilmaleimida y algunos derivados en fase gas y medio solvente por el método B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p).

En la figura 11 la N-fenilmaleimida evidencia que el ataque electrofílico ocurriría a través de la región del fenilo (zona verde-amarilla), mientras que en la región de la imida (zona azul-verde) exhibe un comportamiento para el ataque nucleofílico. La N-fenilmaleimida al ser sustituida por grupos activantes y desactivantes en las posiciones *orto, meta* y *para* en fase gas y medio solvente producen cambio en sus propiedades. Sin embargo, los derivados de la N-fenilmaleimida en comparación de la N-FM no manifiesta cambio alguno en la región de la imida (azul-verde), y por ende esta región tendrá mayor probabilidad al ataque nucleofílico sin importar el grupo y la posición de sustitución. El cambio del potencial electrostático, sucede en la región del fenilo tanto

para los grupos activante y desactivantes débiles, el croma de los MEP's de la región del fenilo corresponde a un verde-amarillo al igual que la N-FM pero en una intensidad diferente, mientras en los grupos desactivantes la región del fenilo se torna a una coloración verde-azul igual que la región de la imida, por lo cual estas estructuras quedan con sitios desprovistos de densidad electrónica, y por esta razón adquieren mayor carácter electrofílicos, baja reactividad y mayor probabilidad a ataques nucleofílicos. Además, se puede sugerir la siguiente tendencia del potencial electrostático en la región del fenilo: aminoFM > metoxiFM > sin sustituir > fluorFM > carboxiFM > nitroFM. En concordancia con los resultados previos, el grupo sustituyente *para*-nitroFM en fase gas para ambos métodos y *orto*-nitroFM en medio solvente para el método de M06-2X/6-311+G(d,p), exhiben las zonas con mayor potencial positivo de los derivados estudiados y más susceptibles a ataques nucleofílicos. De igual manera, algunos de los derivados de la N-FM en posición *orto* manifiestan relación con el aumento o disminución de la densidad electrónica y los valores del ángulo de torsión.

7.5. Cargas NBO

Las cargas atómicas o análisis de población desempeñan un papel importante en la polarizabilidad molecular, momento dipolar, estructura electrónica y muchas propiedades relacionadas con los sistemas moleculares (Ramazani, Sheikhi, & Yahyaei, 2017). Además, las distribuciones de carga sobre los átomos sugieren la donación o absorción de la transferencia electrónica sobre la molécula. En las figuras 11 y el anexo 32, se expone la distribución atómica de la carga NBO de los compuestos estudiados en forma gráfica y mediante gama de colores, en el cual el croma verde corresponde a cargas positivas y el croma rojo a cargas negativas, ayudando a identificar la variación de la carga en los átomos de la N-FM al ser sustituida por varios grupos y en diferentes posiciones (*orto, meta y para*).

Figura 12. Distribución de carga atómica NBO de la N-fenilmaleimida y algunos de sus derivados en fase gas y medio solvente por el método de B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p).

El análisis de carga NBO de la N-FM demuestra que los átomos de carbono presentan magnitudes de carga positiva y negativa, donde la carga positiva más alta corresponde a los átomos C14 y C19 del grupo carbonilo del anillo de la maleimida con valores iguales a 0.669e y 0.687e por el método de B3LYP/6-311+G(d,p), y 0.693e y 0.709e por el método M06-2X/6-311+G(d,p) en fase gas y medio solvente respectivamente. No obstante, los átomos de carbono C2, C3, C4, C6 y C8 del anillo del fenilo exhiben cargas negativas a excepción de C1 que se encuentra enlazado con N20 de la maleimida con carga levente negativa. Los átomos de hidrógeno presentan carga positiva sin embargo H16 y H18 de la maleimida exhibe las cargas positivas más alta (0.232e en fase gas, 0.243e en fase solvente por el método B3LYP y 0.238e fase gas, 0.251e en fase solvente por el método de M06-2X) en comparación con otros átomos de hidrógeno, la diferencia en la densidad eléctrica corresponde a la ubicación de estos átomos en un grupo carbonilo con carbono α - β insaturado en el anillo de maleimida, que puede corresponder a un aceptor de Michael, que deja con deficiencia de carga los átomos de carbono.

Las cargas NBO de los átomos en el anillo de maleimida no se ven afectadas por la sustitución en las diferentes posiciones de grupos electroatractores y electrodonadores en el anillo aromático. Sin embargo, en el grupo del fenilo, los átomos de carbono reflejan una variación superior a 0.01e en comparación a la N-FM. El carbono más afectado a este cambio se refleja en el carbono sustituido, valores que oscilan aproximadamente entre 0.2e - 1.0e con mayores diferencias en los grupos activadores. Por otro lado, en la tabla 5 se evidencian los valores de las cargas NBO de los anillos de maleimida y fenilo de las moléculas de estudio, exhibiendo en el anillo de maleimida carga total negativa y carga total positiva en el grupo fenilo. Asimismo, se observa que las poblaciones NBO de los compuestos no difiere más de 0.004e para ambos métodos entre fase gas como medio solvente. En un análisis más específico, los grupos sustituyentes amino (*para* y *orto*) y metoxi (*para*) en ambos métodos y fases muestran valores superiores a la N-FM (grupos que aportan densidad electrónica). Lo contrario ocurre en la *para*-nitroFM y *orto*-nitroFM que presentan los valores más bajos debido a los grupos electroatractores. Por último, en la distribución de cargas no existe una relación directa entre el ángulo de torsión y el análisis de población NBO.

Tabla 5. Carga electroestática total en el grupo de la maleimida y fenilo de la N-fenilmaleimida y sus derivados en fase gas y medio solvente por el método de B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p).

	Carga Total (NBO)									
		B3L	YP	j	()	M06	-2X			
Compuestos	GAS		SOLVE	SOLVENTE			SOLVENTE			
-	Maleimida	Fenilo	Maleimida	Fenilo	Maleimida	Fenilo	Maleimida	Fenilo		
N-fenilmaleimida	-0.242	0.240	-0.256	0.256	-0.243	0.241	-0.246	0.244		
orto-aminoFM	-0.253	0.253	-0.265	0.265	-0.253	0.251	-0.257	0.256		
<i>meta</i> -aminoFM	-0.247	0.247	-0.264	0.267	-0.243	0.243	-0.252	0.250		
<i>para</i> -aminoFM	-0.256	0.257	-0.271	0.269	-0.253	0.254	-0.262	0.263		
orto-carboxiFM	-0.235	0.235	-0.245	0.244	-0.230	0.231	-0.232	0.233		
meta-carboxiFM	-0.229	0.230	-0.237	0.236	-0.230	0.231	-0.231	0.232		
<i>para</i> -carboxiFM	-0.222	0.221	-0.225	0.229	-0.227	0.225	-0.226	0.224		
<i>orto</i> -fluorFM	-0.233	0.233	-0.237	0.237	-0.229	0.227	-0.232	0.232		
meta-fluorFM	-0.228	0.230	-0.241	0.240	-0.229	0.229	-0.234	0.234		
<i>para</i> -fluorFM	-0.238	0.240	-0.251	0.251	-0.238	0.240	-0.243	0.242		
orto-metoxiFM	-0.251	0.249	-0.253	0.257	-0.246	0.244	-0.255	0.255		
<i>meta</i> -metoxiFM	-0.241	0.241	-0.258	0.257	-0.240	0.238	-0.243	0.243		
<i>para</i> -metoxiFM	-0.250	0.249	-0.264	0.265	-0.247	0.249	-0.252	0.251		
<i>orto</i> -nitroFM	-0.208	0.207	-0.214	0.214	-0.205	0.204	-0.208	0.209		
<i>meta</i> -nitroFM	-0.214	0.217	-0.221	0.219	-0.218	0.214	-0.218	0.218		
<i>para</i> -nitroFM	-0.207	0.209	-0.206	0.206	-0.215	0.214	-0.211	0.212		

8. Conclusiones

- Se logró el estudio de las propiedades estructurales con mayor énfasis en el ángulo de torsión e isomería de posición, los descriptores de reactividad globales que se relacionan con las propiedades energéticas y reactividad química, así como las propiedades electrónicas con los potenciales electrostáticos y cargas NBO de la N-fenilmaleimida, N-aminofenilmaleimida, N-metoxifenilmaleimida, N-fluorfenilmaleimida, N-carboxifenilmaleimida y N-nitrofenilmaleimida en las posiciones *orto, meta y para*, mediante cálculos de la teoría de los funcionales de la densidad B3LYP y M06-2X con un conjunto de base gausiana 6-311+G(d,p) en fase gas y medio solvente acetona.
- La comparación de los parámetros estructurales de las moléculas de estudio refleja concordancia con los valores experimentales de monocristal e infrarrojo, sin embargo, el parámetro estructural con mayor variación es el ángulo de torsión entre el anillo de maleimida y el anillo de fenilo al comparar las dos fases por los dos métodos. Lo anterior está relacionado con el efecto de la polarizabilidad que afecta la distribución electrónica de las moléculas en el medio solvente.
- Los descriptores globales para las moléculas de estudio presentan similitud en la mayoría de las tendencias que la fase gas para los dos métodos, no obstante, algunas de ellas como el índice de electrofilicidad cambian la distribución por sustituyente y posición del grupo.
- Los descriptores de reactividad evidencian una mejor reactividad en fase solvente independiente del método para los sistemas con menor ángulo de torsión, grupos electroatractores e isómero estructural en posición *para* en relación a los ataques nucleofílicos. En ataques electrofílicos la variación es generada por el grupo (electrodonadores) e isomería en posición *orto* o *meta*.
- El análisis gráfico de cargas (potencial electrostático) y numérica por poblaciones NBO, no muestra una diferencia significativa entre las fases y los métodos utilizados para las moléculas de estudio.

9. Recomendaciones

- Para estudios posteriores se recomienda realizar comparaciones de los cálculos obtenidos con otros métodos DFT como M06-2X/GD3, wB97XD, CAM-B3LYP, LC-wPBE con el conjunto de bases gaussianas 6-311++G(d,p), 6-311+G(2d,2p), bases de Aldrich y en otro tipo de medio solvente.
- Determinar para todas las estructuras obtenidas los descriptores locales, el análisis de carga NBO y evaluar con otros derivados de la N-fenilmaleimida.
- Calcular los descriptores de reactividad con los aniones y cationes de las moléculas estudiadas.

10. Referencias Bibliográficas

Abbaz, T., Bendjeddou, A., & Villemin, D. (2018). Molecular structure, HOMO, LUMO, MEP, natural bond orbital analysis of benzo and anthraquinodimethane derivatives. *Pharmaceutical and Biological Evaluations*, *5*(2), 27-39. https://doi.org/10.26510/2394-0859.pbe.2018.04

Adewale, B. I., & Banjo, S. (2013). Theoretical study on structural and electronic properties of 4-[(E)-[4-(trifloromethyl)-1,3-benzothiazol-2-yl]azo]naphthalen-1-ol and 1-[(E)-[4-(trifloromethyl)- 1,3-benzothiazol-2-yl]azo]naphthalen-2-ol using density functional theory (DFT). *International Journal of Physical Sciences*, 8, 12. https://doi.org/10.5897/IJPS2013.3966

Andersson, M. P., & Uvdal, P. (2005). New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-ζ Basis Set 6-311+G(d,p). *The Journal of Physical Chemistry A*, 109(12), 2937-2941. https://doi.org/10.1021/jp045733a

Royal Society of Chemistry. (2003). *Annual Reports on NMR Spectroscopy* (First edition, Vol. 49). Elsevier Science Ltd.

Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. *The Journal of Chemical Physics*, 98(7), 5648-5652. https://doi.org/10.1063/1.464913

Chen, Z., & Yang, J. (2006). The B3LYP hybrid density functional study on solids. *Frontiers* of *Physics in China*, 1(3), 339-343. https://doi.org/10.1007/s11467-006-0026-8

Cortes Hernandez, H. F., & Castro, M. (2016). Effects of the charge on the structural, electronic and reactivity properties of 43 substituted N–Phenylmaleimides. A DFT study. *Journal of Molecular Structure*, *1125*, 79-92. https://doi.org/10.1016/j.molstruc.2016.06.063

Cramer, C. J. (2004). *Essentials of computational chemistry: theories and models* (2nd ed). Chichester, West Sussex, England; Hoboken, NJ: Wiley.

Figueredo López, S. F., Páez, M. S., & Torres, F. (2017). Índices de poder electrofílico global y local para el estudio teórico de la reactividad química: aplicación a derivados carbonilo α , β -insaturados. *Química Nova*. https://doi.org/10.21577/0100-4042.20170031

Fock, V. (1930). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik, 61(1-2), 126-148. https://doi.org/10.1007/BF01340294

Fruk, L., & Graham, D. (2004). CCDC 212029: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/cc73mnl

Geerlings, P., De Proft, F., & Langenaeker, W. (2003). Conceptual Density Functional Theory. *Chemical Reviews*, *103*(5), 1793-1874. https://doi.org/10.1021/cr990029p

Kajfež, T., Kamenar, B., Piližota, V., & Fleš, D. (2003). Crystal and Molecular Structures of *N*-Phenylmaleimide and *N*-Phenyl-2,3-dimethylmaleimide. *Croatica Chemica Acta*, 76(4), 343-346.

Kajfež, T., Kamenar, B., Piližota, V., & Fleš, D. (2004). CCDC 205841: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/cc6x61b

Kohn, W., & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. *Physical Review*, *140*(4A), A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133

López, J. M., Ensuncho, A. E., & Robles, J. (2013a). Estudio Teórico de la Reactividad Química y Biológica de Cisplatino y algunos Derivados con Actividad Anticancerosa. *Información tecnológica*, 24(3), 3-14. https://doi.org/10.4067/S0718-07642013000300002

López, J. M., Ensuncho, A. E., & Robles, J. R. (2013b). Global and local reactivity descriptors for the design of new anticancer drugs based on cis-platinum(II). *Química Nova*, *36*(9), 1308-1317. https://doi.org/10.1590/S0100-40422013000900006

McLean, A. D., & Chandler, G. S. (1980). Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11-18. *The Journal of Chemical Physics*, 72(10), 5639-5648. https://doi.org/10.1063/1.438980

Miller, C. W., Hoyle, C. E., Valente, E. J., Zubkowski, J. D., & Jönsson, E. S. (2000). N-Arylmaleimide derivatives. *Journal of Chemical Crystallography*, *30*(9), 563-571. https://doi.org/10.1023/A:1011345925270

Miller, C. W., Hoyle, C. E., Valente, E. J., Zubkowski, J. D., & Jonsson, E. S. (2001). CCDC 148524: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/cc4zk3r

Monajemi, H., Mohd. Zain, S., Ishida, T., & Wan Abdullah, W. A. T. (2018). Quantum Mechanical Tunnelling Through the Catalytic Effects of A2451 Ribosomal Residue During a Stepwise Peptide Bond Formation. *Biochemistry and Cell Biology*. https://doi.org/10.1139/bcb-2018-0220

Moreno-Fuquen, R., Tenorio, J. C., Ellena, J., De Simone, C. A., & Ribeiro, L. (2011). 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic acid: X-ray and DFT-calculated structure. *Acta Crystallographica Section C Crystal Structure Communications*, 67(2), 67-70. https://doi.org/10.1107/S0108270111002265

Moreno-Fuquen, R., Tenorio, J. C., Ellena, J., de Simone, C.A., & Ribeiro, L. (2014). CCDC 817045: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/ccwf69s

Moreno-Fuquen, R., Valencia, H., Abonia, R., Kennedy, A. R., & Graham, D. (2003). *p* - Nitrophenylmaleimide. *Acta Crystallographica Section E Structure Reports Online*, *59*(11), 1717-1718. https://doi.org/10.1107/S1600536803022426

Moreno-Fuquen, R., Valencia, H., Abonia, R., Kennedy, A. R., & Graham, D. (2004). CCDC 226980: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/cc7m5yy

Moreno-Fuquen, R., Valencia, H., Pardo, Z. D., D'Vries, R., & Kennedy, A. R. (2006a). CCDC 613626: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/ccnljd4

Moreno-Fuquen, R., Valencia, H., Pardo, Z. D., D'Vries, R., & Kennedy, A. R. (2006b). N-(3-Nitro-phenyl)-maleimide. *Acta Crystallographica Section E: Structure Reports Online*, 62(7), 2734-2735. https://doi.org/10.1107/S1600536806020940

National Institute of Advanced Industrial Science and Technology. (2018). Spectral Database for Organic Compounds, SDBS. Recuperado 26 de mayo de 2019, de https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi

Noldin, V. F., Vigil, S. V. G., De Liz, R., Cechinel-Filho, V., Fröde, T. S., & Creczynski-Pasa, T. B. (2011). N-phenylmaleimide derivatives as mimetic agents of the pro-inflammatory process: myeloperoxidase activation. *Pharmacological Reports*, *63*(3), 772-780. https://doi.org/10.1016/S1734-1140(11)70589-8

Parker, S. F. (2006). Vibrational spectroscopy of N-phenylmaleimide. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 63(3), 544-549. https://doi.org/10.1016/j.saa.2005.06.001

Perdew, J. P. (2001). Jacob's ladder of density functional approximations for the exchangecorrelation energy. *AIP Conference Proceedings*, 577, 1-20. https://doi.org/10.1063/1.1390175

Ramazani, A., Sheikhi, M., & Yahyaei, H. (2017). Molecular Structure, NMR, FMO, MEP and NBO Analysis of ethyl-(Z)-3-phenyl-2-(5-phenyl-2H-1,2,3,4-tetraazol-2-yl)-2-propenoate Based on HF and DFT Calculations. *Chemical Methodologies*, *1*(Issue 1. pp. 1-93), 32-54. https://doi.org/10.22631/chemm.2017.95510.1006

Riley, K. E., Op't Holt, B. T., & Merz, K. M. (2007). Critical Assessment of the Performance of Density Functional Methods for Several Atomic and Molecular Properties. *Journal of Chemical Theory and Computation*, *3*(2), 407-433. https://doi.org/10.1021/ct600185a

Rivas, B. L., & del C. Pizarro, G. (1989). Copolymerization via zwitterions of p-Nitrophenyl maleimide with oxazoline derivatives-15. *European Polymer Journal*, 25(12), 1227-1231. https://doi.org/10.1016/0014-3057(89)90086-4

Rueda Ramírez, A. F. (2013). Estudio teórico de las propiedades electrónicas y energéticas de las 1,4-dihidropiridinas. 42.

Ruiz, R., Calvo, L. G., Incháustegui, J. P., & Pumachagua, R. (2013). Evaluación teórica de la reactividad química en especies indólicos 5-sustituido. *Revista de la Sociedad Química del Perú*, 79(2), 107-115.

San Fabian, E. (s. f.). M06-2X. Recuperado 1 de agosto de 2018, de https://web.ua.es/cuantica/docencia/CCEM/CCEM-h/node139.html

Sanchez, H. A. V., Sandoval, J. J., & Duran, M. A. (2007). Síntesis y determinación estructural de la N-(3-Carboxifenil) Maleimida. *Scientia Et Technica*, *XIII*(37), 507-512.

Schwarzer, A., & Weber, E. (2008). Influence of Fluorine Substitution on the Crystal Packing of *N* -Phenylmaleimides and Corresponding Phthalimides. *Crystal Growth & Design*, 8(8), 2862-2874. https://doi.org/10.1021/cg7011638

Schwarzer, A., & Weber, E. (2009). CCDC 721376: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/ccs6n6t

Sirajuddin, M., Ali, S., & Tahir, M. N. (2012). CCDC 889907: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/ccyw0ph

Sousa, S. F., Fernandes, P. A., & Ramos, M. J. (2007). General Performance of Density Functionals. *The Journal of Physical Chemistry A*, *111*(42), 10439-10452. https://doi.org/10.1021/jp0734474

Suárez, D. (2012). Objetivos y características de la química computacional y su aplicación al estudio de los materiales de carbono. *Boletín del Grupo Español del Carbón*, (25), 23-28.

Tabbi, H., Abbaz, T., Bendjeddou, A., & Villemin, D. (s. f.). *Structural, HOMO-LUMO, NBO, NLO Analysis and Reactivity Descriptors of a Series of Bis-fused Tetrathiafulvalene*. (24), 9.

Tsuneda, T. (2014). *Density functional theory in quantum chemistry*. Recuperado de http://public.eblib.com/choice/publicfullrecord.aspx?p=1698251

Valencia, H. A., Hernández, H. F. C., & Yépes, P. N. M. (2007). Síntesis y caracterizacion del sistema N-(o-nitrofenil)maleimida). *Scientia Et Technica*, *13*(34), 541-545.

Vivas-Reyes, R., & Zapata, J. (2008). Theoretical study of the reactivity of conformations and configurations of Omega-3 fatty acids through descriptors of molecular reactivity using the density functional theory (DFT). *Revista Colombiana de Química*, (2), 16.

Zhang, I. Y., Wu, J., & Xu, X. (2010). Extending the reliability and applicability of B3LYP. *Chemical Communications*, *46*(18), 3057-. https://doi.org/10.1039/c000677g

Zhao, Y., & Truhlar, D. G. (2008a). Density Functionals with Broad Applicability in Chemistry. *Accounts of Chemical Research*, *41*(2), 157-167. https://doi.org/10.1021/ar700111a

Zhao, Y., & Truhlar, D. G. (2008b). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theoretical Chemistry Accounts*, *120*(1-3), 215-241. https://doi.org/10.1007/s00214-007-0310-x

Zhao, Y., & Truhlar, D. G. (2011). Applications and validations of the Minnesota density functionals. *Chemical Physics Letters*, 502(1-3), 1-13. https://doi.org/10.1016/j.cplett.2010.11.060

11. Anexos

Anexo 1. Estructura optimizada de la *para*-carboxifenilmaleimida en fase gas por el método B3LYP/6-311+G(d,p).

Anexo 2. Errores de los parámetros estructurales de la para-carboxifenilmaleimida.

			Valor		
Parámetro	B3LYP/6-3	11+G(d,p)	M06-2X/6-3	511+G(d,p)	Valui
	fase gas	solvente	fase gas	solvente	Experimental
Longitud de enlace	e (Å)				
C1-C2	1.398 (0.6 %)	1.397 (0.5 %)	1.394 (0.4 %)	1.394 (0.3 %)	1.389
C1-C3	1.399 (0.8 %)	1.397 (0.7 %)	1.395 (0.5 %)	1.394 (0.5 %)	1.388
C2-C4	1.389 (1.2 %)	1.389 (1.2 %)	1.387 (1.0 %)	1.387 (1.0 %)	1.373
C3-C6	1.387 (0.8 %)	1.388 (0.9 %)	1.385 (0.7 %)	1.386 (0.7 %)	1.376
C4-C8	1.399 (1.3 %)	1.400 (1.4 %)	1.394 (0.9 %)	1.395 (1.0 %)	1.381
C6-C8	1.399 (0.4 %)	1.400 (0.5 %)	1.393 (0.0 %)	1.394 (0.1 %)	1.393
C2-H5	1.081 (16.3 %)	1.082 (16.4 %)	1.081 (16.4 %)	1.082 (16.4 %)	0.929
C3-H7	1.081 (16.2 %)	1.082 (16.3 %)	1.081 (16.2 %)	1.082 (16.3 %)	0.930
C4-H9	1.082 (16.3 %)	1.082 (16.3 %)	1.082 (16.4 %)	1.082 (16.4 %)	0.930
C6-H10	1.083 (16.4 %)	1.082 (16.4 %)	1.083 (16.5 %)	1.083 (16.4 %)	0.930
C8-C22	1.485 (0.4 %)	1.486 (0.5 %)	1.487 (0.5 %)	1.488 (0.6 %)	1.479
C22-O13	1.209 (0.3 %)	1.214 (0.2 %)	1.202 (0.9 %)	1.206 (0.5 %)	1.212
C22-O14	1.358 (2.3 %)	1.350 (1.7 %)	1.347 (1.5 %)	1.339 (0.9 %)	1.327
O14-H15	0.968 (18.1 %)	0.970 (18.3 %)	0.966 (17.8 %)	0.968 (18.0 %)	0.820
N23-C1	1.424 (0.0 %)	1.423 (0.1 %)	1.420 (0.3 %)	1.418 (0.5 %)	1.425
N23-C16	1.414 (0.5 %)	1.410 (0.2 %)	1.406 (0.0 %)	1.403 (0.3 %)	1.407
N23-C21	1.414 (1.4 %)	1.410 (1.1 %)	1.407 (0.9 %)	1.404 (0.7 %)	1.394
C16-C17	1.498 (1.7 %)	1.496 (1.5 %)	1.501 (1.9 %)	1.499 (1.7 %)	1.473
C19-C21	1.498 (2.2 %)	1.496 (2.0 %)	1.501 (2.4 %)	1.499 (2.2 %)	1.466
C17-C19	1.331 (2.4 %)	1.332 (2.5 %)	1.327 (2.1 %)	1.327 (2.1 %)	1.300
C16-O11	1.205 (0.2 %)	1.209 (0.5 %)	1.197 (0.5 %)	1.201 (0.2 %)	1.203
C21-O12	1.205 (0.4 %)	1.208 (0.1 %)	1.197 (1.1 %)	1.201 (0.8 %)	1.210
C17-H18	1.080 (16.0 %)	1.080 (16.0 %)	1.080 (16.0 %)	1.080 (16.0 %)	0.931
C19-H20	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	0.930
Longitud de enlace	e intermolecular ((Å)			
O11-H5	2.557 (5.4 %)	2.780 (2.9 %)	2.483 (8.1 %)	2.626 (2.8 %)	2.702

Parámetro B3LYP/6-311+G(d,p) M06-2X/6-311+G(d,p) Tase gas solvente solvente fase gas solvente solvente Experimental O12-H7 2.559 (4.6 %) 2.781 (3.6 %) 2.483 (7.4 %) 2.627 (2.1 %) 2.683 Angulo de enlace (?) 119.7 (0.4 %) 119.5 (0.2 %) 119.3 (0.2 %) 119.3 (0.2 %) 119.3 (0.2 %) 119.6 (0.9 %) 120.4 (0.1 %) 120.4 (0.8 %) 120.4 (0.8 %) 120.4 (0.8 %) 120.4 (0.8 %) 120.4 (0.8 %) 120.4 (0.8 %) 120.4 (0.8 %) 120.4 (0.8 %) 120.4 (0.1 %) 120.3 (0.0 %) 120.5 (0.0 %) 120.4 (0.6 %) 120.4			Méte	obc		Valar
fase gas solvente fase gas solvente Experimiental O12-H7 2.559 (4.6 %) 2.781 (3.6 %) 2.483 (7.4 %) 2.627 (2.1 %) 2.683 Anguio de enlace (?) 119.5 (0.2 %) 119.5 (0.2 %) 119.3 (0.2 %) 119.3 (0.2 %) 119.3 (0.2 %) 119.3 (0.2 %) 119.3 (0.2 %) 120.0 (0.8 %) 120.0 (0.8 %) 120.1 (0.8 %) 120.0 (0.8 %) 120.3 (0.6 %) 120.1 (0.1 %) 120.0 (0.1 %) 120.6 (0.1 %) 120.5 (0.1 %) 120.5 (0.1 %) 120.5 (0.1 %) 120.5 (0.1 %) 120.5 (0.1 %) 120.5 (0.1 %) 120.5 (0.1 %) 120.5 (0.1 %) 120.5 (0.1 %) 120.5 (0.1 %) 120.5 (0.1 %) 120.5 (0.1 %) 120.5 (0.1 %) 120.5 (0.1 %) 120.5 (0.1 %)	Parámetro	B3LYP/6-31	1+G(d,p)	M06-2X/6-3	11+G(d,p)	Valor
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	—	fase gas	solvente	fase gas	solvente	Experimental
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	O12-H7	2.559 (4.6 %)	2.781 (3.6 %)	2.483 (7.4 %)	2.627 (2.1 %)	2.683
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ángulo de enlace (°)					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C1-C2-C4	119.7 (0.4 %)	119.7 (0.4 %)	119.5 (0.2 %)	119.5 (0.2 %)	119.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C3-C6	119.6 (0.0 %)	119.6 (0.0 %)	119.3 (0.2 %)	119.3 (0.2 %)	119.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C2-C4-C8	120.3 (0.6 %)	120.2 (0.6 %)	120.1 (0.8 %)	120.0 (0.8 %)	121.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C6-C8	120.5 (0.2 %)	120.4 (0.1 %)	120.3 (0.0 %)	120.2 (0.1 %)	120.3
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C2-C1-C3	120.3 (0.2 %)	120.5 (0.0 %)	120.8 (0.3 %)	120.9 (0.3 %)	120.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C8-C6	119.5 (0.1 %)	119.6 (0.2 %)	120.1 (0.6 %)	120.1 (0.6 %)	119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C2-H5	120.1 (0.2 %)	120.1 (0.2 %)	120.0 (0.3 %)	120.0 (0.3 %)	120.4
H5-C2-C4120.1 (0.2 %)120.2 (0.1 %)120.5 (0.1 %)120.5 (0.1 %)120.4H7-C3-C6120.2 (0.0 %)120.3 (0.1 %)120.6 (0.3 %)120.6 (0.3 %)120.3 %)120.5 (0.1 %)C2-C4-H9119.8 (0.3 %)119.7 (0.2 %)120.1 (0.5 %)119.9 (0.4 %)119.5 (0.5 %)119.9 (0.4 %)H9-C4-C8119.8 (0.3 %)120.0 (0.5 %)119.8 (0.2 %)120.1 (0.5 %)119.9 (0.4 %)119.9 (0.4 %)C4-C8-C22122.3 (0.7 %)122.0 (0.5 %)119.9 (0.8 %)119.3 (0.4 %)119.9 (0.8 %)119.3 (0.4 %)C4-C8-C22122.3 (0.7 %)122.0 (0.5 %)121.9 (0.5 %)121.7 (0.3 %)121.4 (0.7 %)C6-C8-C22118.2 (0.9 %)118.4 (0.7 %)118.0 (1.1 %)118.2 (0.9 %)119.3 (0.4 %)C1-N23-C16125.2 (0.4 %)125.2 (0.0 %)125.1 (0.5 %)125.1 (0.5 %)125.7 (0.7 %)C1-N23-C21125.2 (0.1 %)125.2 (0.0 %)125.1 (0.1 %)125.1 (0.0 %)119.9 (0.2 %)N23-C1-C3119.9 (0.1 %)119.8 (0.1 %)119.6 (0.0 %)119.6 (0.3 %)119.9 (0.2 %)N23-C1-C12109.5 (0.5 %)109.6 (0.6 %)106.3 (0.7 %)106.5 %N23-C21-C19106.2 (0.4 %)125.7 (0.7 %)126.4 (1.2 %)125.7 (0.7 %)N23-C21-C19106.2 (0.4 %)125.7 (0.7 %)126.4 (1.2 %)125.7 (0.7 %)N23-C21-C12126.4 (1.2 %)125.7 (0.7 %)124.8 (1.2 %)125.7 (0.7 %)N23-C21-C12126.4 (1.2 %)125.7 (0.7 %)124.8 (1.2 %)125.7 (0.7 %)N23-C16-	C1-C3-H7	120.1 (0.0 %)	120.1 (0.1 %)	120.1 (0.1 %)	120.0 (0.1 %)	120.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H5-C2-C4	120.1 (0.2 %)	120.2 (0.1 %)	120.5 (0.1 %)	120.5 (0.1 %)	120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H7-C3-C6	120.2 (0.0 %)	120.3 (0.1 %)	120.6 (0.3 %)	120.6 (0.3 %)	120.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C4-H9	119.8 (0.3 %)	119.7 (0.2 %)	120.1 (0.5 %)	119.9 (0.4 %)	119.5
H9-C4-C8119.8 (0.3 %)120.0 (0.5 %)119.8 (0.2 %)120.1 (0.5 %)119.5C8-C6-H10118.9 (0.8 %)119.3 (0.4 %)118.9 (0.8 %)119.3 (0.4 %)119.9C4-C8-C22122.3 (0.7 %)122.0 (0.5 %)121.9 (0.5 %)121.7 (0.3 %)121.4C6-C8-C22118.2 (0.9 %)118.4 (0.7 %)118.0 (1.1 %)118.2 (0.9 %)119.3C1-N23-C16125.2 (0.4 %)125.2 (0.4 %)125.1 (0.5 %)125.1 (0.5 %)125.7C1-N23-C21125.2 (0.1 %)125.2 (0.0 %)125.1 (0.1 %)125.1 (0.0 %)125.2N23-C1-C2119.9 (0.2 %)119.8 (0.1 %)119.6 (0.3 %)119.6 (0.0 %)119.6N23-C1-C3119.9 (0.1 %)119.8 (0.1 %)119.6 (0.3 %)119.5 (0.3 %)109.0N23-C16-C17106.2 (0.6 %)106.3 (0.7 %)106.3 (0.7 %)105.5102.5 (0.6 %)106.3 (0.7 %)105.5N23-C21-C19106.2 (0.4 %)106.3 (0.3 %)106.2 (0.4 %)106.3 (0.3 %)106.6124.9N23-C21-C12126.4 (1.2 %)125.7 (0.7 %)126.4 (1.2 %)125.7 (0.7 %)124.8C17-C16-C11127.5 (1.6 %)128.0 (1.2 %)127.5 (0.6 %)128.5125.5C16-C17-H18121.3 (3.0 %)121.8 (2.6 %)121.2 (3.1 %)121.6 (3.0 %)125.5C16-C17-C19109.1 (0.7 %)109.0 (0.8 %)109.9 (0.8 %)108.9 (0.9 %)109.8C21-C19-C17109.1 (0.7 %)109.0 (0.8 %)129.9 (3.5 %)122.6 (0.5 %)125.5C16-C17-C19109.1 (0.7 %)	C3-C6-H10	120.5 (0.6 %)	120.2 (0.3 %)	120.8 (0.8 %)	120.4 (0.5 %)	119.9
C8-C6-H10 118.9 (0.8 %) 119.3 (0.4 %) 118.9 (0.8 %) 119.3 (0.4 %) 119.3 (0.4 %) C4-C8-C22 122.3 (0.7 %) 122.0 (0.5 %) 121.9 (0.5 %) 121.7 (0.3 %) 121.4 C6-C8-C22 118.2 (0.9 %) 118.4 (0.7 %) 118.0 (1.1 %) 118.2 (0.9 %) 119.3 C1-N23-C16 125.2 (0.4 %) 125.2 (0.0 %) 125.1 (0.5 %) 125.1 (0.0 %) 125.7 C1-N23-C21 125.2 (0.1 %) 125.2 (0.0 %) 125.1 (0.0 %) 119.6 125.2 N23-C1-C2 119.9 (0.2 %) 119.8 (0.1 %) 119.6 (0.0 %) 119.9 126.3 (0.7 %) 109.8 0.8 %) 109.8 (0.7 %) 109.0 109.0 N23-C1-C3 109.5 (0.5 %) 106.3 (0.3 %) 106.3 (0.3 %) 106.3 (0.3 %) 106.3 107.8 105.5 N23-C21-C19 106.2 (0.4 %) 106.3 (0.3 %) 106.4 106.3 (0.3 %) 106.3 (0.3 %) 106.6 N23-C16-C011 126.4 (1.2 %) 125.7 (0.7 %) 126.4 (1.2 %) 125.7 (0.7 %) 124.9 N23-C21-C12 126.4 (1.2 %) 125.7 (0.7 %) 126.4 (1.2 %) 125.7 (0.7 %) 128.0 <td>H9-C4-C8</td> <td>119.8 (0.3 %)</td> <td>120.0 (0.5 %)</td> <td>119.8 (0.2 %)</td> <td>120.1 (0.5 %)</td> <td>119.5</td>	H9-C4-C8	119.8 (0.3 %)	120.0 (0.5 %)	119.8 (0.2 %)	120.1 (0.5 %)	119.5
C4-C8-C22 122.3 (0.7 %) 122.0 (0.5 %) 121.9 (0.5 %) 121.7 (0.3 %) 121.4 C6-C8-C22 118.2 (0.9 %) 118.4 (0.7 %) 118.0 (1.1 %) 118.2 (0.9 %) 119.3 C1-N23-C16 125.2 (0.4 %) 125.2 (0.4 %) 125.1 (0.5 %) 125.1 (0.5 %) 125.7 C1-N23-C21 125.2 (0.1 %) 125.2 (0.0 %) 125.1 (0.1 %) 125.1 (0.0 %) 119.6 N23-C1-C2 119.9 (0.2 %) 119.8 (0.1 %) 119.6 (0.0 %) 119.6 (0.0 %) 119.9 N23-C1-C3 119.9 (0.1 %) 119.8 (0.1 %) 109.6 (0.6 %) 109.8 (0.8 %) 109.8 (0.7 %) 100.0 N23-C1-C17 106.2 (0.6 %) 106.3 (0.7 %) 106.2 (0.6 %) 106.3 (0.7 %) 105.5 N23-C21-C19 106.2 (0.4 %) 106.3 (0.3 %) 106.6 (0.6 %) 106.3 (0.3 %) 106.6 N23-C21-C12 126.4 (1.2 %) 125.7 (0.7 %) 126.4 (1.2 %) 125.7 (0.7 %) 124.9 N23-C21-O12 126.4 (1.2 %) 127.5 (1.6 %) 128.0 (0.4 %) 128.5 128.5 C17-C16-O11 127.5 (1.6 %) 128.0 (0.4 %) 127.5 (0.8 %) 128.6 128.6 128.5 <t< td=""><td>C8-C6-H10</td><td>118.9 (0.8 %)</td><td>119.3 (0.4 %)</td><td>118.9 (0.8 %)</td><td>119.3 (0.4 %)</td><td>119.9</td></t<>	C8-C6-H10	118.9 (0.8 %)	119.3 (0.4 %)	118.9 (0.8 %)	119.3 (0.4 %)	119.9
C6-C8-C22118.2 (0.9 %)118.4 (0.7 %)118.0 (1.1 %)118.2 (0.9 %)119.3C1-N23-C16125.2 (0.4 %)125.2 (0.4 %)125.1 (0.5 %)125.1 (0.5 %)125.7C1-N23-C21125.2 (0.1 %)125.2 (0.0 %)125.1 (0.1 %)125.1 (0.0 %)119.5N23-C1-C2119.9 (0.2 %)119.8 (0.1 %)119.6 (0.0 %)119.6 (0.0 %)119.6N23-C1-C3119.9 (0.1 %)119.8 (0.1 %)119.6 (0.3 %)119.5 (0.3 %)119.9N23-C1-C1109.5 (0.5 %)109.6 (0.6 %)106.2 (0.6 %)106.3 (0.7 %)100.0N23-C16-C17106.2 (0.4 %)106.3 (0.7 %)106.2 (0.4 %)106.3 (0.7 %)105.5N23-C21-C19106.2 (0.4 %)106.3 (0.3 %)106.2 (0.4 %)106.3 (0.3 %)106.6N23-C16-O11126.4 (1.2 %)125.7 (0.7 %)126.4 (1.2 %)125.7 (0.7 %)124.8C17-C16-O11127.5 (1.6 %)128.0 (1.2 %)127.5 (0.8 %)128.0 (1.2 %)128.5C16-C17-H18121.3 (3.0 %)121.8 (2.6 %)121.2 (3.1 %)121.6 (2.8 %)125.5C16-C17-C19109.1 (0.7 %)109.0 (0.8 %)108.9 (0.9 %)109.8109.1C17-C19-C17109.1 (0.0 %)109.0 (0.1 %)108.9 (0.1 %)108.9 (0.2 %)125.5C16-C17-H18129.6 (3.3 %)129.3 (3.0 %)129.9 (3.8 %)129.5 (3.2 %)125.5C16-C17-C19109.1 (0.7 %)109.0 (0.1 %)108.9 (0.1 %)108.9 (0.2 %)109.1C17-C19-H20129.6 (3.3 %)129.3 (3.0 %)129.9 (3.8 %)<	C4-C8-C22	122.3 (0.7 %)	122.0 (0.5 %)	121.9 (0.5 %)	121.7 (0.3 %)	121.4
C1-N23-C16 125.2 (0.4 %) 125.2 (0.4 %) 125.1 (0.5 %) 125.1 (0.5 %) 125.7 C1-N23-C21 125.2 (0.1 %) 125.2 (0.0 %) 125.1 (0.1 %) 125.1 (0.0 %) 125.2 N23-C1-C2 119.9 (0.2 %) 119.8 (0.1 %) 119.6 (0.0 %) 119.6 (0.0 %) 119.9 N23-C1-C3 119.9 (0.1 %) 119.8 (0.1 %) 119.6 (0.3 %) 119.5 (0.3 %) 119.9 C16-N23-C21 109.5 (0.5 %) 109.6 (0.6 %) 106.2 (0.6 %) 106.3 (0.7 %) 106.2 (0.6 %) 106.3 (0.7 %) N23-C16-C17 106.2 (0.4 %) 106.3 (0.7 %) 106.2 (0.4 %) 106.6 (0.3 %) 106.6 (0.3 %) 106.6 (0.3 %) 106.6 (0.3 %) 106.6 (0.3 %) 106.6 (0.3 %) 106.6 (0.3 %) 106.6 (0.3 %) 106.6 (0.4 %) 106.2 (0.4 %) <t< td=""><td>C6-C8-C22</td><td>118.2 (0.9 %)</td><td>118.4 (0.7 %)</td><td>118.0 (1.1 %)</td><td>118.2 (0.9 %)</td><td>119.3</td></t<>	C6-C8-C22	118.2 (0.9 %)	118.4 (0.7 %)	118.0 (1.1 %)	118.2 (0.9 %)	119.3
C1-N23-C21 125.2 (0.1 %) 125.2 (0.0 %) 125.1 (0.1 %) 125.1 (0.0 %) 125.2 N23-C1-C2 119.9 (0.2 %) 119.8 (0.1 %) 119.6 (0.0 %) 119.6 (0.0 %) 119.9 N23-C1-C3 119.9 (0.1 %) 119.8 (0.1 %) 119.6 (0.3 %) 119.5 (0.3 %) 119.9 C16-N23-C21 109.5 (0.5 %) 109.6 (0.6 %) 109.8 (0.8 %) 109.8 (0.7 %) 109.0 N23-C16-C17 106.2 (0.6 %) 106.3 (0.7 %) 106.3 (0.3 %) 106.3 (0.3 %) 106.6 N23-C16-C11 126.4 (1.2 %) 125.7 (0.7 %) 126.4 (1.2 %) 125.7 (0.6 %) 124.9 N23-C21-O12 126.4 (1.2 %) 125.7 (0.7 %) 126.4 (1.2 %) 125.7 (0.7 %) 128.0 N23-C21-O12 127.5 (1.6 %) 128.0 (1.2 %) 127.5 (1.6 %) 128.0 (1.2 %) 129.6 C19-C21-O12 127.5 (0.8 %) 128.0 (0.4 %) 127.5 (0.8 %) 128.0 (0.4 %) 128.0 128.0 C16-C17-H18 121.3 (3.0 %) 121.8 (2.6 %) 121.2 (3.1 %) 121.6 (3.0 %) 125.5 C16-C17-C19 109.1 (0.7 %) 109.0 (0.8 %) 109.9 (0.8 %) 108.9 (0.9 %) 109.8 <	C1-N23-C16	125.2 (0.4 %)	125.2 (0.4 %)	125.1 (0.5 %)	125.1 (0.5 %)	125.7
N23-C1-C2 119.9 (0.2 %) 119.8 (0.1 %) 119.6 (0.0 %) 119.6 (0.0 %) 119.6 (0.0 %) N23-C1-C3 119.9 (0.1 %) 119.8 (0.1 %) 119.6 (0.3 %) 119.5 (0.3 %) 119.9 C16-N23-C21 109.5 (0.5 %) 109.6 (0.6 %) 109.8 (0.8 %) 109.8 (0.7 %) 100.0 N23-C16-C17 106.2 (0.4 %) 106.3 (0.7 %) 106.2 (0.4 %) 106.3 (0.3 %) 106.3 (0.3 %) 106.6 % N23-C16-O11 126.4 (1.2 %) 125.7 (0.7 %) 126.4 (1.2 %) 125.7 (0.7 %) 124.9 N23-C21-O12 126.4 (1.2 %) 125.7 (0.7 %) 126.4 (1.2 %) 125.7 (0.7 %) 124.8 C17-C16-O11 127.5 (1.6 %) 128.0 (1.2 %) 127.5 (1.6 %) 128.0 (1.2 %)<	C1-N23-C21	125.2 (0.1 %)	125.2 (0.0 %)	125.1 (0.1 %)	125.1 (0.0 %)	125.2
N23-C1-C3119.9 (0.1 %)119.8 (0.1 %)119.6 (0.3 %)119.5 (0.3 %)119.9C16-N23-C21109.5 (0.5 %)109.6 (0.6 %)109.8 (0.8 %)109.8 (0.7 %)109.0N23-C16-C17106.2 (0.6 %)106.3 (0.7 %)106.2 (0.6 %)106.3 (0.7 %)105.5N23-C21-C19106.2 (0.4 %)106.3 (0.3 %)106.2 (0.4 %)106.3 (0.3 %)106.6N23-C16-O11126.4 (1.2 %)125.7 (0.7 %)126.4 (1.2 %)125.7 (0.6 %)124.9N23-C21-O12126.4 (1.2 %)125.7 (0.7 %)126.4 (1.2 %)125.7 (0.7 %)124.8C17-C16-O11127.5 (1.6 %)128.0 (1.2 %)127.5 (1.6 %)128.0 (1.2 %)129.6C19-C21-O12127.5 (0.8 %)128.0 (0.4 %)127.5 (0.8 %)128.0 (0.4 %)128.5C16-C17-H18121.3 (3.0 %)121.8 (2.6 %)121.2 (3.1 %)121.6 (3.0 %)125.5C16-C17-C19109.1 (0.7 %)109.0 (0.8 %)109.0 (0.8 %)108.9 (0.9 %)109.8C21-C19-C17109.1 (0.0 %)109.0 (0.1 %)108.9 (0.1 %)108.9 (0.2 %)109.1C17-C19-H20129.6 (3.3 %)129.3 (3.3 %)129.9 (3.5 %)129.5 (3.5 %)125.5C19-C17-H18129.6 (3.6 %)129.3 (3.3 %)129.9 (3.8 %)129.5 (3.5 %)125.1C8-C22-O13125.0 (0.3 %)124.7 (0.5 %)124.8 (0.5 %)124.3 (0.8 %)125.3C8-C22-O14113.0 (0.4 %)113.1 (0.5 %)112.9 (0.3 %)113.0 (0.4 %)112.6O13-C22-O14122.0 (0.1 %)122.2 (0.1 %)122.4	N23-C1-C2	119.9 (0.2 %)	119.8 (0.1 %)	119.6 (0.0 %)	119.6 (0.0 %)	119.6
C16-N23-C21109.5 (0.5 %)109.6 (0.6 %)109.8 (0.8 %)109.8 (0.7 %)109.0N23-C16-C17106.2 (0.6 %)106.3 (0.7 %)106.2 (0.6 %)106.3 (0.7 %)105.5N23-C21-C19106.2 (0.4 %)106.3 (0.3 %)106.2 (0.4 %)106.3 (0.3 %)106.6N23-C16-O11126.4 (1.2 %)125.7 (0.7 %)126.4 (1.2 %)125.7 (0.6 %)124.9N23-C21-O12126.4 (1.2 %)125.7 (0.7 %)126.4 (1.2 %)125.7 (0.7 %)124.8C17-C16-O11127.5 (1.6 %)128.0 (1.2 %)127.5 (1.6 %)128.0 (1.2 %)129.6C19-C21-O12127.5 (0.8 %)128.0 (0.4 %)127.5 (0.8 %)128.0 (0.4 %)128.5C16-C17-H18121.3 (3.0 %)121.8 (2.6 %)121.2 (3.1 %)121.6 (2.8 %)125.1C21-C19-H20121.3 (3.3 %)121.8 (2.9 %)121.2 (3.4 %)121.6 (3.0 %)125.5C16-C17-C19109.1 (0.7 %)109.0 (0.8 %)108.9 (0.1 %)108.9 (0.2 %)109.1C17-C19-H20129.6 (3.3 %)129.3 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C19-C17-H18129.6 (3.6 %)129.3 (3.3 %)129.9 (3.8 %)129.5 (3.5 %)125.1C8-C22-O13125.0 (0.3 %)124.7 (0.5 %)124.8 (0.5 %)124.3 (0.8 %)125.3C8-C22-O14113.0 (0.4 %)113.1 (0.5 %)112.9 (0.3 %)113.0 (0.4 %)112.6O13-C22-O14122.0 (0.1 %)122.2 (0.1 %)122.4 (0.2 %)122.6 (0.5 %)122.1C22-O14-H15106.7 (2.5 %)108.0 (1.4 %)107	N23-C1-C3	119.9 (0.1 %)	119.8 (0.1 %)	119.6 (0.3 %)	119.5 (0.3 %)	119.9
N23-C16-C17106.2 (0.6 %)106.3 (0.7 %)106.2 (0.6 %)106.3 (0.7 %)105.5N23-C21-C19106.2 (0.4 %)106.3 (0.3 %)106.2 (0.4 %)106.3 (0.3 %)106.6N23-C16-O11126.4 (1.2 %)125.7 (0.7 %)126.4 (1.2 %)125.7 (0.6 %)124.9N23-C21-O12126.4 (1.2 %)125.7 (0.7 %)126.4 (1.2 %)125.7 (0.7 %)124.8C17-C16-O11127.5 (1.6 %)128.0 (1.2 %)127.5 (1.6 %)128.0 (1.2 %)128.0C19-C21-O12127.5 (0.8 %)128.0 (0.4 %)127.5 (0.8 %)128.0 (0.4 %)128.5C16-C17-H18121.3 (3.0 %)121.8 (2.6 %)121.2 (3.1 %)121.6 (2.8 %)125.5C16-C17-C19109.1 (0.7 %)109.0 (0.8 %)109.0 (0.8 %)108.9 (0.9 %)109.8C21-C19-C17109.1 (0.0 %)109.0 (0.1 %)108.9 (0.1 %)108.9 (0.2 %)109.1C17-C19-H20129.6 (3.3 %)129.3 (3.0 %)129.9 (3.8 %)129.5 (3.2 %)125.5C19-C17-H18129.6 (3.6 %)129.3 (3.3 %)129.9 (3.8 %)129.5 (3.5 %)125.1C8-C22-O13125.0 (0.3 %)124.7 (0.5 %)124.8 (0.5 %)124.3 (0.8 %)125.3C8-C22-O14113.0 (0.4 %)113.1 (0.5 %)112.9 (0.3 %)113.0 (0.4 %)112.6O13-C22-O14122.0 (0.1 %)122.2 (0.1 %)122.4 (0.2 %)122.6 (0.5 %)122.1C22-O14-H15106.7 (2.5 %)108.0 (1.4 %)107.0 (2.3 %)108.3 (1.1 %)109.5Angulo de Torsión (°)22.2 (0.1 %) <t< td=""><td>C16-N23-C21</td><td>109.5 (0.5 %)</td><td>109.6 (0.6 %)</td><td>109.8 (0.8 %)</td><td>109.8 (0.7 %)</td><td>109.0</td></t<>	C16-N23-C21	109.5 (0.5 %)	109.6 (0.6 %)	109.8 (0.8 %)	109.8 (0.7 %)	109.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N23-C16-C17	106.2 (0.6 %)	106.3 (0.7 %)	106.2 (0.6 %)	106.3 (0.7 %)	105.5
N23-C16-O11126.4 (1.2 %)125.7 (0.7 %)126.4 (1.2 %)125.7 (0.6 %)124.9N23-C21-O12126.4 (1.2 %)125.7 (0.7 %)126.4 (1.2 %)125.7 (0.7 %)124.8C17-C16-O11127.5 (1.6 %)128.0 (1.2 %)127.5 (1.6 %)128.0 (1.2 %)129.6C19-C21-O12127.5 (0.8 %)128.0 (0.4 %)127.5 (0.8 %)128.0 (0.4 %)128.5C16-C17-H18121.3 (3.0 %)121.8 (2.6 %)121.2 (3.1 %)121.6 (3.0 %)125.5C16-C17-C19109.1 (0.7 %)109.0 (0.8 %)109.0 (0.8 %)108.9 (0.9 %)109.8C21-C19-C17109.1 (0.0 %)109.0 (0.1 %)108.9 (0.1 %)108.9 (0.2 %)109.1C17-C19-H20129.6 (3.3 %)129.3 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C19-C17-H18129.6 (3.6 %)124.7 (0.5 %)124.8 (0.5 %)124.3 (0.8 %)125.3C8-C22-O13125.0 (0.3 %)122.2 (0.1 %)122.4 (0.2 %)122.6 (0.5 %)122.1C2-C1-N23-C1641.4 (14.1 %)51.1 (6.1 %)39.0 (19.1 %)45.5 (5.6 %)48.2	N23-C21-C19	106.2 (0.4 %)	106.3 (0.3 %)	106.2 (0.4 %)	106.3 (0.3 %)	106.6
N23-C21-O12126.4 (1.2 %)125.7 (0.7 %)126.4 (1.2 %)125.7 (0.7 %)124.8C17-C16-O11127.5 (1.6 %)128.0 (1.2 %)127.5 (1.6 %)128.0 (1.2 %)129.6C19-C21-O12127.5 (0.8 %)128.0 (0.4 %)127.5 (0.8 %)128.0 (0.4 %)128.5C16-C17-H18121.3 (3.0 %)121.8 (2.6 %)121.2 (3.1 %)121.6 (2.8 %)125.1C21-C19-H20121.3 (3.3 %)121.8 (2.9 %)121.2 (3.4 %)121.6 (3.0 %)125.5C16-C17-C19109.1 (0.7 %)109.0 (0.8 %)109.0 (0.8 %)108.9 (0.9 %)109.8C21-C19-C17109.1 (0.0 %)109.0 (0.1 %)108.9 (0.1 %)108.9 (0.2 %)109.1C17-C19-H20129.6 (3.3 %)129.3 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C19-C17-H18129.6 (3.6 %)129.3 (3.3 %)129.9 (3.8 %)129.5 (3.5 %)125.1C8-C22-O13125.0 (0.3 %)124.7 (0.5 %)124.8 (0.5 %)124.3 (0.8 %)125.3C8-C22-O14113.0 (0.4 %)113.1 (0.5 %)112.9 (0.3 %)113.0 (0.4 %)112.6O13-C22-O14122.0 (0.1 %)122.2 (0.1 %)122.4 (0.2 %)122.6 (0.5 %)122.1C2-C1-N23-C1641.4 (14.1 %)51.1 (6.1 %)39.0 (19.1 %)45.5 (5.6 %)48.2	N23-C16-O11	126.4 (1.2 %)	125.7 (0.7 %)	126.4 (1.2 %)	125.7 (0.6 %)	124.9
C17-C16-O11127.5 (1.6 %)128.0 (1.2 %)127.5 (1.6 %)128.0 (1.2 %)129.6C19-C21-O12127.5 (0.8 %)128.0 (0.4 %)127.5 (0.8 %)128.0 (0.4 %)128.5C16-C17-H18121.3 (3.0 %)121.8 (2.6 %)121.2 (3.1 %)121.6 (2.8 %)125.1C21-C19-H20121.3 (3.3 %)121.8 (2.9 %)121.2 (3.4 %)121.6 (3.0 %)125.5C16-C17-C19109.1 (0.7 %)109.0 (0.8 %)109.0 (0.8 %)108.9 (0.9 %)109.8C21-C19-C17109.1 (0.0 %)109.0 (0.1 %)108.9 (0.1 %)108.9 (0.2 %)109.1C17-C19-H20129.6 (3.3 %)129.3 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C19-C17-H18129.6 (3.6 %)129.3 (3.3 %)129.9 (3.8 %)129.5 (3.5 %)125.1C8-C22-O13125.0 (0.3 %)124.7 (0.5 %)124.8 (0.5 %)124.3 (0.8 %)125.3C8-C22-O14113.0 (0.4 %)113.1 (0.5 %)112.9 (0.3 %)113.0 (0.4 %)112.6O13-C22-O14122.0 (0.1 %)122.2 (0.1 %)122.4 (0.2 %)122.6 (0.5 %)122.1C2-C1-N23-C1641.4 (14.1 %)51.1 (6.1 %)39.0 (19.1 %)45.5 (5.6 %)48.2	N23-C21-O12	126.4 (1.2 %)	125.7 (0.7 %)	126.4 (1.2 %)	125.7 (0.7 %)	124.8
C19-C21-O12127.5 (0.8 %)128.0 (0.4 %)127.5 (0.8 %)128.0 (0.4 %)128.5C16-C17-H18121.3 (3.0 %)121.8 (2.6 %)121.2 (3.1 %)121.6 (2.8 %)125.1C21-C19-H20121.3 (3.3 %)121.8 (2.9 %)121.2 (3.4 %)121.6 (3.0 %)125.5C16-C17-C19109.1 (0.7 %)109.0 (0.8 %)109.0 (0.8 %)108.9 (0.9 %)109.8C21-C19-C17109.1 (0.0 %)109.0 (0.1 %)108.9 (0.1 %)108.9 (0.2 %)109.1C17-C19-H20129.6 (3.3 %)129.3 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C19-C17-H18129.6 (3.6 %)129.3 (3.3 %)129.9 (3.8 %)129.5 (3.5 %)125.1C8-C22-O13125.0 (0.3 %)124.7 (0.5 %)124.8 (0.5 %)124.3 (0.8 %)125.3C8-C22-O14113.0 (0.4 %)113.1 (0.5 %)112.9 (0.3 %)113.0 (0.4 %)112.6O13-C22-O14122.0 (0.1 %)122.2 (0.1 %)122.4 (0.2 %)122.6 (0.5 %)122.1C22-O14-H15106.7 (2.5 %)108.0 (1.4 %)107.0 (2.3 %)108.3 (1.1 %)109.5Ángulo de Torsión (9)VVVVVVVC2-C1-N23-C1641.4 (14.1 %)51.1 (6.1 %)39.0 (19.1 %)45.5 (5.6 %)48.2	C17-C16-O11	127.5 (1.6 %)	128.0 (1.2 %)	127.5 (1.6 %)	128.0 (1.2 %)	129.6
C16-C17-H18121.3 (3.0 %)121.8 (2.6 %)121.2 (3.1 %)121.6 (2.8 %)125.1C21-C19-H20121.3 (3.3 %)121.8 (2.9 %)121.2 (3.4 %)121.6 (3.0 %)125.5C16-C17-C19109.1 (0.7 %)109.0 (0.8 %)109.0 (0.8 %)108.9 (0.9 %)109.8C21-C19-C17109.1 (0.0 %)109.0 (0.1 %)108.9 (0.1 %)108.9 (0.2 %)109.1C17-C19-H20129.6 (3.3 %)129.3 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C19-C17-H18129.6 (3.6 %)129.3 (3.3 %)129.9 (3.8 %)129.5 (3.5 %)125.1C8-C22-O13125.0 (0.3 %)124.7 (0.5 %)124.8 (0.5 %)124.3 (0.8 %)125.3C8-C22-O14113.0 (0.4 %)113.1 (0.5 %)112.9 (0.3 %)113.0 (0.4 %)112.6O13-C22-O14122.0 (0.1 %)122.2 (0.1 %)122.4 (0.2 %)122.6 (0.5 %)122.1C22-O14-H15106.7 (2.5 %)108.0 (1.4 %)107.0 (2.3 %)108.3 (1.1 %)109.5Ángulo de Torsión (%)C2-C1-N23-C1641.4 (14.1 %)51.1 (6.1 %)39.0 (19.1 %)45.5 (5.6 %)48.2	C19-C21-O12	127.5 (0.8 %)	128.0 (0.4 %)	127.5 (0.8 %)	128.0 (0.4 %)	128.5
C21-C19-H20121.3 (3.3 %)121.8 (2.9 %)121.2 (3.4 %)121.6 (3.0 %)125.5C16-C17-C19109.1 (0.7 %)109.0 (0.8 %)109.0 (0.8 %)108.9 (0.9 %)109.8C21-C19-C17109.1 (0.0 %)109.0 (0.1 %)108.9 (0.1 %)108.9 (0.2 %)109.1C17-C19-H20129.6 (3.3 %)129.3 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C19-C17-H18129.6 (3.6 %)129.3 (3.3 %)129.9 (3.8 %)129.5 (3.5 %)125.1C8-C22-O13125.0 (0.3 %)124.7 (0.5 %)124.8 (0.5 %)124.3 (0.8 %)125.3C8-C22-O14113.0 (0.4 %)113.1 (0.5 %)112.9 (0.3 %)113.0 (0.4 %)112.6O13-C22-O14122.0 (0.1 %)122.2 (0.1 %)122.4 (0.2 %)122.6 (0.5 %)122.1C2-O14-H15106.7 (2.5 %)108.0 (1.4 %)107.0 (2.3 %)108.3 (1.1 %)109.5Ángulo de Torsión (%)C2-C1-N23-C1641.4 (14.1 %)51.1 (6.1 %)39.0 (19.1 %)45.5 (5.6 %)48.2	C16-C17-H18	121.3 (3.0 %)	121.8 (2.6 %)	121.2 (3.1 %)	121.6 (2.8 %)	125.1
C16-C17-C19109.1 (0.7 %)109.0 (0.8 %)109.0 (0.8 %)108.9 (0.9 %)109.8C21-C19-C17109.1 (0.0 %)109.0 (0.1 %)108.9 (0.1 %)108.9 (0.2 %)109.1C17-C19-H20129.6 (3.3 %)129.3 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C19-C17-H18129.6 (3.6 %)129.3 (3.3 %)129.9 (3.8 %)129.5 (3.5 %)125.1C8-C22-O13125.0 (0.3 %)124.7 (0.5 %)124.8 (0.5 %)124.3 (0.8 %)125.3C8-C22-O14113.0 (0.4 %)113.1 (0.5 %)112.9 (0.3 %)113.0 (0.4 %)112.6O13-C22-O14122.0 (0.1 %)122.2 (0.1 %)122.4 (0.2 %)122.6 (0.5 %)122.1C2-O14-H15106.7 (2.5 %)108.0 (1.4 %)107.0 (2.3 %)108.3 (1.1 %)109.5Ángulo de Torsión (9)Image: C2-C1-N23-C1641.4 (14.1 %)51.1 (6.1 %)39.0 (19.1 %)45.5 (5.6 %)48.2	C21-C19-H20	121.3 (3.3 %)	121.8 (2.9 %)	121.2 (3.4 %)	121.6 (3.0 %)	125.5
C21-C19-C17 109.1 (0.0 %) 109.0 (0.1 %) 108.9 (0.1 %) 108.9 (0.2 %) 109.1 C17-C19-H20 129.6 (3.3 %) 129.3 (3.0 %) 129.9 (3.5 %) 129.5 (3.2 %) 125.5 C19-C17-H18 129.6 (3.6 %) 129.3 (3.3 %) 129.9 (3.8 %) 129.5 (3.5 %) 125.1 C8-C22-O13 125.0 (0.3 %) 124.7 (0.5 %) 124.8 (0.5 %) 124.3 (0.8 %) 125.3 C8-C22-O14 113.0 (0.4 %) 113.1 (0.5 %) 112.9 (0.3 %) 113.0 (0.4 %) 112.6 O13-C22-O14 122.0 (0.1 %) 122.2 (0.1 %) 122.4 (0.2 %) 122.6 (0.5 %) 122.1 C2-O14-H15 106.7 (2.5 %) 108.0 (1.4 %) 107.0 (2.3 %) 108.3 (1.1 %) 109.5 Ángulo de Torsión (9) Z <thz< th=""> Z <thz< th=""> Z<td>C16-C17-C19</td><td>109.1 (0.7 %)</td><td>109.0 (0.8 %)</td><td>109.0 (0.8 %)</td><td>108.9 (0.9 %)</td><td>109.8</td></thz<></thz<>	C16-C17-C19	109.1 (0.7 %)	109.0 (0.8 %)	109.0 (0.8 %)	108.9 (0.9 %)	109.8
C17-C19-H20129.6 (3.3 %)129.3 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C19-C17-H18129.6 (3.6 %)129.3 (3.3 %)129.9 (3.8 %)129.5 (3.5 %)125.1C8-C22-O13125.0 (0.3 %)124.7 (0.5 %)124.8 (0.5 %)124.3 (0.8 %)125.3C8-C22-O14113.0 (0.4 %)113.1 (0.5 %)112.9 (0.3 %)113.0 (0.4 %)112.6O13-C22-O14122.0 (0.1 %)122.2 (0.1 %)122.4 (0.2 %)122.6 (0.5 %)122.1C22-O14-H15106.7 (2.5 %)108.0 (1.4 %)107.0 (2.3 %)108.3 (1.1 %)109.5Ángulo de Torsión (%)C2-C1-N23-C1641.4 (14.1 %)51.1 (6.1 %)39.0 (19.1 %)45.5 (5.6 %)48.2	C21-C19-C17	109.1 (0.0 %)	109.0 (0.1 %)	108.9 (0.1 %)	108.9 (0.2 %)	109.1
C19-C17-H18129.6 (3.6 %)129.3 (3.3 %)129.9 (3.8 %)129.5 (3.5 %)125.1C8-C22-O13125.0 (0.3 %)124.7 (0.5 %)124.8 (0.5 %)124.3 (0.8 %)125.3C8-C22-O14113.0 (0.4 %)113.1 (0.5 %)112.9 (0.3 %)113.0 (0.4 %)112.6O13-C22-O14122.0 (0.1 %)122.2 (0.1 %)122.4 (0.2 %)122.6 (0.5 %)122.1C22-O14-H15106.7 (2.5 %)108.0 (1.4 %)107.0 (2.3 %)108.3 (1.1 %)109.5Ángulo de Torsión (%)C2-C1-N23-C1641.4 (14.1 %)51.1 (6.1 %)39.0 (19.1 %)45.5 (5.6 %)48.2	C17-C19-H20	129.6 (3.3 %)	129.3 (3.0 %)	129.9 (3.5 %)	129.5 (3.2 %)	125.5
C8-C22-O13 125.0 (0.3 %) 124.7 (0.5 %) 124.8 (0.5 %) 124.3 (0.8 %) 125.3 C8-C22-O14 113.0 (0.4 %) 113.1 (0.5 %) 112.9 (0.3 %) 113.0 (0.4 %) 112.6 O13-C22-O14 122.0 (0.1 %) 122.2 (0.1 %) 122.4 (0.2 %) 122.6 (0.5 %) 122.1 C22-O14-H15 106.7 (2.5 %) 108.0 (1.4 %) 107.0 (2.3 %) 108.3 (1.1 %) 109.5 Ángulo de Torsión (%) C2-C1-N23-C16 41.4 (14.1 %) 51.1 (6.1 %) 39.0 (19.1 %) 45.5 (5.6 %) 48.2	C19-C17-H18	129.6 (3.6 %)	129.3 (3.3 %)	129.9 (3.8 %)	129.5 (3.5 %)	125.1
C8-C22-O14 113.0 (0.4 %) 113.1 (0.5 %) 112.9 (0.3 %) 113.0 (0.4 %) 112.6 O13-C22-O14 122.0 (0.1 %) 122.2 (0.1 %) 122.4 (0.2 %) 122.6 (0.5 %) 122.1 C22-O14-H15 106.7 (2.5 %) 108.0 (1.4 %) 107.0 (2.3 %) 108.3 (1.1 %) 109.5 Ángulo de Torsión (°) C2-C1-N23-C16 41.4 (14.1 %) 51.1 (6.1 %) 39.0 (19.1 %) 45.5 (5.6 %) 48.2	C8-C22-O13	125.0 (0.3 %)	124.7 (0.5 %)	124.8 (0.5 %)	124.3 (0.8 %)	125.3
O13-C22-O14 122.0 (0.1 %) 122.2 (0.1 %) 122.4 (0.2 %) 122.6 (0.5 %) 122.1 C22-O14-H15 106.7 (2.5 %) 108.0 (1.4 %) 107.0 (2.3 %) 108.3 (1.1 %) 109.5 Ángulo de Torsión (°) C2-C1-N23-C16 41.4 (14.1 %) 51.1 (6.1 %) 39.0 (19.1 %) 45.5 (5.6 %) 48.2	C8-C22-O14	113.0 (0.4 %)	113.1 (0.5 %)	112.9 (0.3 %)	113.0 (0.4 %)	112.6
C22-O14-H15 106.7 (2.5 %) 108.0 (1.4 %) 107.0 (2.3 %) 108.3 (1.1 %) 109.5 Ángulo de Torsión (°) C2-C1-N23-C16 41.4 (14.1 %) 51.1 (6.1 %) 39.0 (19.1 %) 45.5 (5.6 %) 48.2	O13-C22-O14	122.0 (0.1 %)	122.2 (0.1 %)	122.4 (0.2 %)	122.6 (0.5 %)	122.1
Ángulo de Torsión (º) C2-C1-N23-C16 41.4 (14.1 %) 51.1 (6.1 %) 39.0 (19.1 %) 45.5 (5.6 %) 48.2	C22-O14-H15	106.7 (2.5 %)	108.0 (1.4 %)	107.0 (2.3 %)	108.3 (1.1 %)	109.5
C2-C1-N23-C16 41.4 (14.1 %) 51.1 (6.1 %) 39.0 (19.1 %) 45.5 (5.6 %) 48.2	Ángulo de Torsión (º)				
	C2-C1-N23-C16	41.4 (14.1 %)	51.1 (6.1 %)	39.0 (19.1 %)	45.5 (5.6 %)	48.2
C2-C1-N23-C16 41.4 (5.3 %) 51.1 (16.9 %) 39.0 (10.9 %) 45.5 (4.0 %) 43.8	C2-C1-N23-C16	41.4 (5.3 %)	51.1 (16.9 %)	39.0 (10.9 %)	45.5 (4.0 %)	43.8
C3-C1-N23-C21 41.4 (14.1 %) 51.1 (6.1 %) 39.0 (19.1 %) 45.5 (5.6 %) 48.2	C3-C1-N23-C21	41.4 (14.1 %)	51.1 (6.1 %)	39.0 (19.1 %)	45.5 (5.6 %)	48.2
C3-C1-N23-C21 41.4 (5.4 %) 51.1 (16.9 %) 39.0 (10.9 %) 45.5 (4.0 %) 43.8	C3-C1-N23-C21	41.4 (5.4 %)	51.1 (16.9 %)	39.0 (10.9 %)	45.5 (4.0 %)	43.8

Nota. Fuente: Adaptado de Moreno-Fuquen, R., Tenorio, J. C., Ellena, J., de Simone, C.A., & Ribeiro, L. (2014). CCDC 817045: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/ccwf69s

Anexo 3. Estructura optimizada de la *para*-fluorfenilmaleimida en fase gas por el método B3LYP/6-311+G(d,p).

Anexo 4. Errores de los parámetros estructurales de la <i>para</i> -fluorfenilmaleimic

		Mét	odo		Valor	
Parámetro	B3LYP/6-3	811+G(d,p)	M06-2X/6-3	311+G(d,p)	- Evnerimental	
	fase gas	solvente	fase gas	solvente		
	Longitud de er	nlace (Å)				
C1-C2	1.396 (0.4 %)	1.395 (0.4 %)	1.393 (0.2 %)	1.392 (0.1 %)	1.390	
C1-C3	1.396 (0.5 %)	1.395 (0.4 %)	1.393 (0.3 %)	1.392 (0.2 %)	1.389	
C2-C4	1.391 (0.3 %)	1.392 (0.4 %)	1.388 (0.1 %)	1.389 (0.2 %)	1.387	
C4-C8	1.386 (0.7 %)	1.386 (0.7 %)	1.383 (0.5 %)	1.383 (0.5 %)	1.376	
C3-C6	1.391 (0.3 %)	1.392 (0.3 %)	1.388 (0.0 %)	1.389 (0.1 %)	1.388	
C6-C8	1.386 (0.7 %)	1.386 (0.7 %)	1.383 (0.5 %)	1.383 (0.5 %)	1.376	
C2-H5	1.081 (16.3 %)	1.083 (16.4 %)	1.082 (16.3 %)	1.083 (16.4 %)	0.930	
C3-H7	1.081 (16.3 %)	1.083 (16.4 %)	1.082 (16.3 %)	1.083 (16.4 %)	0.930	
C4-H9	1.083 (16.5 %)	1.082 (16.5 %)	1.082 (16.5 %)	1.082 (16.5 %)	0.929	
C6-H10	1.083 (16.4 %)	1.082 (16.4 %)	1.082 (16.4 %)	1.082 (16.4 %)	0.930	
C8-F20	1.354 (0.6 %)	1.359 (0.3 %)	1.343 (1.5 %)	1.348 (1.1 %)	1.363	
N13-C1	1.427 (0.3 %)	1.429 (0.2 %)	1.423 (0.7 %)	1.422 (0.7 %)	1.432	
N13-C14	1.411 (0.4 %)	1.405 (0.0 %)	1.404 (0.1 %)	1.400 (0.4 %)	1.405	
N13-C19	1.411 (0.2 %)	1.405 (0.2 %)	1.404 (0.3 %)	1.400 (0.6 %)	1.408	
C14-C15	1.499 (0.5 %)	1.497 (0.4 %)	1.502 (0.7 %)	1.500 (0.5 %)	1.492	
C17-C19	1.499 (0.6 %)	1.497 (0.5 %)	1.502 (0.8 %)	1.500 (0.7 %)	1.490	
C15-C17	1.332 (0.5 %)	1.332 (0.6 %)	1.327 (0.1 %)	1.328 (0.2 %)	1.325	
C14-O11	1.206 (0.4 %)	1.210 (0.0 %)	1.198 (1.0 %)	1.201 (0.7 %)	1.210	
C19-O12	1.206 (0.4 %)	1.210 (0.0 %)	1.198 (1.0 %)	1.201 (0.7 %)	1.210	
C15-H16	1.080 (16.3 %)	1.080 (16.2 %)	1.080 (16.2 %)	1.080 (16.2 %)	0.929	
C17-H18	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	0.930	
	Longitud de er	lace intermole	cular (Å)			
O11-H5	2.663 (2.2 %)	3.191 (17.2 %)	2.558 (6.0 %)	2.798 (2.8 %)	2.722	
O12-H7	2.663 (4.3 %)	3.191 (14.7 %)	2.557 (8.1 %)	2.798 (0.6 %)	2.782	
	Ángulo de enla	ace (°)				

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C2-C4	120.0 (0.1 %)	120.0 (0.1 %)	119.8 (0.1 %)	119.8 (0.1 %)	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C3-C6	120.0 (0.4 %)	120.0 (0.4 %)	119.8 (0.2 %)	119.8 (0.2 %)	119.5
C3-C6-C6 120.0 (1.7 %) 118.3 (0.3 %) 118.8 (0.6 %) 118.4 (0.4 %) 118.0 C2-C1-C3 120.2 (0.5 %) 120.5 (0.3 %) 120.5 (0.3 %) 122.8 (0.5 %) 122.4 C4-C8-C6 122.3 (0.9 %) 122.8 (0.5 %) 122.8 (0.5 %) 122.4 122.8 (0.5 %) 122.4 C1-C2-H5 120.1 (0.1 %) 120.0 (0.2 %) 120.0 (0.1 %) 119.9 (0.2 %) 120.2 H5-C2-C4 119.9 (0.2 %) 120.1 (0.0 %) 120.2 (0.1 %) 120.3 (0.0 %) 120.3 C2-C4-H9 121.3 (0.3 %) 121.4 (0.4 %) 121.5 (0.5 %) 121.6 0.5 %) 121.0 C3-C6H10 121.3 (0.4 %) 121.2 (0.7 %) 119.7 (0.1 %) 120.0 (0.7 %) 120.2 H9-C4-C8 119.9 (0.7 %) 120.2 (0.7 %) 119.7 (0.9 %) 120.0 (0.7 %) 120.8 C4-C8-F20 118.9 (0.5 %) 118.6 (0.2 %) 118.8 (0.5 %) 118.6 (0.3 %) 118.3 C1-N13-C14 125.1 (0.1 %) 125.1 (0.1 %) 125.0 (0.1 %) 125.0 (0.1 %) 125.0 N13-C1-C2 119.9 (0.6 %) 119.7 (0.2 %) 119.6 (0.3 %) 119.2 N13-C1-C2	C2-C4-C8	118.7 (0.6 %)	118.3 (0.3 %)	118.8 (0.6 %)	118.4 (0.4 %)	118.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C6-C8	120.0 (1.7 %)	118.3 (0.3 %)	118.8 (0.6 %)	118.4 (0.4 %)	118.0
$\begin{array}{ccccc} C4-C8-C6 & 122.3 (0.9 \%) & 122.8 (0.5 \%) & 122.8 (0.9 \%) & 122.8 (0.5 \%) & 123.4 \\ C1-C2+H5 & 120.1 (0.1 \%) & 120.0 (0.0 \%) & 120.0 (0.0 \%) & 119.9 (0.1 \%) & 120.0 \\ C1-C3+H7 & 120.1 (0.1 \%) & 120.0 (0.2 \%) & 120.0 (0.1 \%) & 119.9 (0.2 \%) & 120.2 \\ H5-C2-C4 & 119.9 (0.2 \%) & 120.1 (0.0 \%) & 120.2 (0.1 \%) & 120.3 (0.0 \%) & 120.3 \\ C2-C4+H9 & 121.3 (0.3 \%) & 121.4 (0.4 \%) & 121.5 (0.4 \%) & 121.6 (0.5 \%) & 121.0 \\ C3-C6-H10 & 121.3 (0.4 \%) & 121.4 (0.4 \%) & 121.5 (0.5 \%) & 121.6 (0.5 \%) & 121.0 \\ C3-C6-H10 & 121.3 (0.4 \%) & 120.2 (0.7 \%) & 119.7 (1.1 \%) & 120.0 (0.8 \%) & 121.0 \\ H9-C4-C8 & 119.9 (0.7 \%) & 120.2 (0.7 \%) & 119.7 (1.1 \%) & 120.0 (0.8 \%) & 121.0 \\ C4-C8-E20 & 118.9 (0.5 \%) & 118.6 (0.2 \%) & 118.8 (0.5 \%) & 118.6 (0.3 \%) & 118.3 \\ C6-C8-F20 & 118.9 (0.5 \%) & 118.6 (0.2 \%) & 118.8 (0.5 \%) & 118.6 (0.3 \%) & 118.3 \\ C6-C8-F20 & 118.9 (0.5 \%) & 118.6 (0.2 \%) & 118.8 (0.5 \%) & 118.6 (0.3 \%) & 118.3 \\ C1-N13-C14 & 125.1 (0.1 \%) & 125.1 (0.1 \%) & 125.0 (0.1 \%) & 125.1 \\ N13-C1-C2 & 119.9 (0.6 \%) & 119.7 (0.5 \%) & 119.7 (0.5 \%) & 119.6 (0.3 \%) & 120.0 \\ C1+N13-C19 & 125.1 (0.0 \%) & 125.1 (0.0 \%) & 125.0 (0.1 \%) & 125.1 \\ N13-C1-C3 & 119.9 (0.1 \%) & 109.8 (0.2 \%) & 119.7 (0.2 \%) & 119.6 (0.3 \%) & 120.0 \\ N13-C1+C3 & 119.9 (0.1 \%) & 106.2 (0.0 \%) & 106.1 (0.0 \%) & 106.2 (0.1 \%) & 106.2 \\ N13-C1+C15 & 106.1 (0.1 \%) & 106.2 (0.0 \%) & 106.1 (0.0 \%) & 106.2 (0.1 \%) & 106.2 \\ N13-C14-C15 & 106.1 (0.1 \%) & 106.2 (0.0 \%) & 125.6 (0.4 \%) & 125.2 \\ N13-C19-C17 & 106.1 (0.0 \%) & 125.7 (0.4 \%) & 126.6 (0.2 \%) & 125.4 \\ C14-C15-C14 & 127.6 (0.8 \%) & 128.1 (0.4 \%) & 127.6 \\ N13-C14-O11 & 126.3 (0.9 \%) & 125.7 (0.4 \%) & 126.6 (0.7 \%) & 125.6 \\ C17-C19-O12 & 126.6 (0.7 \%) & 128.1 (0.3 \%) & 127.4 \\ C14-C15-C17 & 109.0 (0.0 \%) & 108.8 (0.1 \%) & 108.8 (0.2 \%) & 109.0 \\ C19-C17-H18 & 121.4 (3.2 \%) & 121.9 (2.8 \%) & 121.3 (3.3 \%) & 121.7 (3.0 \%) & 125.4 \\ C14-C15-C17 & 109.0 (0.0 \%) & 108.8 (0.1 \%) & 108.9 (0.1 \%) & 108.8 (0.2 \%) & 109.0 \\ C19-C17-H18 & 129.6 (3.3 \%) & 129.2 (3.0 \%) & 129.9 (3.5 \%) & 129.5 (3.2 \%) & 125.$	C2-C1-C3	120.2 (0.5 %)	120.5 (0.3 %)	120.5 (0.3 %)	120.8 (0.0 %)	120.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C8-C6	122.3 (0.9 %)	122.8 (0.5 %)	122.3 (0.9 %)	122.8 (0.5 %)	123.4
C1-C3-H7 120.1 (0.1 %) 120.0 (0.2 %) 120.0 (0.1 %) 119.9 (0.2 %) 120.1 H5-C2-C4 119.9 (0.2 %) 120.1 (0.0 %) 120.2 (0.1 %) 120.3 (0.2 %) 120.1 H7-C3-C6 119.9 (0.3 %) 120.1 (0.2 %) 120.2 (0.1 %) 120.3 (0.0 %) 120.3 C2-C4-H9 121.3 (0.3 %) 121.4 (0.4 %) 121.5 (0.4 %) 121.6 (0.5 %) 121.0 C3-C6-H10 121.3 (0.4 %) 121.4 (0.4 %) 121.5 (0.5 %) 121.0 120.9 H9-C4-C8 119.9 (0.7 %) 120.2 (0.7 %) 119.7 (1.9 %) 120.0 (0.8 %) 121.0 H10-C6-C8 118.9 (0.5 %) 118.6 (0.2 %) 118.8 (0.5 %) 118.6 (0.3 %) 118.3 C4-C8-F20 118.9 (0.5 %) 118.6 (0.2 %) 118.8 (0.5 %) 118.6 (0.3 %) 118.3 C1-N13-C14 125.1 (0.1 %) 125.0 (0.0 %) 125.0 (0.1 %) 125.0 C1-N13-C19 125.1 (0.0 %) 125.0 (0.1 %) 125.0 (0.1 %) 129.0 N13-C1-C2 119.9 (0.6 %) 119.7 (0.5 %) 119.6 (0.4 %) 120.0 N13-C1-C3 119.9 (0.1 %) 106.2 (0.1 %) 106.1 (0.0 %) 106.2 (0.1	C1-C2-H5	120.1 (0.1 %)	120.0 (0.0 %)	120.0 (0.0 %)	119.9 (0.1 %)	120.0
H5-C2-C4119.9 (0.2 %)120.1 (0.0 %)120.2 (0.1 %)120.3 (0.2 %)120.1H7-C3-C6119.9 (0.3 %)120.1 (0.2 %)120.2 (0.1 %)120.3 (0.0 %)120.3C2-C4-H9121.3 (0.3 %)121.4 (0.4 %)121.5 (0.4 %)121.6 (0.5 %)120.9H9-C4-C8119.9 (0.9 %)120.2 (0.7 %)119.7 (1.1 %)120.0 (0.8 %)121.0H10-C6-C8119.9 (0.7 %)120.2 (0.5 %)119.7 (0.9 %)120.0 (0.7 %)120.8C4-C8+F20118.9 (0.5 %)118.6 (0.2 %)118.8 (0.5 %)118.6 (0.3 %)118.3C6-C8-F20118.9 (0.5 %)125.1 (0.1 %)125.0 (0.0 %)125.0 (0.0 %)125.0C1-N13-C14125.1 (0.1 %)125.1 (0.0 %)125.0 (0.1 %)125.0119.2N13-C1-C2119.9 (0.6 %)119.7 (0.5 %)119.7 (0.5 %)119.6 (0.4 %)119.2N13-C1-C3119.9 (0.1 %)109.8 (0.2 %)110.0 (0.3 %)100.6100.6N13-C14-C15106.1 (0.1 %)106.2 (0.1 %)106.2 (0.1 %)106.2N13-C14-C15106.1 (0.1 %)106.2 (0.1 %)106.2 (0.1 %)106.2N13-C14-C15106.1 (0.0 %)125.7 (0.4 %)126.3 (0.9 %)125.6 (0.4 %)125.2N13-C14-C15106.1 (0.0 %)125.7 (0.4 %)126.3 (0.7 %)125.6 (0.4 %)125.4C14-C15-C17109.8 (0.2 %)125.7 (0.4 %)126.3 (0.7 %)125.6 (0.4 %)125.4C15-C14-O11126.3 (0.7 %)125.7 (0.2 %)126.3 (0.7 %)125.6 (0.4 %)125.4C15-C14-O11	C1-C3-H7	120.1 (0.1 %)	120.0 (0.2 %)	120.0 (0.1 %)	119.9 (0.2 %)	120.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H5-C2-C4	119.9 (0.2 %)	120.1 (0.0 %)	120.2 (0.1 %)	120.3 (0.2 %)	120.1
$\begin{array}{ccccc} C2-C4-H9 & 121.3 (0.3 \%) & 121.4 (0.4 \%) & 121.5 (0.4 \%) & 121.6 (0.5 \%) & 121.0 \\ C3-C6-H10 & 121.3 (0.4 \%) & 121.4 (0.4 \%) & 121.5 (0.5 \%) & 121.6 (0.5 \%) & 120.9 \\ H9-C4-C8 & 119.9 (0.9 \%) & 120.2 (0.7 \%) & 119.7 (1.1 \%) & 120.0 (0.8 \%) & 121.0 \\ H10-C6-C8 & 119.9 (0.7 \%) & 120.2 (0.5 \%) & 119.7 (0.9 \%) & 120.0 (0.7 \%) & 120.8 \\ C4-C8-F20 & 118.9 (0.5 \%) & 118.6 (0.2 \%) & 118.8 (0.5 \%) & 118.6 (0.3 \%) & 118.3 \\ C6-C8-F20 & 118.9 (0.5 \%) & 118.6 (0.2 \%) & 118.8 (0.5 \%) & 118.6 (0.3 \%) & 118.3 \\ C1-N13-C14 & 125.1 (0.1 \%) & 125.1 (0.1 \%) & 125.0 (0.0 \%) & 125.0 (0.0 \%) & 125.0 \\ C1-N13-C19 & 125.1 (0.0 \%) & 125.1 (0.0 \%) & 125.0 (0.1 \%) & 125.0 \\ N13-C1-C2 & 119.9 (0.6 \%) & 119.7 (0.5 \%) & 119.6 (0.4 \%) & 119.2 \\ N13-C1-C3 & 119.9 (0.1 \%) & 109.8 (0.2 \%) & 110.0 (0.3 \%) & 110.0 \\ C14-N13-C19 & 109.8 (0.1 \%) & 109.8 (0.2 \%) & 110.0 (0.3 \%) & 110.0 \\ N13-C14-C15 & 106.1 (0.1 \%) & 106.2 (0.0 \%) & 106.1 (0.0 \%) & 106.2 (0.1 \%) & 106.2 \\ N13-C14-C15 & 106.1 (0.1 \%) & 106.2 (0.0 \%) & 106.1 (0.0 \%) & 106.2 (0.1 \%) & 106.1 \\ N13-C14-O11 & 126.3 (0.9 \%) & 125.7 (0.4 \%) & 126.6 (0.2 \%) & 125.4 \\ C15-C14-O11 & 127.6 (0.8 \%) & 128.1 (0.4 \%) & 127.6 (0.8 \%) & 128.1 (0.4 \%) & 128.4 \\ C14-C15-H16 & 121.4 (3.2 \%) & 121.9 (2.8 \%) & 121.3 (3.3 \%) & 121.7 (3.0 \%) & 125.4 \\ C15-C14-O11 & 127.6 (0.8 \%) & 128.1 (0.4 \%) & 127.6 (0.8 \%) & 128.1 (0.4 \%) & 126.5 \\ C17-C19-O12 & 127.6 (0.7 \%) & 128.1 (0.3 \%) & 121.7 (3.0 \%) & 125.5 \\ C19-C17-H18 & 121.4 (3.2 \%) & 121.9 (2.8 \%) & 121.3 (3.3 \%) & 121.7 (3.0 \%) & 125.5 \\ C17-C15-H16 & 129.6 (3.3 \%) & 129.2 (3.0 \%) & 129.9 (3.5 \%) & 129.5 (3.2 \%) & 125.5 \\ C17-C15-H16 & 129.6 (3.2 \%) & 129.2 (3.0 \%) & 129.9 (3.5 \%) & 129.5 (3.2 \%) & 125.5 \\ C17-C15-H16 & 129.6 (3.2 \%) & 129.2 (3.0 \%) & 129.9 (3.5 \%) & 129.5 (3.2 \%) & 125.5 \\ C17-C15-H16 & 129.6 (3.2 \%) & 129.2 (3.0 \%) & 129.9 (3.5 \%) & 129.5 (3.2 \%) & 125.5 \\ C17-C15-H16 & 129.6 (3.2 \%) & 129.2 (3.0 \%) & 129.9 (3.5 \%) & 129.5 (3.2 \%) & 125.5 \\ C17-C15-H16 & 129.6 (3.2 \%) & 68.1 (47.7 \%) & 42.6 (7.7 \%) & 53.2 (15.3 \%) & 46.1 \\ C3-$	H7-C3-C6	119.9 (0.3 %)	120.1 (0.2 %)	120.2 (0.1 %)	120.3 (0.0 %)	120.3
C3-C6-H10 121.3 (0.4 %) 121.4 (0.4 %) 121.5 (0.5 %) 121.6 (0.5 %) 120.9 H9-C4-C8 119.9 (0.9 %) 120.2 (0.7 %) 119.7 (1.1 %) 120.0 (0.8 %) 121.0 H10-C6-C8 119.9 (0.7 %) 120.2 (0.5 %) 119.7 (0.9 %) 120.0 (0.7 %) 120.8 C4-C8-F20 118.9 (0.5 %) 118.6 (0.2 %) 118.8 (0.5 %) 118.6 (0.3 %) 118.3 C6-C8-F20 118.9 (0.5 %) 118.6 (0.2 %) 118.8 (0.5 %) 118.6 (0.3 %) 125.0 C1-N13-C14 125.1 (0.0 %) 125.1 (0.0 %) 125.0 (0.0 %) 125.0 119.7 N13-C1-C2 119.9 (0.6 %) 119.7 (0.5 %) 119.6 (0.4 %) 119.2 N13-C1-C3 119.9 (0.1 %) 119.7 (0.2 %) 119.6 (0.3 %) 120.0 C14-N13-C19 109.8 (0.2 %) 110.0 (0.3 %) 110.0 10.4 %) 125.2 N13-C14-C15 106.1 (0.1 %) 106.2 (0.1 %) 106.2 (0.1 %) 106.2 10.4 %) 125.6 (0.4 %) 125.2 N13-C19-C17 106.1 (0.0 %) 106.2 (0.1 %) 106.2 126.3 (0.7	C2-C4-H9	121.3 (0.3 %)	121.4 (0.4 %)	121.5 (0.4 %)	121.6 (0.5 %)	121.0
H9-C4-C8119.9 (0.9 %)120.2 (0.7 %)119.7 (1.1 %)120.0 (0.8 %)121.0H10-C6-C8119.9 (0.7 %)120.2 (0.5 %)119.7 (0.9 %)120.0 (0.7 %)120.8C4-C8-F20118.9 (0.5 %)118.6 (0.2 %)118.8 (0.5 %)118.6 (0.3 %)118.3C6-C8-F20118.9 (0.5 %)118.6 (0.2 %)118.8 (0.5 %)118.6 (0.3 %)118.3C1-N13-C14125.1 (0.1 %)125.1 (0.1 %)125.0 (0.0 %)125.0 (0.0 %)125.1N13-C1-C2119.9 (0.6 %)119.7 (0.5 %)119.7 (0.5 %)119.6 (0.4 %)119.2N13-C1-C3119.9 (0.1 %)119.7 (0.2 %)119.7 (0.2 %)119.6 (0.3 %)120.0C1-N13-C19109.8 (0.1 %)109.8 (0.2 %)110.0 (0.3 %)110.0 (0.3 %)109.6N13-C1+C2109.8 (0.1 %)106.2 (0.0 %)106.1 (0.0 %)106.2 (0.1 %)106.2N13-C1+C3109.8 (0.1 %)106.2 (0.0 %)106.1 (0.0 %)106.2 (0.1 %)106.2N13-C14-C15106.1 (0.1 %)106.2 (0.1 %)106.2 (0.1 %)106.2106.1N13-C14-O11126.3 (0.9 %)125.6 (0.2 %)125.4125.4C15-C14-O11127.6 (0.8 %)128.1 (0.4 %)127.6 (0.8 %)128.1 (0.4 %)128.6C17-C19-O12127.6 (0.7 %)128.1 (0.3 %)121.7 (3.0 %)125.5C19-C17-H18121.4 (3.2 %)121.9 (2.8 %)121.3 (3.3 %)121.7 (3.0 %)125.4C14-C15-C17109.0 (0.1 %)108.8 (0.2 %)109.0109.1125.5129.5 (3.2 %)125.5<	C3-C6-H10	121.3 (0.4 %)	121.4 (0.4 %)	121.5 (0.5 %)	121.6 (0.5 %)	120.9
H10-C6-C8119.9 (0.7 %)120.2 (0.5 %)119.7 (0.9 %)120.0 (0.7 %)120.8C4-C8-F20118.9 (0.5 %)118.6 (0.2 %)118.8 (0.5 %)118.6 (0.3 %)118.3C6-C8-F20118.9 (0.5 %)118.6 (0.2 %)118.8 (0.5 %)118.6 (0.3 %)118.3C1-N13-C14125.1 (0.1 %)125.1 (0.0 %)125.0 (0.0 %)125.0 (0.1 %)125.1C1-N13-C19125.1 (0.0 %)125.1 (0.0 %)125.0 (0.1 %)125.1119.2N13-C1-C2119.9 (0.6 %)119.7 (0.5 %)119.6 (0.4 %)119.2N13-C1-C3119.9 (0.1 %)119.7 (0.2 %)119.6 (0.3 %)120.0C14-N13-C19109.8 (0.1 %)109.8 (0.2 %)110.0 (0.3 %)110.0N13-C14-C15106.1 (0.1 %)106.2 (0.0 %)106.1 (0.0 %)106.2 (0.1 %)N13-C14-C15106.1 (0.0 %)106.2 (0.1 %)106.1 (0.0 %)106.2 (0.1 %)N13-C14-C11126.3 (0.9 %)125.7 (0.4 %)126.3 (0.9 %)125.6 (0.4 %)N13-C14-O11126.3 (0.9 %)125.6 (0.4 %)128.4C14-C15-H16121.4 (3.2 %)121.9 (2.8 %)121.3 (3.4 %)121.7 (3.0 %)C14-C15-H16121.4 (3.2 %)121.9 (2.8 %)121.3 (3.3 %)121.7 (3.0 %)C19-C17-H18129.6 (3.3 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15109.0 (0.1 %)108.8 (0.1 %)108.8 (0.2 %)109.1C15-C17-H18129.6 (3.2 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.	H9-C4-C8	119.9 (0.9 %)	120.2 (0.7 %)	119.7 (1.1 %)	120.0 (0.8 %)	121.0
C4-C8-F20118.9 (0.5 %)118.6 (0.2 %)118.8 (0.5 %)118.6 (0.3 %)118.3C6-C8-F20118.9 (0.5 %)118.6 (0.2 %)118.8 (0.5 %)118.6 (0.3 %)118.3C1-N13-C14125.1 (0.1 %)125.1 (0.1 %)125.0 (0.0 %)125.0 (0.0 %)125.1N13-C1-Q119.9 (0.6 %)119.7 (0.5 %)119.6 (0.4 %)119.2N13-C1-C3119.9 (0.1 %)119.7 (0.2 %)119.6 (0.3 %)120.0C14-N13-C19109.8 (0.1 %)109.8 (0.2 %)110.0 (0.3 %)110.0 (0.3 %)100.6N13-C1+C3109.8 (0.1 %)109.8 (0.2 %)110.0 (0.3 %)110.0 (0.3 %)106.2N13-C1+C15106.1 (0.1 %)106.2 (0.0 %)106.1 (0.0 %)106.2 (0.1 %)106.2N13-C14-C15106.1 (0.0 %)106.2 (0.1 %)106.2 (0.1 %)106.1N13-C14-C11126.3 (0.9 %)125.7 (0.4 %)126.3 (0.9 %)125.6 (0.4 %)125.2N13-C19-O12127.6 (0.7 %)128.1 (0.4 %)127.6 (0.8 %)128.1128.4C15-C14-O11127.6 (0.8 %)128.1 (0.3 %)121.7 (3.0 %)125.5C19-C17-H18121.4 (3.2 %)121.9 (2.8 %)121.3 (3.4 %)121.7 (3.0 %)125.4C14-C15-C17109.0 (0.0 %)108.8 (0.2 %)108.9 (0.2 %)108.8 (0.3 %)109.1C15-C17-H18129.6 (3.3 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.2 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.2 %)1	H10-C6-C8	119.9 (0.7 %)	120.2 (0.5 %)	119.7 (0.9 %)	120.0 (0.7 %)	120.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C8-F20	118.9 (0.5 %)	118.6 (0.2 %)	118.8 (0.5 %)	118.6 (0.3 %)	118.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C8-F20	118.9 (0.5 %)	118.6 (0.2 %)	118.8 (0.5 %)	118.6 (0.3 %)	118.3
C1-N13-C19125.1 (0.0 %)125.1 (0.0 %)125.0 (0.1 %)125.0 (0.1 %)125.1N13-C1-C2119.9 (0.6 %)119.7 (0.5 %)119.7 (0.5 %)119.6 (0.4 %)119.2N13-C1-C3119.9 (0.1 %)119.7 (0.2 %)119.7 (0.2 %)119.6 (0.3 %)120.0C14-N13-C19109.8 (0.1 %)109.8 (0.2 %)110.0 (0.3 %)110.0 (0.3 %)109.6N13-C14-C15106.1 (0.1 %)106.2 (0.0 %)106.1 (0.0 %)106.2 (0.1 %)106.2N13-C19-C17106.1 (0.0 %)106.2 (0.1 %)106.1 (0.0 %)106.2 (0.1 %)106.1N13-C14-O11126.3 (0.9 %)125.7 (0.4 %)126.3 (0.9 %)125.6 (0.4 %)125.2N13-C19-O12126.3 (0.7 %)125.7 (0.2 %)126.3 (0.7 %)125.6 (0.2 %)125.4C15-C14-O11127.6 (0.8 %)128.1 (0.4 %)127.6 (0.7 %)128.1 (0.4 %)128.6C17-C19-O12127.6 (0.7 %)128.1 (0.3 %)121.7 (3.0 %)125.5C19-C17-H18121.4 (3.2 %)121.9 (2.8 %)121.3 (3.4 %)121.7 (3.0 %)125.4C14-C15-C17109.0 (0.0 %)108.8 (0.1 %)108.8 (0.2 %)109.0109.0C19-C17-C15109.0 (0.1 %)108.8 (0.2 %)108.9 (0.1 %)108.8 (0.2 %)109.0C19-C17-C15109.0 (0.1 %)108.8 (0.2 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.2 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.2 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %) </td <td>C1-N13-C14</td> <td>125.1 (0.1 %)</td> <td>125.1 (0.1 %)</td> <td>125.0 (0.0 %)</td> <td>125.0 (0.0 %)</td> <td>125.0</td>	C1-N13-C14	125.1 (0.1 %)	125.1 (0.1 %)	125.0 (0.0 %)	125.0 (0.0 %)	125.0
N13-C1-C2 119.9 (0.6 %) 119.7 (0.5 %) 119.7 (0.5 %) 119.6 (0.4 %) 119.2 N13-C1-C3 119.9 (0.1 %) 119.7 (0.2 %) 119.6 (0.3 %) 120.0 C14-N13-C19 109.8 (0.1 %) 109.8 (0.2 %) 110.0 (0.3 %) 110.0 (0.3 %) 109.6 N13-C14-C15 106.1 (0.1 %) 106.2 (0.0 %) 106.1 (0.0 %) 106.2 (0.1 %) 106.2 N13-C14-C15 106.1 (0.0 %) 106.2 (0.1 %) 106.1 (0.0 %) 106.2 (0.1 %) 106.2 N13-C14-C11 126.3 (0.9 %) 125.7 (0.4 %) 126.3 (0.9 %) 125.6 (0.4 %) 125.2 N13-C14-O11 127.6 (0.8 %) 128.1 (0.4 %) 127.6 (0.2 %) 128.4 C15-C14-O11 127.6 (0.7 %) 128.1 (0.3 %) 127.6 (0.7 %) 128.1 (0.3 %) 128.1 (0.3 %) C14-C15-H16 121.4 (3.2 %) 121.9 (2.8 %) 121.3 (3.3 %) 121.7 (3.0 %) 125.5 C19-C17-H18 121.4 (3.2 %) 129.9 (2.8 %) 121.3 (3.3 %) 121.7 (3.0 %) 125.4 C14-C15-C17 109.0 (0.0 %) 108.8 (0.1 %) 108.8 (0.2 %) 108.8 (0.2 %) 109.0 C19-C17-C15 109.0 (0.1 %)	C1-N13-C19	125.1 (0.0 %)	125.1 (0.0 %)	125.0 (0.1 %)	125.0 (0.1 %)	125.1
N13-C1-C3119.9 (0.1 %)119.7 (0.2 %)119.7 (0.2 %)119.6 (0.3 %)120.0C14-N13-C19109.8 (0.1 %)109.8 (0.2 %)110.0 (0.3 %)110.0 (0.3 %)109.6N13-C14-C15106.1 (0.1 %)106.2 (0.0 %)106.1 (0.0 %)106.2 (0.1 %)106.2N13-C19-C17106.1 (0.0 %)106.2 (0.1 %)106.1 (0.0 %)106.2 (0.1 %)106.1N13-C14-O11126.3 (0.9 %)125.7 (0.4 %)126.3 (0.9 %)125.6 (0.4 %)125.2N13-C19-O12126.3 (0.7 %)125.7 (0.2 %)126.3 (0.7 %)125.6 (0.2 %)125.4C15-C14-O11127.6 (0.8 %)128.1 (0.4 %)127.6 (0.8 %)128.1 (0.4 %)128.6C17-C19-O12127.6 (0.7 %)128.1 (0.3 %)127.6 (0.7 %)128.1 (0.3 %)125.5C19-C17-H16121.4 (3.2 %)121.9 (2.8 %)121.3 (3.4 %)121.7 (3.0 %)125.4C14-C15-C17109.0 (0.0 %)108.8 (0.1 %)108.9 (0.1 %)108.8 (0.2 %)109.0C19-C17-C15109.0 (0.1 %)108.8 (0.2 %)129.5 (3.2 %)125.5125.5C17-C15-H16129.6 (3.3 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.2 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C2-C1-N13-C1446.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C2-C1-N13-C1446.3 (0.5 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1C3-C1-N13-C1946.3 (0.5 %)68.1 (30.9 %)42.6 (18.2 %	N13-C1-C2	119.9 (0.6 %)	119.7 (0.5 %)	119.7 (0.5 %)	119.6 (0.4 %)	119.2
C14-N13-C19109.8 (0.1 %)109.8 (0.2 %)110.0 (0.3 %)110.0 (0.3 %)109.6N13-C14-C15106.1 (0.1 %)106.2 (0.0 %)106.1 (0.0 %)106.2 (0.1 %)106.2N13-C19-C17106.1 (0.0 %)106.2 (0.1 %)106.1 (0.0 %)106.2 (0.1 %)106.1N13-C14-O11126.3 (0.9 %)125.7 (0.4 %)126.3 (0.9 %)125.6 (0.4 %)125.2N13-C19-O12126.3 (0.7 %)125.7 (0.2 %)126.3 (0.7 %)125.6 (0.2 %)125.4C15-C14-O11127.6 (0.8 %)128.1 (0.4 %)127.6 (0.8 %)128.1 (0.4 %)128.6C17-C19-O12127.6 (0.7 %)128.1 (0.3 %)127.6 (0.7 %)128.1 (0.3 %)128.4C14-C15-H16121.4 (3.2 %)121.9 (2.8 %)121.3 (3.4 %)121.7 (3.0 %)125.4C14-C15-C17109.0 (0.0 %)108.8 (0.1 %)108.9 (0.1 %)108.8 (0.2 %)109.0C19-C17-C15109.0 (0.1 %)108.8 (0.2 %)108.9 (0.2 %)108.8 (0.3 %)109.1C15-C17-H18129.6 (3.3 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.2 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C2-C1-N13-C1446.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (0.5 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1C3-C1-N13-C1946.3 (0.5 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1	N13-C1-C3	119.9 (0.1 %)	119.7 (0.2 %)	119.7 (0.2 %)	119.6 (0.3 %)	120.0
N13-C14-C15106.1 (0.1 %)106.2 (0.0 %)106.1 (0.0 %)106.2 (0.1 %)106.2N13-C19-C17106.1 (0.0 %)106.2 (0.1 %)106.1 (0.0 %)106.2 (0.1 %)106.1N13-C14-O11126.3 (0.9 %)125.7 (0.4 %)126.3 (0.9 %)125.6 (0.4 %)125.2N13-C19-O12126.3 (0.7 %)125.7 (0.2 %)126.3 (0.7 %)125.6 (0.2 %)125.4C15-C14-O11127.6 (0.8 %)128.1 (0.4 %)127.6 (0.8 %)128.1 (0.4 %)128.6C17-C19-O12127.6 (0.7 %)128.1 (0.3 %)127.6 (0.7 %)128.1 (0.3 %)128.4C14-C15-H16121.4 (3.2 %)121.9 (2.8 %)121.3 (3.4 %)121.7 (3.0 %)125.4C14-C15-C17109.0 (0.0 %)108.8 (0.1 %)108.9 (0.1 %)108.8 (0.2 %)109.0C19-C17-C15109.0 (0.1 %)108.8 (0.2 %)109.0109.0109.0C19-C17-C15109.0 (0.1 %)108.8 (0.2 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.3 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.2 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C2-C1-N13-C1446.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C2-C1-N13-C1446.3 (0.5 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1C3-C1-N13-C1946.3 (0.5 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1	C14-N13-C19	109.8 (0.1 %)	109.8 (0.2 %)	110.0 (0.3 %)	110.0 (0.3 %)	109.6
$\begin{array}{ccccc} {\rm N13-C19-C17} & 106.1 (0.0 \%) & 106.2 (0.1 \%) & 106.1 (0.0 \%) & 106.2 (0.1 \%) & 106.1 \\ {\rm N13-C14-O11} & 126.3 (0.9 \%) & 125.7 (0.4 \%) & 126.3 (0.9 \%) & 125.6 (0.4 \%) & 125.2 \\ {\rm N13-C19-O12} & 126.3 (0.7 \%) & 125.7 (0.2 \%) & 126.3 (0.7 \%) & 125.6 (0.2 \%) & 125.4 \\ {\rm C15-C14-O11} & 127.6 (0.8 \%) & 128.1 (0.4 \%) & 127.6 (0.8 \%) & 128.1 (0.4 \%) & 128.6 \\ {\rm C17-C19-O12} & 127.6 (0.7 \%) & 128.1 (0.3 \%) & 127.6 (0.7 \%) & 128.1 (0.3 \%) & 128.4 \\ {\rm C14-C15-H16} & 121.4 (3.2 \%) & 121.9 (2.8 \%) & 121.3 (3.4 \%) & 121.7 (3.0 \%) & 125.5 \\ {\rm C19-C17-H18} & 121.4 (3.2 \%) & 121.9 (2.8 \%) & 121.3 (3.3 \%) & 121.7 (3.0 \%) & 125.4 \\ {\rm C14-C15-C17} & 109.0 (0.0 \%) & 108.8 (0.1 \%) & 108.9 (0.1 \%) & 108.8 (0.2 \%) & 109.0 \\ {\rm C19-C17-C15} & 109.0 (0.1 \%) & 108.8 (0.2 \%) & 108.8 (0.3 \%) & 109.1 \\ {\rm C15-C17-H18} & 129.6 (3.3 \%) & 129.2 (3.0 \%) & 129.9 (3.5 \%) & 129.5 (3.2 \%) & 125.5 \\ {\rm C17-C15-H16} & 129.6 (3.2 \%) & 129.2 (3.0 \%) & 129.9 (3.5 \%) & 129.5 (3.2 \%) & 125.5 \\ {\rm C2-C1-N13-C14} & 46.3 (0.5 \%) & 68.1 (47.7 \%) & 42.6 (7.7 \%) & 53.2 (15.3 \%) & 46.1 \\ {\rm C2-C1-N13-C14} & 46.3 (0.5 \%) & 68.1 (47.7 \%) & 42.6 (7.7 \%) & 53.2 (15.3 \%) & 46.1 \\ {\rm C3-C1-N13-C19} & 46.3 (0.5 \%) & 68.1 (47.7 \%) & 42.6 (7.7 \%) & 53.2 (15.3 \%) & 46.1 \\ {\rm C3-C1-N13-C19} & 46.3 (0.5 \%) & 68.1 (30.9 \%) & 42.6 (7.7 \%) & 53.2 (15.3 \%) & 46.1 \\ {\rm C3-C1-N13-C19} & 46.3 (0.5 \%) & 68.1 (30.9 \%) & 42.6 (7.7 \%) & 53.2 (15.3 \%) & 46.1 \\ {\rm C3-C1-N13-C19} & 46.3 (0.5 \%) & 68.1 (30.9 \%) & 42.6 (7.7 \%) & 53.2 (2.1 \%) & 52.1 \\ {\rm C3-C1-N13-C19} & 46.3 (0.5 \%) & 68.1 (30.9 \%) & 42.6 (18.2 \%) & 53.2 (2.1 \%) & 52.1 \\ {\rm C3-C1-N13-C19} & 46.3 (0.5 \%) & 68.1 (30.9 \%) & 42.6 (18.2 \%) & 53.2 (2.1 \%) & 52.1 \\ {\rm C3-C1-N13-C19} & 46.3 (0.5 \%) & 68.1 (30.$	N13-C14-C15	106.1 (0.1 %)	106.2 (0.0 %)	106.1 (0.0 %)	106.2 (0.1 %)	106.2
$\begin{array}{ccccc} {\sf N13-C14-O11} & 126.3 (0.9 \%) & 125.7 (0.4 \%) & 126.3 (0.9 \%) & 125.6 (0.4 \%) & 125.2 \\ {\sf N13-C19-O12} & 126.3 (0.7 \%) & 125.7 (0.2 \%) & 126.3 (0.7 \%) & 125.6 (0.2 \%) & 125.4 \\ {\sf C15-C14-O11} & 127.6 (0.8 \%) & 128.1 (0.4 \%) & 127.6 (0.8 \%) & 128.1 (0.4 \%) & 128.6 \\ {\sf C17-C19-O12} & 127.6 (0.7 \%) & 128.1 (0.3 \%) & 127.6 (0.7 \%) & 128.1 (0.3 \%) & 128.4 \\ {\sf C14-C15-H16} & 121.4 (3.2 \%) & 121.9 (2.8 \%) & 121.3 (3.4 \%) & 121.7 (3.0 \%) & 125.5 \\ {\sf C19-C17-H18} & 121.4 (3.2 \%) & 121.9 (2.8 \%) & 121.3 (3.3 \%) & 121.7 (3.0 \%) & 125.4 \\ {\sf C14-C15-C17} & 109.0 (0.0 \%) & 108.8 (0.1 \%) & 108.9 (0.1 \%) & 108.8 (0.2 \%) & 109.0 \\ {\sf C19-C17-C15} & 109.0 (0.1 \%) & 108.8 (0.2 \%) & 108.9 (0.2 \%) & 108.8 (0.3 \%) & 109.1 \\ {\sf C15-C17-H18} & 129.6 (3.3 \%) & 129.2 (3.0 \%) & 129.9 (3.5 \%) & 129.5 (3.2 \%) & 125.5 \\ {\sf C17-C15-H16} & 129.6 (3.2 \%) & 129.2 (3.0 \%) & 129.9 (3.5 \%) & 129.5 (3.2 \%) & 125.5 \\ {\sf C17-C15-H16} & 129.6 (3.2 \%) & 129.2 (3.0 \%) & 129.9 (3.5 \%) & 129.5 (3.2 \%) & 125.5 \\ {\sf C2-C1-N13-C14} & 46.3 (0.5 \%) & 68.1 (47.7 \%) & 42.6 (7.7 \%) & 53.2 (15.3 \%) & 46.1 \\ {\sf C2-C1-N13-C14} & 46.3 (11.0 \%) & 68.1 (30.9 \%) & 42.6 (18.2 \%) & 53.2 (2.1 \%) & 52.1 \\ {\sf C3-C1-N13-C19} & 46.3 (11.0 \%) & 68.1 (30.9 \%) & 42.6 (18.2 \%) & 53.2 (2.1 \%) & 52.1 \\ {\sf C3-C1-N13-C19} & 46.3 (11.0 \%) & 68.1 (30.9 \%) & 42.6 (18.2 \%) & 53.2 (2.1 \%) & 52.1 \\ {\sf C3-C1-N13-C19} & 46.3 (11.0 \%) & 68.1 (30.9 \%) & 42.6 (18.2 \%) & 53.2 (2.1 \%) & 52.1 \\ {\sf C3-C1-N13-C19} & 46.3 (11.0 \%) & 68.1 (30.9 \%) & 42.6 (18.2 \%) & 53.2 (2.1 \%) & 52.1 \\ {\sf C3-C1-N13-C19} & 46.3 (11.0 \%) & 68.1 (30.9 \%) & 42.6 (18.2 \%) & 53.2 (2.1 \%) & 52.1 \\ {\sf C3-C1-N13-C19} & 46.3 (11.0 \%) & 68.1 (30.9 \%) & 42.6 (18.2 \%) & 53.2 (2.1 \%) & 52.1 \\ {\sf C3-C1-N13-C19} & 46.3 (11.0 \%) & 68.1 (30.9 \%) & 42.6 (18.2 \%) & 53.2 (2.1 \%) & 52.1 \\ {\sf C3-C1-N13-C19} & 46.3 (11.0 \%) & 68.1 (30.9 \%) & 42.6 (18.2 \%) & 53.2 (2.1 \%) & 52.1 \\ {\sf C3-C1-N13-C19} & 46.3 (11.0 \%) & 68.1 (30.9 \%) & 42.6 (18.2 \%) & 53.2 (2.1 \%) & 52.1 \\ {\sf C3-C1-N13-C19} & 46.3 (11.0 \%) & 68.1 (30.9 \%) & 42.6$	N13-C19-C17	106.1 (0.0 %)	106.2 (0.1 %)	106.1 (0.0 %)	106.2 (0.1 %)	106.1
N13-C19-O12126.3 (0.7 %)125.7 (0.2 %)126.3 (0.7 %)125.6 (0.2 %)125.4C15-C14-O11127.6 (0.8 %)128.1 (0.4 %)127.6 (0.8 %)128.1 (0.4 %)128.6C17-C19-O12127.6 (0.7 %)128.1 (0.3 %)127.6 (0.7 %)128.1 (0.3 %)128.4C14-C15-H16121.4 (3.2 %)121.9 (2.8 %)121.3 (3.4 %)121.7 (3.0 %)125.5C19-C17-H18121.4 (3.2 %)121.9 (2.8 %)121.3 (3.3 %)121.7 (3.0 %)125.4C14-C15-C17109.0 (0.0 %)108.8 (0.1 %)108.9 (0.1 %)108.8 (0.2 %)109.0C19-C17-C15109.0 (0.1 %)108.8 (0.2 %)108.9 (0.2 %)108.8 (0.3 %)109.1C15-C17-H18129.6 (3.3 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.2 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C2-C1-N13-C1446.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C2-C1-N13-C1446.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (0.5 %)68.1 (30.9 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (11.0 %)68.1 (30.9 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (11.0 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1	N13-C14-O11	126.3 (0.9 %)	125.7 (0.4 %)	126.3 (0.9 %)	125.6 (0.4 %)	125.2
C15-C14-O11127.6 (0.8 %)128.1 (0.4 %)127.6 (0.8 %)128.1 (0.4 %)128.6C17-C19-O12127.6 (0.7 %)128.1 (0.3 %)127.6 (0.7 %)128.1 (0.3 %)128.4C14-C15-H16121.4 (3.2 %)121.9 (2.8 %)121.3 (3.4 %)121.7 (3.0 %)125.5C19-C17-H18121.4 (3.2 %)121.9 (2.8 %)121.3 (3.3 %)121.7 (3.0 %)125.4C14-C15-C17109.0 (0.0 %)108.8 (0.1 %)108.9 (0.1 %)108.8 (0.2 %)109.0C19-C17-C15109.0 (0.1 %)108.8 (0.2 %)108.9 (0.2 %)108.8 (0.3 %)109.1C15-C17-H18129.6 (3.3 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.2 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C2-C1-N13-C1446.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C2-C1-N13-C1946.3 (0.5 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1C3-C1-N13-C1946.3 (11.0 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1	N13-C19-O12	126.3 (0.7 %)	125.7 (0.2 %)	126.3 (0.7 %)	125.6 (0.2 %)	125.4
C17-C19-O12127.6 (0.7 %)128.1 (0.3 %)127.6 (0.7 %)128.1 (0.3 %)128.4C14-C15-H16121.4 (3.2 %)121.9 (2.8 %)121.3 (3.4 %)121.7 (3.0 %)125.5C19-C17-H18121.4 (3.2 %)121.9 (2.8 %)121.3 (3.3 %)121.7 (3.0 %)125.4C14-C15-C17109.0 (0.0 %)108.8 (0.1 %)108.9 (0.1 %)108.8 (0.2 %)109.0C19-C17-C15109.0 (0.1 %)108.8 (0.2 %)108.9 (0.2 %)108.8 (0.3 %)109.1C15-C17-H18129.6 (3.3 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.2 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5Ángulo de Torsión (%)C2-C1-N13-C1446.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (11.0 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1	C15-C14-O11	127.6 (0.8 %)	128.1 (0.4 %)	127.6 (0.8 %)	128.1 (0.4 %)	128.6
C14-C15-H16121.4 (3.2 %)121.9 (2.8 %)121.3 (3.4 %)121.7 (3.0 %)125.5C19-C17-H18121.4 (3.2 %)121.9 (2.8 %)121.3 (3.3 %)121.7 (3.0 %)125.4C14-C15-C17109.0 (0.0 %)108.8 (0.1 %)108.9 (0.1 %)108.8 (0.2 %)109.0C19-C17-C15109.0 (0.1 %)108.8 (0.2 %)108.9 (0.2 %)108.8 (0.3 %)109.1C15-C17-H18129.6 (3.3 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.2 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C2-C1-N13-C1446.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C2-C1-N13-C1446.3 (0.5 %)68.1 (30.9 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (11.0 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1	C17-C19-O12	127.6 (0.7 %)	128.1 (0.3 %)	127.6 (0.7 %)	128.1 (0.3 %)	128.4
C19-C17-H18121.4 (3.2 %)121.9 (2.8 %)121.3 (3.3 %)121.7 (3.0 %)125.4C14-C15-C17109.0 (0.0 %)108.8 (0.1 %)108.9 (0.1 %)108.8 (0.2 %)109.0C19-C17-C15109.0 (0.1 %)108.8 (0.2 %)108.9 (0.2 %)108.8 (0.3 %)109.1C15-C17-H18129.6 (3.3 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.2 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5 Ángulo de Torsión (º) C2-C1-N13-C1446.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C2-C1-N13-C1446.3 (0.5 %)68.1 (30.9 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (11.0 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1	C14-C15-H16	121.4 (3.2 %)	121.9 (2.8 %)	121.3 (3.4 %)	121.7 (3.0 %)	125.5
C14-C15-C17 109.0 (0.0 %) 108.8 (0.1 %) 108.9 (0.1 %) 108.8 (0.2 %) 109.0 C19-C17-C15 109.0 (0.1 %) 108.8 (0.2 %) 108.9 (0.2 %) 108.8 (0.3 %) 109.1 C15-C17-H18 129.6 (3.3 %) 129.2 (3.0 %) 129.9 (3.5 %) 129.5 (3.2 %) 125.5 C17-C15-H16 129.6 (3.2 %) 129.2 (3.0 %) 129.9 (3.5 %) 129.5 (3.2 %) 125.5 C2-C1-N13-C14 46.3 (0.5 %) 68.1 (47.7 %) 42.6 (7.7 %) 53.2 (15.3 %) 46.1 C2-C1-N13-C14 46.3 (0.5 %) 68.1 (30.9 %) 42.6 (7.7 %) 53.2 (15.3 %) 46.1 C3-C1-N13-C19 46.3 (0.5 %) 68.1 (47.7 %) 42.6 (7.7 %) 53.2 (15.3 %) 46.1 C3-C1-N13-C19 46.3 (0.5 %) 68.1 (30.9 %) 42.6 (18.2 %) 53.2 (15.3 %) 46.1 C3-C1-N13-C19 46.3 (0.5 %) 68.1 (47.7 %) 42.6 (7.7 %) 53.2 (15.3 %) 46.1 C3-C1-N13-C19 46.3 (11.0 %) 68.1 (30.9 %) 42.6 (7.7 %) 53.2 (2.1 %) 52.1	C19-C17-H18	121.4 (3.2 %)	121.9 (2.8 %)	121.3 (3.3 %)	121.7 (3.0 %)	125.4
C19-C17-C15109.0 (0.1 %)108.8 (0.2 %)108.9 (0.2 %)108.8 (0.3 %)109.1C15-C17-H18129.6 (3.3 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.2 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5Ángulo de Torsión (º)C2-C1-N13-C1446.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C2-C1-N13-C1446.3 (0.5 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.2 %)52.1C3-C1-N13-C1946.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (0.5 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1	C14-C15-C17	109.0 (0.0 %)	108.8 (0.1 %)	108.9 (0.1 %)	108.8 (0.2 %)	109.0
C15-C17-H18129.6 (3.3 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5C17-C15-H16129.6 (3.2 %)129.2 (3.0 %)129.9 (3.5 %)129.5 (3.2 %)125.5Ángulo de Torsión (°)C2-C1-N13-C1446.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C2-C1-N13-C1446.3 (11.0 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.2 %)52.1C3-C1-N13-C1946.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (11.0 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1	C19-C17-C15	109.0 (0.1 %)	108.8 (0.2 %)	108.9 (0.2 %)	108.8 (0.3 %)	109.1
C17-C15-H16 129.6 (3.2 %) 129.2 (3.0 %) 129.9 (3.5 %) 129.5 (3.2 %) 125.5 Ángulo de Torsión (%) C2-C1-N13-C14 46.3 (0.5 %) 68.1 (47.7 %) 42.6 (7.7 %) 53.2 (15.3 %) 46.1 C2-C1-N13-C14 46.3 (11.0 %) 68.1 (30.9 %) 42.6 (7.7 %) 53.2 (2.2 %) 52.1 C3-C1-N13-C19 46.3 (0.5 %) 68.1 (47.7 %) 42.6 (7.7 %) 53.2 (15.3 %) 46.1 C3-C1-N13-C19 46.3 (0.5 %) 68.1 (47.7 %) 42.6 (7.7 %) 53.2 (15.3 %) 46.1 C3-C1-N13-C19 46.3 (10.0 %) 68.1 (30.9 %) 42.6 (7.7 %) 53.2 (2.1 %) 52.1	C15-C17-H18	129.6 (3.3 %)	129.2 (3.0 %)	129.9 (3.5 %)	129.5 (3.2 %)	125.5
Ángulo de Torsión (°)C2-C1-N13-C1446.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C2-C1-N13-C1446.3 (11.0 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.2 %)52.1C3-C1-N13-C1946.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (11.0 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1	C17-C15-H16	129.6 (3.2 %)	129.2 (3.0 %)	129.9 (3.5 %)	129.5 (3.2 %)	125.5
C2-C1-N13-C1446.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C2-C1-N13-C1446.3 (11.0 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.2 %)52.1C3-C1-N13-C1946.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (11.0 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1		Ángulo de Tors	ión (º)			
C2-C1-N13-C1446.3 (11.0 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.2 %)52.1C3-C1-N13-C1946.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (11.0 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1	C2-C1-N13-C14	46.3 (0.5 %)	68.1 (47.7 %)	42.6 (7.7 %)	53.2 (15.3 %)	46.1
C3-C1-N13-C1946.3 (0.5 %)68.1 (47.7 %)42.6 (7.7 %)53.2 (15.3 %)46.1C3-C1-N13-C1946.3 (11.0 %)68.1 (30.9 %)42.6 (18.2 %)53.2 (2.1 %)52.1	C2-C1-N13-C14	46.3 (11.0 %)	68.1 (30.9 %)	42.6 (18.2 %)	53.2 (2.2 %)	52.1
C3-C1-N13-C19 46.3 (11.0 %) 68.1 (30.9 %) 42.6 (18.2 %) 53.2 (2.1 %) 52.1	C3-C1-N13-C19	46.3 (0.5 %)	68.1 (47.7 %)	42.6 (7.7 %)	53.2 (15.3 %)	46.1
	C3-C1-N13-C19	46.3 (11.0 %)	68.1 (30.9 %)	42.6 (18.2 %)	53.2 (2.1 %)	52.1

Nota. Fuente: Adaptado de Schwarzer, A., & Weber, E. (2009). CCDC 721376: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/ccs6n6t

Anexo 5. Estructura optimizada de la *orto*-metoxifenilmaleimida en fase gas por el método B3LYP/6-311+G(d,p).

Anexo 6. Errores de los parámetros estructurales de la orto-metoxifenilmaleimida.

Método							
Parámetro	B3LYP/6-3	11+G(d,p)	M06-2X/6-3	11+G(d,p)	- Valor Experimental		
	fase gas	solvente	fase gas	solvente	Experimental		
Longitud de enla	ice (Å)						
C2-C3	1.407 (1.4 %)	1.408 (1.5 %)	1.403 (1.1 %)	1.404 (1.1 %)	1.388		
C3-C4	1.388 (1.2 %)	1.390 (1.4 %)	1.384 (1.0 %)	1.385 (1.0 %)	1.371		
C1-C2	1.397 (1.4 %)	1.398 (1.5 %)	1.393 (1.1 %)	1.394 (1.2 %)	1.378		
C4-C5	1.394 (1.2 %)	1.394 (1.3 %)	1.392 (1.1 %)	1.392 (1.1 %)	1.377		
C1-C6	1.395 (1.3 %)	1.395 (1.3 %)	1.393 (1.2 %)	1.394 (1.2 %)	1.377		
C5-C6	1.390 (2.2 %)	1.392 (2.4 %)	1.387 (2.0 %)	1.389 (2.1 %)	1.360		
C4-H8	1.084 (16.5 %)	1.084 (16.5 %)	1.083 (16.5 %)	1.084 (16.5 %)	0.930		
C5-H9	1.083 (16.4 %)	1.083 (16.4 %)	1.082 (16.4 %)	1.082 (16.4 %)	0.930		
C6-H10	1.084 (16.6 %)	1.084 (16.6 %)	1.083 (16.5 %)	1.084 (16.5 %)	0.930		
C1-H7	1.081 (16.3 %)	1.081 (16.2 %)	1.081 (16.3 %)	1.081 (16.3 %)	0.930		
C2-O20	1.358 (0.3 %)	1.356 (0.4 %)	1.351 (0.8 %)	1.350 (0.9 %)	1.362		
O20-C21	1.424 (0.2 %)	1.432 (0.4 %)	1.414 (0.9 %)	1.422 (0.3 %)	1.427		
C21-H22	1.095 (14.0 %)	1.093 (13.9 %)	1.094 (14.0 %)	1.093 (13.8 %)	0.960		
C21-H23	1.095 (14.1 %)	1.088 (13.4 %)	1.094 (14.0 %)	1.087 (13.3 %)	0.959		
C21-H24	1.088 (13.4 %)	1.093 (13.9 %)	1.087 (13.3 %)	1.093 (13.8 %)	0.960		
N11-C3	1.426 (0.3 %)	1.428 (0.4 %)	1.418 (0.3 %)	1.421 (0.1 %)	1.422		
N11-C12	1.407 (1.5 %)	1.403 (1.2 %)	1.400 (1.0 %)	1.397 (0.8 %)	1.386		
N11-C13	1.407 (1.7 %)	1.403 (1.4 %)	1.402 (1.4 %)	1.398 (1.1 %)	1.383		
C12-C14	1.501 (1.5 %)	1.498 (1.3 %)	1.503 (1.6 %)	1.501 (1.5 %)	1.479		
C13-C15	1.501 (1.9 %)	1.498 (1.8 %)	1.503 (2.1 %)	1.501 (2.0 %)	1.472		
C14-C15	1.332 (2.0 %)	1.333 (2.0 %)	1.327 (1.6 %)	1.328 (1.7 %)	1.306		
C12-O18	1.205 (0.3 %)	1.210 (0.7 %)	1.198 (0.3 %)	1.202 (0.0 %)	1.202		
C13-O19	1.205 (0.2 %)	1.210 (0.6 %)	1.197 (0.5 %)	1.201 (0.1 %)	1.203		
C14-H16	1.080 (16.2 %)	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	0.930		
C15-H17	1.080 (16.2 %)	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	0.930		
Longitud de enla	ce intermolecular	[.] (Å)					
O19-O20	3.653 (6.8 %)	3.676 (7.4 %)	2.981 (12.9 %)	3.169 (7.4 %)	3.422		
O18-H8	3.759 <u>(</u> 14.5 %)	3.734 (13.8 %)	3.055 (6.9 %)	3.337 (1.7 %)	3.282		
Ángulo de enlace	e (º)						

Método						
Parámetro	B3LYP/6-31	1+G(d,p)	M06-2X/6-31	1+G(d,p)		
_	fase gas	solvente	fase gas	solvente	Experimental	
C3-C2-C1	119.1 (0.2 %)	118.9 (0.1 %)	119.1 (0.2 %)	119.0 (0.1 %)	118.9	
C3-C4-C5	120.5 (0.2 %)	120.4 (0.1 %)	120.2 (0.1 %)	120.1 (0.2 %)	120.3	
C2-C1-C6	119.9 (0.0 %)	119.9 (0.0 %)	119.8 (0.1 %)	119.7 (0.2 %)	119.9	
C4-C5-C6	119.2 (0.1 %)	119.2 (0.2 %)	119.3 (0.1 %)	119.2 (0.1 %)	119.4	
C2-C3-C4	120.4 (0.0 %)	120.6 (0.1 %)	120.7 (0.2 %)	120.9 (0.4 %)	120.4	
C1-C6-C5	120.9 (0.2 %)	121.0 (0.1 %)	121.0 (0.2 %)	121.2 (0.0 %)	121.2	
C3-C4-H8	118.6 (1.0 %)	118.8 (0.9 %)	118.7 (1.0 %)	118.7 (0.9 %)	119.9	
C3-C2-O20	116.0 (0.5 %)	116.2 (0.3 %)	116.1 (0.4 %)	116.1 (0.5 %)	116.6	
H8-C4-C5	120.9 (0.8 %)	120.9 (0.8 %)	121.2 (1.1 %)	121.2 (1.1 %)	119.9	
O20-C2-C1	124.9 (0.3 %)	124.9 (0.2 %)	124.9 (0.2 %)	125.0 (0.3 %)	124.6	
C6-C1-H7	119.5 (0.4 %)	119.6 (0.4 %)	119.7 (0.3 %)	119.7 (0.3 %)	120.1	
C2-C1-H7	120.6 (0.4 %)	120.9 (0.7 %)	120.5 (0.4 %)	120.6 (0.5 %)	120.1	
C4-C5-H9	120.2 (0.1 %)	120.2 (0.1 %)	120.1 (0.2 %)	120.2 (0.1 %)	120.3	
C1-C6-H10	119.0 (0.3 %)	118.9 (0.4 %)	119.0 (0.3 %)	118.9 (0.4 %)	119.4	
C5-C6-H10	120.0 (0.5 %)	120.2 (0.6 %)	120.0 (0.5 %)	119.9 (0.5 %)	119.4	
C6-C5-H9	120.6 (0.3 %)	120.0 (0.2 %)	120.6 (0.2 %)	120.6 (0.2 %)	120.3	
C3-N11-C12	124.5 (0.1 %)	124.9 (0.2 %)	124.8 (0.1 %)	124.8 (0.1 %)	124.7	
C3-N11-C13	124.5 (0.5 %)	124.9 (0.2 %)	124.4 (0.6 %)	124.3 (0.6 %)	125.1	
N11-C3-C2	119.1 (0.9 %)	119.2 (0.8 %)	118.6 (1.2 %)	118.5 (1.4 %)	120.1	
N11-C3-C4	120.6 (0.9 %)	120.3 (0.7 %)	120.7 (1.1 %)	120.7 (1.0 %)	119.5	
C12-N11-C13	110.2 (0.3 %)	109.9 (0.0 %)	110.5 (0.6 %)	110.1 (0.2 %)	109.9	
N11-C12-C14	105.9 (0.1 %)	106.3 (0.3 %)	105.9 (0.1 %)	106.2 (0.2 %)	106.0	
N11-C13-C15	105.9 (0.2 %)	106.3 (0.2 %)	105.8 (0.3 %)	106.2 (0.1 %)	106.1	
N11-C12-O18	126.3 (0.7 %)	125.7 (0.2 %)	126.2 (0.6 %)	125.5 (0.1 %)	125.4	
N11-C13-O19	126.3 (0.8 %)	125.7 (0.3 %)	126.3 (0.8 %)	125.7 (0.3 %)	125.3	
C14-C12-O18	127.9 (0.6 %)	128.0 (0.5 %)	127.9 (0.5 %)	128.3 (0.3 %)	128.6	
C15-C13-O19	127.9 (0.6 %)	128.0 (0.4 %)	128.0 (0.5 %)	128.2 (0.3 %)	128.6	
C13-C15-H17	121.6 (3.0 %)	122.0 (2.7 %)	121.4 (3.1 %)	121.8 (2.8 %)	125.4	
C12-C14-H16	121.6 (3.2 %)	122.0 (2.9 %)	121.4 (3.3 %)	121.9 (2.9 %)	125.6	
C13-C15-C14	109.0 (0.2 %)	108.8 (0.4 %)	109.0 (0.2 %)	108.7 (0.4 %)	109.2	
C12-C14-C15	109.0 (0.2 %)	108.8 (0.0 %)	108.9 (0.1 %)	108.7 (0.1 %)	108.8	
C14-C15-H17	129.5 (3.2 %)	129.2 (3.0 %)	129.6 (3.4 %)	129.4 (3.2 %)	125.4	
C15-C14-H16	129.5 (3.0 %)	129.2 (2.9 %)	129.7 (3.2 %)	129.4 (3.0 %)	125.7	
C2-O20-C21	118.7 (1.1 %)	118.8 (1.2 %)	117.8 (0.3 %)	117.7 (0.3 %)	117.4	
O20-C21-H22	111.2 (1.6 %)	111.0 (1.4 %)	111.1 (1.5 %)	110.8 (1.2 %)	109.5	
O20-C21-H23	111.2 (1.6 %)	105.6 (3.6 %)	110.8 (1.2 %)	105.9 (3.3 %)	109.5	
O20-C21-H24	105.7 (3.4 %)	111.0 (1.4 %)	106.0 (3.1 %)	110.8 (1.2 %)	109.4	
H22-C21-H23	109.8 (0.2 %)	109.6 (0.1 %)	109.8 (0.3 %)	109.7 (0.1 %)	109.5	
H22-C21-H24	109.4 (0.1 %)	110.0 (0.4 %)	109.4 (0.1 %)	109.9 (0.4 %)	109.5	
H23-C21-H24	109.4 (0.0 %)	109.6 (0.1 %)	109.6 (0.1 %)	109.7 (0.2 %)	109.4	
Ángulo de Torsión	(°)					
C2-C3-N11-C13	84.8 (5.3 %)	86.7 (7.7 %)	59.8 (25.7 %)	67.4 (16.3 %)	80.5	
C2-C3-N11-C13	84.8 (18.1 %)	86.7 (20.8 %)	59.8 (16.7 %)	67.4 (6.1 %)	71.8	
C4-C3-N11-C12	95.2 (18.3 %)	93.3 (15.9 %)	65.9 (18.1 %)	77.9 (3.3 %)	80.5	
C4-C3-N11-C12	95.2 (32.7 %)	93.3 (30.0 %)	65.9 (8.1 %)	77.9 (8.5 %)	71.8	

Nota. Fuente: Adaptado de Sirajuddin, M., Ali, S., & Tahir, M. N. (2012). CCDC 889907: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/ccyw0ph

Anexo 7. Estructura optimizada de la *para*-metoxifenilmaleimida en fase gas por el método B3LYP/6-311+G(d,p).

Anexo 8. Errores de los parámetros estructurale	es de la <i>para</i> -metoxifenilmaleimida.
---	---

	Método				Valar
Parámetro	B3LYP/6-311+G(d,p)		M06-2X/6-311+G(d,p)		Valor
-	fase gas	solvente	fase gas	solvente	
Longitud de enlace	e (Å)				
C2-C3	1.398 (1.3 %)	1.397 (1.2 %)	1.386 (0.4 %)	1.395 (1.0 %)	1.381
C2-C4	1.390 (1.3 %)	1.391 (1.3 %)	1.396 (1.7 %)	1.387 (1.0 %)	1.373
C3-C5	1.385 (0.4 %)	1.386 (0.4 %)	1.393 (0.9 %)	1.383 (0.2 %)	1.380
C4-C7	1.395 (0.7 %)	1.395 (0.7 %)	1.382 (0.2 %)	1.393 (0.6 %)	1.385
C5-C9	1.401 (1.3 %)	1.403 (1.4 %)	1.393 (0.8 %)	1.399 (1.2 %)	1.383
C7-C9	1.397 (0.7 %)	1.399 (0.9 %)	1.397 (0.7 %)	1.395 (0.6 %)	1.387
C3-H6	1.082 (16.4 %)	1.084 (16.5 %)	1.082 (16.4 %)	1.083 (16.5 %)	0.930
C4-H8	1.082 (16.4 %)	1.084 (16.5 %)	1.082 (16.4 %)	1.083 (16.5 %)	0.930
C5-H10	1.083 (16.5 %)	1.083 (16.5 %)	1.081 (16.3 %)	1.083 (16.5 %)	0.930
C7-H11	1.081 (16.3 %)	1.081 (16.2 %)	1.083 (16.4 %)	1.081 (16.2 %)	0.930
C9-O14	1.363 (0.4 %)	1.360 (0.6 %)	1.357 (0.8 %)	1.355 (0.9 %)	1.368
O14-C21	1.422 (0.1 %)	1.431 (0.5 %)	1.412 (0.8 %)	1.420 (0.3 %)	1.424
C21-H22	1.089 (13.4 %)	1.088 (13.3 %)	1.088 (13.3 %)	1.087 (13.2 %)	0.960
C21-H23	1.095 (14.1 %)	1.093 (13.9 %)	1.094 (14.0 %)	1.093 (13.9 %)	0.960
C21-H24	1.095 (14.1 %)	1.093 (13.9 %)	1.095 (14.0 %)	1.093 (13.9 %)	0.960
N1-C2	1.429 (0.6 %)	1.432 (0.4 %)	1.424 (1.0 %)	1.424 (1.0 %)	1.438
N1-C15	1.409 (1.0 %)	1.403 (0.6 %)	1.402 (0.6 %)	1.398 (0.3 %)	1.394
N1-C18	1.409 (1.8 %)	1.403 (1.4 %)	1.402 (1.3 %)	1.398 (1.0 %)	1.384
C15-C16	1.500 (1.0 %)	1.498 (0.9 %)	1.503 (1.2 %)	1.501 (1.1 %)	1.485
C18-C19	1.500 (1.2 %)	1.498 (1.1 %)	1.503 (1.4 %)	1.501 (1.3 %)	1.482
C16-C19	1.331 (2.7 %)	1.332 (2.8 %)	1.327 (2.4 %)	1.327 (2.4 %)	1.296
C15-O12	1.206 (0.3 %)	1.210 (0.6 %)	1.198 (0.4 %)	1.202 (0.1 %)	1.203
C18-O13	1.206 (0.5 %)	1.210 (0.9 %)	1.198 (0.1 %)	1.202 (0.2 %)	1.200
C16-H17	1.080 (16.2 %)	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	0.930
C19-H20	1.080 (16.2 %)	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	0.930
Longitud de enlace intermolecular (Å)					
O12-H6	2.768 (12.1 %)	3.721 (18.1 %)	2.593 (17.7 %)	2.827 (10.3 %)	3.150

O13-H8	2.766 (6.8 %)	3.714 (25.1 %)	2.601 (12.4 %)	2.826 (4.8 %)	2.968
Ángulo de enlace (º)					
C2-C4-C7	120.5 (0.8 %)	120.5 (0.8 %)	119.9 (0.3 %)	120.4 (0.7 %)	119.5
C2-C3-C5	120.1 (0.4 %)	120.0 (0.3 %)	120.3 (0.5 %)	119.8 (0.1 %)	119.7
C3-C5-C9	120.3 (0.2 %)	120.2 (0.3 %)	119.7 (0.7 %)	120.3 (0.3 %)	120.6
C4-C7-C9	119.8 (0.4 %)	119.6 (0.2 %)	120.4 (0.9 %)	119.5 (0.2 %)	119.3
C3-C2-C4	119.7 (0.5 %)	119.9 (0.3 %)	120.0 (0.2 %)	120.1 (0.1 %)	120.2
C5-C9-C7	119.6 (0.1 %)	119.8 (0.1 %)	119.8 (0.0 %)	119.9 (0.1 %)	119.7
C2-C3-H6	120.0 (0.2 %)	119.8 (0.1 %)	119.9 (0.1 %)	119.9 (0.1 %)	119.7
C2-C4-H8	120.0 (0.2 %)	119.8 (0.4 %)	119.9 (0.3 %)	119.8 (0.4 %)	120.3
H6-C3-C5	119.9 (0.2 %)	120.2 (0.4 %)	119.8 (0.1 %)	120.3 (0.6 %)	119.7
H8-C4-C7	119.5 (0.6 %)	119.7 (0.4 %)	120.2 (0.0 %)	119.9 (0.3 %)	120.2
C3-C5-H10	121.0 (0.5 %)	120.9 (0.5 %)	119.0 (1.1 %)	121.0 (0.6 %)	120.3
C4-C7-H11	119.0 (0.6 %)	119.2 (0.4 %)	121.2 (1.2 %)	119.1 (0.5 %)	119.7
H10-C5-C9	118.7 (0.8 %)	118.9 (0.6 %)	121.3 (1.4 %)	118.7 (0.8 %)	119.7
H11-C7-C9	121.2 (0.7 %)	121.2 (0.7 %)	118.5 (1.6 %)	121.4 (0.8 %)	120.4
C5-C9-O14	115.8 (0.1 %)	115.8 (0.1 %)	124.4 (7.3 %)	115.9 (0.0 %)	115.9
C7-C9-O14	124.6 (0.2 %)	124.4 (0.0 %)	115.9 (6.8 %)	124.2 (0.1 %)	124.3
C2-N1-C15	125.1 (0.2 %)	125.1 (0.2 %)	125.0 (0.1 %)	125.0 (0.1 %)	124.8
C2-N1-C18	125.1 (0.3 %)	125.1 (0.3 %)	125.0 (0.3 %)	125.1 (0.3 %)	125.4
N1-C2-C3	120.1 (0.1 %)	120.0 (0.0 %)	120.1 (0.0 %)	119.9 (0.1 %)	120.0
N1-C2-C4	120.2 (0.4 %)	120.1 (0.3 %)	119.9 (0.2 %)	120.0 (0.2 %)	119.8
C15-N1-C18	109.8 (0.1 %)	109.9 (0.2 %)	110.0 (0.3 %)	109.9 (0.2 %)	109.7
N1-C15-C16	106.1 (0.1 %)	106.3 (0.2 %)	106.2 (0.1 %)	106.3 (0.2 %)	106.1
N1-C18-C19	106.1 (0.5 %)	106.3 (0.7 %)	106.2 (0.5 %)	106.3 (0.7 %)	105.6
N1-C15-O12	126.4 (0.8 %)	125.7 (0.3 %)	126.4 (0.9 %)	125.7 (0.3 %)	125.3
N1-C18-O13	126.4 (0.9 %)	125.7 (0.4 %)	126.4 (0.9 %)	125.8 (0.4 %)	125.2
C16-C15-O12	127.5 (0.8 %)	128.0 (0.5 %)	127.4 (0.9 %)	128.0 (0.4 %)	128.6
C19-C18-O13	127.5 (1.3 %)	128.0 (0.9 %)	127.5 (1.3 %)	127.9 (0.9 %)	129.1
C15-C16-H17	121.5 (3.1 %)	122.0 (2.7 %)	121.3 (3.3 %)	121.8 (2.9 %)	125.4
C18-C19-H20	121.5 (3.1 %)	122.0 (2.7 %)	121.3 (3.2 %)	121.7 (2.9 %)	125.4
C15-C16-C19	108.9 (0.2 %)	108.8 (0.4 %)	108.8 (0.3 %)	108.7 (0.4 %)	109.2
C18-C19-C16	108.9 (0.3 %)	108.8 (0.4 %)	108.8 (0.4 %)	108.7 (0.5 %)	109.3
C16-C19-H20	129.6 (3.4 %)	129.2 (3.1 %)	129.8 (3.6 %)	129.5 (3.3 %)	125.4
C19-C16-H17	129.6 (3.3 %)	129.2 (3.0 %)	129.9 (3.5 %)	129.5 (3.2 %)	125.5
C9-O14-C21	118.6 (0.6 %)	118.7 (0.7 %)	117.8 (0.2 %)	117.8 (0.1 %)	117.9
O14-C21-H22	105.8 (3.3 %)	105.7 (3.4 %)	106.1 (3.1 %)	106.0 (3.1 %)	109.4
O14-C21-H23	111.4 (1.8 %)	111.1 (1.5 %)	111.2 (1.6 %)	110.9 (1.4 %)	109.4
O14-C21-H24	111.4 (1.7 %)	111.1 (1.5 %)	111.1 (1.5 %)	110.9 (1.3 %)	109.5
H22-C21-H23	109.3 (0.1 %)	109.5 (0.1 %)	109.4 (0.0 %)	109.6 (0.1 %)	109.5
H22-C21-H24	109.3 (0.2 %)	109.5 (0.0 %)	109.4 (0.1 %)	109.6 (0.1 %)	109.5
H23-C21-H24	109.5 (0.0 %)	109.8 (0.3 %)	109.5 (0.0 %)	109.7 (0.2 %)	109.5
Angulo de Torsión (°)					
C3-C2-N1-C15	50.5 (18.2 %)	90.1 (45.8 %)	44.0 (28.8 %)	54.1 (12.5 %)	61.8
C3-C2-N1-C15	50.5 (22.8 %)	90.1 (37.6 %)	44.0 (32.8 %)	54.1 (17.4 %)	65.5
C4-C2-N1-C18	50.6 (18.1 %)	89.9 (45.4 %)	44.3 (28.3 %)	54.0 (12.7 %)	61.8
C4-C2-N1-C18	50.6 (22.8 %)	89.9 (37.2 %)	44.3 (32.3 %)	54.0 (17.6 %)	65.5

Nota. Fuente: Adaptado de Miller, C. W., Hoyle, C. E., Valente, E. J., Zubkowski, J. D., & Jonsson, E. S. (2001). CCDC 148524: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/cc4zk3r

Anexo 9. Estructura optimizada de la *meta*-nitrofenilmaleimida en fase gas por el método B3LYP/6-311+G(d,p).

Método				Volor		
Parámetro	B3LYP/6-3	B3LYP/6-311+G(d,p)		M06-2X/6-311+G(d,p)		
	fase gas	solvente	fase gas	solvente	Experimental	
Longitud de enla	ace (Å)					
C1-C2	1.398 (0.3 %)	1.398 (0.3 %)	1.395 (0.0 %)	1.394 (0.0 %)	1.394	
C1-C3	1.394 (0.2 %)	1.392 (0.0 %)	1.391 (0.1 %)	1.390 (0.2 %)	1.392	
C2-C4	1.392 (0.4 %)	1.393 (0.4 %)	1.389 (0.6 %)	1.390 (0.6 %)	1.398	
C3-C6	1.389 (0.7 %)	1.391 (0.8 %)	1.384 (0.4 %)	1.386 (0.5 %)	1.379	
C4-C8	1.391 (0.4 %)	1.391 (0.4 %)	1.389 (0.3 %)	1.389 (0.3 %)	1.385	
C6-C8	1.390 (0.0 %)	1.392 (0.1 %)	1.385 (0.3 %)	1.386 (0.3 %)	1.390	
C2-H5	1.081 (13.6 %)	1.082 (13.7 %)	1.081 (13.6 %)	1.082 (13.7 %)	0.952	
C3-H7	1.079 (13.6 %)	1.080 (13.7 %)	1.081 (13.7 %)	1.081 (13.7 %)	0.950	
C4-H9	1.083 (14.0 %)	1.082 (13.9 %)	1.082 (13.9 %)	1.082 (13.9 %)	0.950	
C8-H10	1.081 (13.9 %)	1.080 (13.9 %)	1.081 (13.9 %)	1.081 (13.9 %)	0.949	
C6-N22	1.482 (0.7 %)	1.474 (0.1 %)	1.481 (0.6 %)	1.475 (0.2 %)	1.472	
N22-O19	1.223 (0.4 %)	1.227 (0.1 %)	1.210 (1.4 %)	1.213 (1.2 %)	1.228	
N22-O20	1.224 (0.1 %)	1.227 (0.3 %)	1.211 (1.0 %)	1.213 (0.8 %)	1.223	
N21-C1	1.423 (0.1 %)	1.422 (0.1 %)	1.418 (0.4 %)	1.416 (0.5 %)	1.424	
N21-C11	1.413 (0.6 %)	1.409 (0.4 %)	1.406 (0.2 %)	1.404 (0.0 %)	1.404	
N21-C16	1.415 (1.6 %)	1.410 (1.3 %)	1.408 (1.1 %)	1.404 (0.8 %)	1.392	
C11-C12	1.498 (0.5 %)	1.496 (0.4 %)	1.501 (0.7 %)	1.498 (0.6 %)	1.490	
C14-C16	1.498 (0.2 %)	1.496 (0.3 %)	1.500 (0.0 %)	1.498 (0.1 %)	1.500	
C12-C14	1.332 (1.0 %)	1.332 (1.1 %)	1.327 (0.7 %)	1.328 (0.7 %)	1.318	
C11-O17	1.205 (0.2 %)	1.208 (0.5 %)	1.197 (0.4 %)	1.200 (0.1 %)	1.202	
C16-O18	1.204 (0.1 %)	1.208 (0.3 %)	1.196 (0.7 %)	1.200 (0.4 %)	1.205	
C12-H13	1.080 (13.6 %)	1.080 (13.5 %)	1.080 (13.6 %)	1.080 (13.5 %)	0.951	
C14-H15	1.080 (13.7 %)	1.080 (13.7 %)	1.080 (13.7 %)	1.080 (13.7 %)	0.950	
Longitud de enla	ace intermolecula	r (Å)				
O17-H5	2.589 (11.9 %)	2.829 (3.7 %)	2.492 (15.2 %)	2.627 (10.5 %)	2.937	

Parámetro B3LYP/6-311+G(d,p) M06-2X/6-311+G(d,p) Experimental 018-H7 2.613 (9.1 %) 2.831 (1.5 %) 2.512 (12.6 %) 2.642 (8.1 %) 2.837 Angulo de enlace (?) 119.9 (0.2 %) 119.9 (0.2 %) 119.9 (0.3 %) 119.9 (0.2 %) 119.9 (0.3 %) 119.9 (0.2 %) 117.7 (0.2 %) 117.9 (0.1 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.2 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 121.1 (0.2 %) 120.7 (0.0 %) 121.1 (0.2 %) 120.7 (0.0 %) 121.1 (0.2 %) 120.7 (0.0 %) 121.1 (0.2 %) 120.7 (0.0 %) 121.1 (0.1 %) 12		Método				Malan
fase gas solvente fase gas solvente Experimental O18+H7 2.613 (9.1 %) 2.831 (1.5 %) 2.512 (12.6 %) 2.642 (8.1 %) 2.874 Anguio de entace (9) 119.9 (0.3 %) 119.9 (0.3 %) 119.9 (0.3 %) 119.9 (0.3 %) 119.9 (0.3 %) 119.9 (0.2 %) 117.7 (0.2 %) 117.7 (0.2 %) 117.7 (0.2 %) 117.7 (0.2 %) 120.7 (0.0 %) 120.5 (0.2 %) 120.7 (0.0 %) 120.6 (0.1 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.0 %) 120.7 (0.1 %) 120.7 (0.1 %) 120.7 (0.1 %) 120.7 (0.1 %) 120.7 (0.1 %) 120.7 (0.1 %) 120.7 (0.3 %) 121.0 (0.1 %) 120.7 (0.3 %) 121.0 (0.1 %) 120.7 (0.3 %) 121.1 (0.1 %) 120.7 (0.3 %) 121.1 (0.1 %) 120.7 (0.1 %) 120.7 (0.3 %) 121.1 (0.1 %) 120.7 (0.3 %) 121.1 (0.2 %) 120.7 (0.3 %) 121.1 (0.2 %) 120.7 (0.3 %) 121.1 (0.2 %) 120.7 (0.3 %) 121.1 (0.2 %) 120.7 (0.3 %) 121.1 (0.2 %) 1	Parámetro	B3LYP/6-311+G(d,p)		M06-2X/6-311+G(d,p)		valor
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		fase gas	solvente	fase gas	solvente	Experimental
Angulo de enlace (?)C1-C2-C4120.0 (0.3 %)120.0 (0.4 %)119.9 (0.2 %)119.9 (0.3 %)119.6C1-C3-C6118.2 (0.3 %)118.2 (0.2 %)117.7 (0.2 %)117.7 (0.2 %)117.7C2-C4-C8120.7 (0.0 %)120.5 (0.2 %)120.7 (0.0 %)120.5 (0.2 %)120.7C3-C6-C8122.7 (0.4 %)122.6 (0.5 %)123.2 (0.0 %)123.2 (0.0 %)123.2C2-C1-C3120.3 (0.3 %)112.4 (0.4 %)122.6 (0.1 %)120.7 (0.0 %)120.7C4-C8-C6118.1 (0.2 %)118.8 (0.3 %)117.9 (0.0 %)117.9 (0.1 %)117.9C1-C3-H7121.9 (0.7 %)121.4 (0.4 %)122.0 (0.8 %)121.6 (0.5 %)120.2C1-C3-H7121.9 (0.7 %)121.4 (0.4 %)120.4 (0.0 8 %)120.6 (0.3 %)121.1C2-C4-H8119.6 (0.0 %)119.7 (0.1 %)119.6 (0.0 %)119.7 (0.1 %)119.6C3-C6-N22118.4 (0.3 %)118.4 (0.3 %)118.1 (0.1 %)118.0 (0.0 %)119.7C2-C4-H8119.6 (0.1 %)119.7 (0.0 %)119.7 (0.1 %)119.6C3-C6-N22118.4 (0.3 %)118.4 (0.3 %)118.1 (0.1 %)118.0 (0.0 %)119.7C2-C4-H9119.6 (0.0 %)119.0 (0.2 %)118.7 (0.0 %)119.7C2-C4-H9119.6 (0.0 %)119.7 (0.1 %)119.6 (0.5 %)122.1C2-C4-H9119.6 (0.0 %)119.7 (0.1 %)119.7 (0.0 %)119.7C2-C6-R8118.9 (0.1 %)119.7 (0.0 %)118.7119.7 (0.0 %)C2-C6-R3118.9 (0.1 %)119.7 (0.0	O18-H7	2.613 (9.1 %)	2.831 (1.5 %)	2.512 (12.6 %)	2.642 (8.1 %)	2.874
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ángulo de enlace	(°)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C2-C4	120.0 (0.3 %)	120.0 (0.4 %)	119.9 (0.2 %)	119.9 (0.3 %)	119.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C3-C6	118.2 (0.3 %)	118.2 (0.2 %)	117.7 (0.2 %)	117.7 (0.2 %)	117.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C4-C8	120.7 (0.0 %)	120.5 (0.2 %)	120.7 (0.0 %)	120.5 (0.2 %)	120.7
C2-C1-C3120.3 (0.3 %)120.4 (0.2 %)120.6 (0.1 %)120.7 (0.0 %)120.7C4-C8-C6118.1 (0.2 %)118.2 (0.3 %)117.9 (0.0 %)117.9 (0.1 %)117.9C1-C2-H5119.8 (0.3 %)119.8 (0.3 %)119.7 (0.4 %)119.6 (0.5 %)120.2C1-C3-H7121.9 (0.7 %)121.4 (0.4 %)122.0 (0.8 %)121.6 (0.5 %)121.1C2-C4-H9119.6 (0.0 %)120.4 (0.5 %)120.3 (0.7 %)120.7 (0.3 %)121.1C2-C4-H9119.6 (0.0 %)119.7 (0.1 %)119.6 (0.0 %)119.7 (0.1 %)119.6C3-C6-N22118.4 (0.3 %)118.4 (0.3 %)118.1 (0.1 %)118.0 (0.0 %)119.7C2-C4-H9119.8 (0.1 %)119.7 (0.0 %)119.8 (0.1 %)119.7 (0.0 %)118.0M9-C4-C8118.9 (0.1 %)119.7 (0.0 %)118.0119.7 (0.0 %)118.0C2-C6-C8118.9 (0.1 %)119.7 (0.0 %)118.7 (0.0 %)118.8C4-C8-H10122.0 (0.8 %)121.5 (0.4 %)122.2 (1.0 %)122.7 (0.6 %)C1-N21-C11125.2 (0.8 %)125.1 (0.8 %)125.1 (0.2 %)124.2C1-N21-C16119.8 (1.0 %)120.2 (0.7 %)119.9 (1.0 %)120.3 (0.6 %)C1-N21-C16125.1 (0.2 %)125.1 (0.8 %)125.1 (0.2 %)124.2C1-N21-C16119.7 (0.7 %)119.5 (0.8 %)119.9 (0.9 %)119.9 (0.9 %)N21-C1-C2120.1 (1.0 %)120.0 (1.0 %)119.9 (0.9 %)119.9 (0.8 %)118.8N21-C1-C2120.1 (1.0 %)125.0 (0.1 %)106.1 (0.2 %)10	C3-C6-C8	122.7 (0.4 %)	122.6 (0.5 %)	123.2 (0.0 %)	123.2 (0.0 %)	123.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-C3	120.3 (0.3 %)	120.4 (0.2 %)	120.6 (0.1 %)	120.7 (0.0 %)	120.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C8-C6	118.1 (0.2 %)	118.2 (0.3 %)	117.9 (0.0 %)	117.9 (0.1 %)	117.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C2-H5	119.8 (0.3 %)	119.8 (0.3 %)	119.7 (0.4 %)	119.6 (0.5 %)	120.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C3-H7	121.9 (0.7 %)	121.4 (0.4 %)	122.0 (0.8 %)	121.6 (0.5 %)	121.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H5-C2-C4	120.2 (0.1 %)	120.2 (0.1 %)	120.4 (0.1 %)	120.5 (0.2 %)	120.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H7-C3-C6	, 119.9 (1.0 %)	120.4 (0.5 %)	120.3 (0.7 %)	120.7 (0.3 %)	121.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C4-H9	119.6 (0.0 %)	119.7 (0.1 %)	119.6 (0.0 %)	119.7 (0.1 %)	119.6
H9-C4-C8119.8 (0.1%) 119.7 (0.0%) 119.8 (0.1%) 119.7 (0.0%) 119.7 (0.0%) N22-C6-C8118.9 (0.1%) 119.0 (0.2%) 118.7 (0.1%) 118.7 (0.0%) 118.8C4-C8-H10122.0 (0.8%) 121.5 (0.4%) 122.2 (1.0%) 121.7 (0.6%) 121.1C6-C8-H10119.8 (1.0%) 120.2 (0.7%) 119.9 (1.0%) 120.3 (0.6%) 121.1C1-N21-C11125.2 (0.8%) 125.1 (0.8%) 125.1 (0.7%) 124.2C1-N21-C16125.1 (0.2%) 125.2 (0.3%) 125.0 (0.1%) 125.1 (0.2%) 124.8N21-C1-C2120.1 (1.0%) 120.0 (1.0%) 119.9 (0.9%) 119.9 (0.8%) 119.9 (0.9%) N21-C1-C3119.7 (0.7%) 119.5 (0.8%) 119.5 (0.8%) 119.4 (0.9%) 120.5C11-N21-C16109.7 (0.1%) 109.7 (0.1%) 109.9 (0.0%) 109.9 (0.0%) 109.9N21-C11-C12106.1 (0.2%) 106.2 (0.3%) 106.3105.8106.2 (0.3%) 105.8N21-C16-C14106.0 (0.2%) 106.2 (0.1%) 126.1 (0.3%) 125.5 (0.2%) 125.7C12-C11-O17127.8 (1.1%) 128.2 (0.7%) 127.8 (1.1%) 128.3 (0.7%) 128.3N21-C16-O18126.4 (0.3%) 127.6 $(1.0 3 \%)$ 126.8121.2 (3.3%) 121.6 (3.0%) 125.3C16-C14-H15121.4 (3.2%) 121.8 (2.8%) 121.2 (3.3%) 121.6 (3.0%) 125.8C11-C12-C14109.1 (0.6%) 109.0 (0.4%) 108.9 (0.5%)	C3-C6-N22	118.4 (0.3 %)	118.4 (0.3 %)	118.1 (0.1 %)	, 118.0 (0.0 %)	118.0
N22-C6-C8118.9 (0.1%) 119.0 (0.2%) 118.7 (0.1%) 118.7 (0.0%) 118.8C4-C8-H10122.0 (0.8%) 121.5 (0.4%) 122.2 (1.0%) 121.7 (0.6%) 121.1C6-C8-H10119.8 (1.0%) 120.2 (0.7%) 119.9 (1.0%) 120.3 (0.6%) 121.1C1-N21-C11125.2 (0.8%) 125.1 (0.8%) 125.1 (0.7%) 124.2C1-N21-C16125.1 (0.2%) 125.0 (0.1%) 125.1 (0.2%) 124.8N21-C1-C2120.1 (1.0%) 120.0 (1.0%) 119.9 (0.9%) 119.9 (0.8%) 118.9N21-C1-C3119.7 (0.7%) 119.5 (0.8%) 119.5 (0.8%) 119.9 (0.8%) 120.5C11-N21-C16109.7 (0.1%) 109.7 (0.1%) 109.9 (0.0%) 109.9 (0.0%) 109.9N21-C11-C12106.1 (0.2%) 106.2 (0.3%) 106.1 (0.2%) 106.2 (0.3%) 105.8N21-C16-C14106.0 (0.2%) 106.2 (0.1%) 106.1 (0.2%) 106.2 (0.1%) 106.3N21-C16-C18126.1 (0.3%) 125.6 (0.1%) 126.1 (0.3%) 125.5 (0.2%) 125.7C12-C11-O17127.8 (1.1%) 128.2 (0.7%) 127.8 (1.1%) 128.3 (0.2%) 125.3C16-C14-H15121.4 (3.2%) 121.8 (2.8%) 121.2 (3.3%) 121.6 (3.4%) 125.8C11-C12-H13129.4 (3.2%) 121.8 (2.8%) 121.2 (3.3%) 125.6 (3.4%) 125.8C14-C12-L13129.5 (3.1%) 129.2 (2.8%) 129.8 (3.6%) 129.5 (3.0%) 125.7C14-	H9-C4-C8	, 119.8 (0.1 %)	119.7 (0.0 %)	119.8 (0.1 %)	, 119.7 (0.0 %)	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N22-C6-C8	118.9 (0.1 %)	119.0 (0.2 %)	118.7 (0.1 %)	118.7 (0.0 %)	118.8
C6-C8-H10 119.8 (1.0 %) 120.2 (0.7 %) 119.9 (1.0 %) 120.3 (0.6 %) 121.1 C1-N21-C11 125.2 (0.8 %) 125.1 (0.8 %) 125.1 (0.8 %) 125.1 (0.7 %) 124.2 C1-N21-C16 125.1 (0.2 %) 125.2 (0.3 %) 125.0 (0.1 %) 125.1 (0.2 %) 124.2 C1-N21-C16 125.1 (0.7 %) 119.5 (0.8 %) 125.1 (0.2 %) 124.8 N21-C1-C2 120.1 (1.0 %) 120.0 (1.0 %) 119.9 (0.9 %) 119.9 (0.8 %) 118.9 N21-C1-C3 119.7 (0.7 %) 119.5 (0.8 %) 119.9 (0.0 %) 109.9 (0.0 %) 109.9 (0.0 %) 109.9 N21-C16-C14 106.0 (0.2 %) 106.2 (0.3 %) 106.1 (0.2 %) 106.2 (0.3 %) 106.2 (0.1 %) 106.3 N21-C11-O17 126.2 (0.9 %) 125.6 (0.5 %) 126.2 (0.9 %) 125.5 (0.4 %) 125.0 N21-C16-O18 126.1 (0.3 %) 125.6 (0.5 %) 126.1 (0.3 %) 125.5 (0.2 %) 125.7 C12-C11-O17 127.8 (1.1 %) 128.3 (0.2 %) 121.8 (3.3 %) 121.8 (3.3 %) 121.6 (3.0 %) 125.3 C14-C12-C14 109.1 (0.3 %) 121.8 (3.2 %) 121.2 (3.3 %) 121.6 (3.4 %)	C4-C8-H10	122.0 (0.8 %)	121.5 (0.4 %)	122.2 (1.0 %)	121.7 (0.6 %)	121.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C8-H10	119.8 (1.0 %)	120.2 (0.7 %)	119.9 (1.0 %)	120.3 (0.6 %)	121.1
C1-N21-C16125.1 (0.2%) 125.2 (0.3%) 125.0 (0.1%) 125.1 (0.2%) 124.8N21-C1-C2120.1 (1.0%) 120.0 (1.0%) 119.9 (0.9%) 119.9 (0.8%) 118.9N21-C1-C3119.7 (0.7%) 119.5 (0.8%) 119.5 (0.8%) 119.4 (0.9%) 120.5C11-N21-C16109.7 (0.1%) 109.7 (0.1%) 109.9 (0.0%) 109.9 (0.0%) 109.9N21-C11-C12106.1 (0.2%) 106.2 (0.3%) 106.1 (0.2%) 106.2 (0.3%) 105.8N21-C16-C14106.0 (0.2%) 106.2 (0.1%) 106.0 (0.2%) 106.2 (0.1%) 106.3N21-C11-O17126.2 (0.9%) 125.6 (0.5%) 126.2 (0.9%) 125.5 (0.4%) 125.0N21-C16-O18126.1 (0.3%) 125.8 (0.1%) 128.3 (0.7%) 129.1C14-C16-O18127.9 (0.1%) 128.3 (0.2%) 127.8 (1.1%) 128.3 (0.2%) 125.3C16-C14+H15121.4 (3.2%) 121.8 (2.8%) 121.2 (3.3%) 121.6 (3.0%) 125.8C11-C12-C14109.1 (0.3%) 129.2 (2.8%) 129.8 (3.3%) 129.5 (3.4%) 125.7C14-C12-C14109.1 (0.6%) 109.0 (0.4%) 108.9 (0.5%) 108.9125.7C14-C12-C14109.1 (0.6%) 129.2 (2.8%) 129.8 (3.3%) 129.5 (3.4%) 125.7C14-C12-H13129.5 (3.4%) 129.2 (2.8%) 129.8 (3.6%) 129.5 (3.4%) 125.7C14-C12-H13129.5 (3.4%) 129.2 (2.8%) 129.8 (3.6%) 129.5 (3.4%) 125.3<	C1-N21-C11	125.2 (0.8 %)	125.1 (0.8 %)	125.1 (0.8 %)	125.1 (0.7 %)	124.2
N21-C1-C2120.1 (1.0 %)120.0 (1.0 %)119.9 (0.9 %)119.9 (0.8 %)118.9N21-C1-C3119.7 (0.7 %)119.5 (0.8 %)119.5 (0.8 %)119.4 (0.9 %)120.5C11-N21-C16109.7 (0.1 %)109.7 (0.1 %)109.9 (0.0 %)109.9 (0.0 %)109.9N21-C11-C12106.1 (0.2 %)106.2 (0.3 %)106.1 (0.2 %)106.2 (0.3 %)105.8N21-C16-C14106.0 (0.2 %)106.2 (0.1 %)106.0 (0.2 %)106.2 (0.1 %)106.3N21-C11-O17126.2 (0.9 %)125.6 (0.5 %)126.2 (0.9 %)125.5 (0.4 %)125.0N21-C16-O18126.1 (0.3 %)125.6 (0.1 %)126.1 (0.3 %)125.5 (0.2 %)125.7C12-C11-O17127.8 (1.1 %)128.2 (0.7 %)127.8 (1.1 %)128.3 (0.2 %)129.1C14-C16-O18127.9 (0.1 %)128.3 (0.2 %)121.2 (3.3 %)121.6 (3.0 %)125.3C16-C14+H15121.4 (3.6 %)121.8 (3.2 %)121.2 (3.3 %)121.6 (3.4 %)125.8C11-C12-C14109.1 (0.3 %)109.0 (0.5 %)108.9 (0.4 %)108.5109.4C16-C14-C12109.1 (0.6 %)109.0 (0.5 %)108.9 (0.4 %)108.5125.7C14-C12-H13129.5 (3.4 %)129.2 (3.2 %)129.8 (3.3 %)129.5 (3.0 %)125.7C14-C12-H13129.5 (3.4 %)129.2 (3.2 %)129.8 (3.6 %)129.5 (3.4 %)125.3C6-N22-O19117.7 (0.5 %)118.1 (0.1 %)117.5 (0.7 %)117.9 (0.3 %)118.3C6-N22-O20117.5 (0.3 %)118.0 (0.2 %)117.3 (0.4 %)	C1-N21-C16	125.1 (0.2 %)	125.2 (0.3 %)	125.0 (0.1 %)	125.1 (0.2 %)	124.8
N21-C1-C3119.7 (0.7 %)119.5 (0.8 %)119.5 (0.8 %)119.4 (0.9 %)120.5C11-N21-C16109.7 (0.1 %)109.7 (0.1 %)109.9 (0.0 %)109.9 (0.0 %)109.9N21-C11-C12106.1 (0.2 %)106.2 (0.3 %)106.1 (0.2 %)106.2 (0.3 %)105.8N21-C16-C14106.0 (0.2 %)106.2 (0.1 %)106.0 (0.2 %)106.2 (0.1 %)106.3N21-C11-O17126.2 (0.9 %)125.6 (0.5 %)126.2 (0.9 %)125.5 (0.4 %)125.0N21-C16-O18126.1 (0.3 %)125.6 (0.1 %)126.1 (0.3 %)125.5 (0.2 %)125.7C12-C11-O17127.8 (1.1 %)128.3 (0.2 %)127.9 (0.1 %)128.3 (0.2 %)128.0C14-C16-O18127.9 (0.1 %)128.3 (0.2 %)121.4 (3.3 %)125.3C16-C14-H15121.4 (3.2 %)121.8 (3.2 %)121.2 (3.3 %)121.6 (3.0 %)125.8C11-C12-C14109.1 (0.3 %)109.0 (0.4 %)108.9 (0.5 %)109.4109.4 (0.4 %)108.5C12-C14-H15129.5 (3.1 %)129.2 (2.8 %)129.8 (3.6 %)129.5 (3.0 %)125.3C6-N22-O19117.7 (0.5 %)118.1 (0.1 %)117.5 (0.7 %)117.9 (0.3 %)118.3C6-N22-O20117.5 (0.3 %)129.9 (0.0 %)125.1 (1.0 %)124.2 (0.3 %)123.9 Ángulo de Torsión (*)CCCSSSSSSSSSSSSSSSSSSSSSSS <td>N21-C1-C2</td> <td>120.1 (1.0 %)</td> <td>120.0 (1.0 %)</td> <td>119.9 (0.9 %)</td> <td>119.9 (0.8 %)</td> <td>118.9</td>	N21-C1-C2	120.1 (1.0 %)	120.0 (1.0 %)	119.9 (0.9 %)	119.9 (0.8 %)	118.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N21-C1-C3	119.7 (0.7 %)	119.5 (0.8 %)	119.5 (0.8 %)	119.4 (0.9 %)	120.5
N21-C11-C12 106.1 (0.2 %) 106.2 (0.3 %) 106.1 (0.2 %) 106.2 (0.3 %) 106.3 (0.2 %) N21-C16-C14 106.0 (0.2 %) 106.2 (0.1 %) 106.0 (0.2 %) 106.2 (0.1 %) 106.3 (0.2 %) N21-C11-O17 126.2 (0.9 %) 125.6 (0.5 %) 126.2 (0.9 %) 125.5 (0.4 %) 125.0 (0.2 %) N21-C16-O18 126.1 (0.3 %) 125.6 (0.1 %) 126.1 (0.3 %) 125.5 (0.2 %) 125.7 (0.1 %) C12-C11-O17 127.8 (1.1 %) 128.2 (0.7 %) 127.8 (1.1 %) 128.3 (0.2 %) 128.3 (0.2 %) C14-C16-O18 127.9 (0.1 %) 128.3 (0.2 %) 127.9 (0.1 %) 128.3 (0.2 %) 128.0 (0.1 %) C11-C12-H13 121.4 (3.2 %) 121.8 (2.8 %) 121.2 (3.3 %) 121.6 (3.0 %) 125.8 (0.1 %) C16-C14+H15 121.4 (3.6 %) 121.8 (3.2 %) 121.2 (3.7 %) 121.6 (3.4 %) 125.8 (0.1 %) C16-C14-C12 109.1 (0.3 %) 109.0 (0.4 %) 109.0 (0.4 %) 108.9 (0.4 %) 108.5 (0.1 %) C12-C14+H15 129.5 (3.1 %) 129.2 (3.2 %) 129.8 (3.3 %) 129.5 (3.0 %) 125.7 (21-C12-H13 C14-C12-H13 129.5 (3.4 %) 129.2 (3.2 %) 129.8 (3.6 %) <td>C11-N21-C16</td> <td>109.7 (0.1 %)</td> <td>109.7 (0.1 %)</td> <td>109.9 (0.0 %)</td> <td>109.9 (0.0 %)</td> <td>109.9</td>	C11-N21-C16	109.7 (0.1 %)	109.7 (0.1 %)	109.9 (0.0 %)	109.9 (0.0 %)	109.9
N21-C16-C14106.0 (0.2 %)106.2 (0.1 %)106.0 (0.2 %)106.2 (0.1 %)106.3N21-C11-O17126.2 (0.9 %)125.6 (0.5 %)126.2 (0.9 %)125.5 (0.4 %)125.0N21-C16-O18126.1 (0.3 %)125.6 (0.1 %)126.1 (0.3 %)125.5 (0.2 %)125.7C12-C11-O17127.8 (1.1 %)128.2 (0.7 %)127.9 (0.1 %)128.3 (0.7 %)129.1C14-C16-O18127.9 (0.1 %)128.3 (0.2 %)127.9 (0.1 %)128.3 (0.2 %)125.3C11-C12-H13121.4 (3.2 %)121.8 (2.8 %)121.2 (3.3 %)121.6 (3.0 %)125.8C11-C12-C14109.1 (0.3 %)109.0 (0.4 %)109.0 (0.4 %)108.9 (0.5 %)109.4C16-C14-C12109.1 (0.6 %)109.0 (0.5 %)109.0 (0.5 %)108.9 (0.4 %)108.5C12-C14-H15129.5 (3.1 %)129.2 (2.8 %)129.8 (3.6 %)129.5 (3.0 %)125.7C14-C12-H13129.5 (3.4 %)129.2 (3.2 %)129.8 (3.6 %)129.5 (3.4 %)125.3C6-N22-O19117.7 (0.5 %)118.1 (0.1 %)117.3 (0.4 %)117.8 (0.0 %)117.8O19-N22-O20124.8 (0.8 %)123.9 (0.0 %)125.1 (1.0 %)124.2 (0.3 %)123.9 Ángulo de Torsión (°) $\mathbf{C2}$ -C1-N21-C1143.3 (13.3 %)53.3 (6.8 %)39.6 (20.8 %)45.7 (8.4 %)49.9C2-C1-N21-C1143.2 (13.4 %)53.1 (6.4 %)39.7 (20.5 %)45.9 (8.1 %)49.9C2-C1-N21-C1643.2 (13.4 %)53.1 (6.4 %)39.7 (20.5 %)45.9 (8.1 %)49.9	N21-C11-C12	106.1 (0.2 %)	106.2 (0.3 %)	106.1 (0.2 %)	106.2 (0.3 %)	105.8
N21-C11-O17126.2 (0.9 %)125.6 (0.5 %)126.2 (0.9 %)125.5 (0.4 %)125.0N21-C16-O18126.1 (0.3 %)125.6 (0.1 %)126.1 (0.3 %)125.5 (0.2 %)125.7C12-C11-O17127.8 (1.1 %)128.2 (0.7 %)127.8 (1.1 %)128.3 (0.2 %)129.1C14-C16-O18127.9 (0.1 %)128.3 (0.2 %)127.9 (0.1 %)128.3 (0.2 %)128.0C11-C12-H13121.4 (3.2 %)121.8 (2.8 %)121.2 (3.3 %)121.6 (3.0 %)125.8C16-C14-H15121.4 (3.6 %)121.8 (3.2 %)121.2 (3.7 %)121.6 (3.4 %)125.8C11-C12-C14109.1 (0.3 %)109.0 (0.4 %)109.0 (0.4 %)108.9 (0.5 %)109.4C16-C14-C12109.1 (0.6 %)109.0 (0.5 %)109.0 (0.5 %)108.9 (0.4 %)108.5C12-C14-H15129.5 (3.1 %)129.2 (2.8 %)129.8 (3.3 %)129.5 (3.0 %)125.7C14-C12-H13129.5 (3.1 %)129.2 (3.2 %)129.8 (3.6 %)129.5 (3.4 %)125.3C6-N22-O19117.7 (0.5 %)118.1 (0.1 %)117.5 (0.7 %)117.9 (0.3 %)118.3C6-N22-O20117.5 (0.3 %)118.0 (0.2 %)117.3 (0.4 %)117.8 (0.0 %)117.8O19-N22-O20124.8 (0.8 %)123.9 (0.0 %)125.1 (1.0 %)124.2 (0.3 %)123.9 Ángulo de Torsión (°) 124.2 (0.3 %)123.9123.9 (0.0 %)125.7 (20.5 %)45.7 (8.4 %)49.9C2-C1-N21-C1143.3 (13.3 %)53.3 (14.9 %)39.6 (36.9 %)45.7 (8.4 %)49.9C2-C1-N21-C1143.3 (13.4 %)<	N21-C16-C14	106.0 (0.2 %)	106.2 (0.1 %)	106.0 (0.2 %)	106.2 (0.1 %)	106.3
N21-C16-O18126.1 (0.3 %)125.6 (0.1 %)126.1 (0.3 %)125.5 (0.2 %)125.7C12-C11-O17127.8 (1.1 %)128.2 (0.7 %)127.8 (1.1 %)128.3 (0.7 %)129.1C14-C16-O18127.9 (0.1 %)128.3 (0.2 %)127.9 (0.1 %)128.3 (0.2 %)128.0C11-C12-H13121.4 (3.2 %)121.8 (2.8 %)121.2 (3.3 %)121.6 (3.0 %)125.8C16-C14-H15121.4 (3.6 %)121.8 (3.2 %)121.2 (3.7 %)121.6 (3.4 %)125.8C11-C12-C14109.1 (0.3 %)109.0 (0.4 %)109.0 (0.4 %)108.9 (0.5 %)109.4C16-C14-C12109.1 (0.6 %)109.0 (0.5 %)109.0 (0.5 %)108.9 (0.4 %)108.5C12-C14-H15129.5 (3.1 %)129.2 (2.8 %)129.8 (3.3 %)129.5 (3.0 %)125.7C14-C12-H13129.5 (3.4 %)129.2 (3.2 %)129.8 (3.6 %)129.5 (3.4 %)125.3C6-N22-O19117.7 (0.5 %)118.1 (0.1 %)117.5 (0.7 %)117.9 (0.3 %)118.3C6-N22-O20117.5 (0.3 %)118.0 (0.2 %)117.3 (0.4 %)117.8 (0.0 %)117.8O19-N22-O20124.8 (0.8 %)123.9 (0.0 %)125.1 (1.0 %)124.2 (0.3 %)123.9 Ángulo de Torsión (°) C2-C1 -N21-C1143.3 (11.3 %)53.3 (6.8 %)39.6 (36.9 %)45.7 (8.4 %)49.9C2-C1-N21-C1143.3 (13.3 %)53.3 (14.9 %)39.6 (36.9 %)45.7 (27.0 %)62.7C3-C1-N21-C1143.2 (13.4 %)53.1 (6.4 %)39.7 (20.5 %)45.9 (8.1 %)49.9C2-C1-N21-C1643.2 (13.4 %	N21-C11-O17	126.2 (0.9 %)	125.6 (0.5 %)	126.2 (0.9 %)	125.5 (0.4 %)	125.0
C12-C11-O17 127.8 (1.1 %) 128.2 (0.7 %) 127.8 (1.1 %) 128.3 (0.7 %) 129.1 C14-C16-O18 127.9 (0.1 %) 128.3 (0.2 %) 127.9 (0.1 %) 128.3 (0.2 %) 128.3 (0.2 %) 128.0 C11-C12-H13 121.4 (3.2 %) 121.8 (2.8 %) 121.2 (3.3 %) 121.6 (3.0 %) 125.3 C16-C14-H15 121.4 (3.6 %) 121.8 (3.2 %) 121.2 (3.7 %) 121.6 (3.4 %) 125.8 C11-C12-C14 109.1 (0.3 %) 109.0 (0.4 %) 109.0 (0.4 %) 108.9 (0.5 %) 109.4 C16-C14-C12 109.1 (0.6 %) 109.0 (0.5 %) 109.0 (0.5 %) 108.9 (0.4 %) 108.5 C12-C14-H15 129.5 (3.1 %) 129.2 (2.8 %) 129.8 (3.3 %) 129.5 (3.4 %) 125.3 C6-N22-O19 117.7 (0.5 %) 118.1 (0.1 %) 117.5 (0.7 %) 117.9 (0.3 %) 118.3 C6-N22-O20 117.5 (0.3 %) 118.0 (0.2 %) 117.3 (0.4 %) 117.8 (0.0 %) 123.9 Óny -N22-O20 124.8 (0.8 %) 123.9 (0.0 %) 125.1 (1.0 %) 124.2 (0.3 %) 123.9 Óny -N22-O20 124.8 (0.8 %) 123.9 (0.0 %) 125.1 (1.0 %) 124.2 (0.3 %) 123.9	N21-C16-O18	126.1 (0.3 %)	125.6 (0.1 %)	126.1 (0.3 %)	125.5 (0.2 %)	125.7
C14-C16-O18 127.9 (0.1 %) 128.3 (0.2 %) 127.9 (0.1 %) 128.3 (0.2 %) 128.3 (0.2 %) C11-C12-H13 121.4 (3.2 %) 121.8 (2.8 %) 121.2 (3.3 %) 121.6 (3.0 %) 125.3 C16-C14-H15 121.4 (3.6 %) 121.8 (3.2 %) 121.2 (3.3 %) 121.6 (3.4 %) 125.8 C11-C12-C14 109.1 (0.3 %) 109.0 (0.4 %) 109.0 (0.4 %) 108.9 (0.5 %) 109.4 C16-C14-C12 109.1 (0.6 %) 109.0 (0.5 %) 109.0 (0.5 %) 108.9 (0.4 %) 108.5 C12-C14-H15 129.5 (3.1 %) 129.2 (2.8 %) 129.8 (3.3 %) 129.5 (3.0 %) 125.7 C14-C12-H13 129.5 (3.4 %) 129.2 (3.2 %) 129.8 (3.6 %) 129.5 (3.4 %) 125.3 C6-N22-O19 117.7 (0.5 %) 118.1 (0.1 %) 117.5 (0.7 %) 117.9 (0.3 %) 118.3 C6-N22-O20 117.5 (0.3 %) 118.0 (0.2 %) 117.3 (0.4 %) 117.8 (0.0 %) 123.9 O19-N22-O20 124.8 (0.8 %) 123.9 (0.0 %) 125.1 (1.0 %) 124.2 (0.3 %) 123.9 Ángulo de Torsión (°) C2-C1 -N21-C11 43.3 (13.3 %) 53.3 (6.8 %) 39.6 (36.9 %) 45.7 (27.0 %)	C12-C11-O17	127.8 (1.1 %)	128.2 (0.7 %)	127.8 (1.1 %)	128.3 (0.7 %)	129.1
C11-C12-H13 121.4 (3.2 %) 121.8 (2.8 %) 121.2 (3.3 %) 121.6 (3.0 %) 125.3 C16-C14-H15 121.4 (3.6 %) 121.8 (3.2 %) 121.2 (3.3 %) 121.6 (3.4 %) 125.8 C11-C12-C14 109.1 (0.3 %) 109.0 (0.4 %) 109.0 (0.4 %) 108.9 (0.5 %) 109.4 C16-C14-C12 109.1 (0.6 %) 109.0 (0.5 %) 109.0 (0.5 %) 108.9 (0.4 %) 108.5 C12-C14-H15 129.5 (3.1 %) 129.2 (2.8 %) 129.8 (3.3 %) 129.5 (3.0 %) 125.7 C14-C12-H13 129.5 (3.4 %) 129.2 (3.2 %) 129.8 (3.6 %) 129.5 (3.4 %) 125.3 C6-N22-O19 117.7 (0.5 %) 118.1 (0.1 %) 117.5 (0.7 %) 117.9 (0.3 %) 118.3 C6-N22-O20 117.5 (0.3 %) 118.0 (0.2 %) 117.3 (0.4 %) 117.8 (0.0 %) 117.8 O19-N22-O20 124.8 (0.8 %) 123.9 (0.0 %) 125.1 (1.0 %) 124.2 (0.3 %) 123.9 Ángulo de Torsión (°) C2-C1 -N21-C11 43.3 (31.0 %) 53.3 (6.8 %) 39.6 (20.8 %) 45.7 (8.4 %) 49.9 C2-C1-N21-C11 43.3 (31.0 %) 53.3 (14.9 %) 39.6 (36.9 %) 45.7 (27.0 %) 62.	C14-C16-O18	127.9 (0.1 %)	128.3 (0.2 %)	127.9 (0.1 %)	128.3 (0.2 %)	128.0
C16-C14-H15 121.4 (3.6 %) 121.8 (3.2 %) 121.2 (3.7 %) 121.6 (3.4 %) 125.8 C11-C12-C14 109.1 (0.3 %) 109.0 (0.4 %) 109.0 (0.4 %) 108.9 (0.5 %) 109.4 C16-C14-C12 109.1 (0.6 %) 109.0 (0.5 %) 109.0 (0.5 %) 108.9 (0.4 %) 108.5 C12-C14-H15 129.5 (3.1 %) 129.2 (2.8 %) 129.8 (3.3 %) 129.5 (3.0 %) 125.7 C14-C12-H13 129.5 (3.4 %) 129.2 (3.2 %) 129.8 (3.6 %) 129.5 (3.4 %) 125.3 C6-N22-O19 117.7 (0.5 %) 118.1 (0.1 %) 117.5 (0.7 %) 117.9 (0.3 %) 118.3 C6-N22-O20 117.5 (0.3 %) 118.0 (0.2 %) 117.3 (0.4 %) 117.8 (0.0 %) 117.8 O19-N22-O20 124.8 (0.8 %) 123.9 (0.0 %) 125.1 (1.0 %) 124.2 (0.3 %) 123.9 Ángulo de Torsión (°) 7 7 53.3 (6.8 %) 39.6 (20.8 %) 45.7 (8.4 %) 49.9 C2-C1-N21-C11 43.3 (31.0 %) 53.3 (14.9 %) 39.6 (36.9 %) 45.7 (27.0 %) 62.7 C3-C1-N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9 <td>C11-C12-H13</td> <td>121.6 (3.2 %)</td> <td>1218(28%)</td> <td>121 2 (3 3 %)</td> <td>121 6 (3 0 %)</td> <td>125.3</td>	C11-C12-H13	121.6 (3.2 %)	1218(28%)	121 2 (3 3 %)	121 6 (3 0 %)	125.3
C11-C12-C14 109.1 (0.3 %) 109.0 (0.4 %) 109.0 (0.4 %) 108.9 (0.5 %) 109.4 C16-C14-C12 109.1 (0.6 %) 109.0 (0.5 %) 109.0 (0.5 %) 108.9 (0.4 %) 108.5 C12-C14-H15 129.5 (3.1 %) 129.2 (2.8 %) 129.8 (3.3 %) 129.5 (3.0 %) 125.7 C14-C12-H13 129.5 (3.4 %) 129.2 (3.2 %) 129.8 (3.6 %) 129.5 (3.4 %) 125.3 C6-N22-O19 117.7 (0.5 %) 118.1 (0.1 %) 117.5 (0.7 %) 117.9 (0.3 %) 118.3 C6-N22-O20 117.5 (0.3 %) 118.0 (0.2 %) 117.3 (0.4 %) 117.8 (0.0 %) 123.9 Ó19-N22-O20 124.8 (0.8 %) 123.9 (0.0 %) 125.1 (1.0 %) 124.2 (0.3 %) 123.9 Ángulo de Torsión (°) C2-C1-N21-C11 43.3 (13.3 %) 53.3 (6.8 %) 39.6 (20.8 %) 45.7 (8.4 %) 49.9 C2-C1-N21-C11 43.3 (31.0 %) 53.3 (6.8 %) 39.6 (20.8 %) 45.7 (27.0 %) 62.7 C3-C1-N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9 C2-C1-N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9	C16-C14-H15	121.4 (3.6 %)	121.8 (3.2 %)	121 2 (3.7 %)	121.6 (3.4 %)	125.8
C16-C14-C12 109.1 (0.6 %) 109.0 (0.5 %) 109.0 (0.5 %) 108.9 (0.4 %) 108.5 C12-C14-H15 129.5 (3.1 %) 129.2 (2.8 %) 129.8 (3.3 %) 129.5 (3.0 %) 125.7 C14-C12-H13 129.5 (3.4 %) 129.2 (3.2 %) 129.8 (3.6 %) 129.5 (3.4 %) 125.3 C6-N22-O19 117.7 (0.5 %) 118.1 (0.1 %) 117.5 (0.7 %) 117.9 (0.3 %) 118.3 C6-N22-O20 117.5 (0.3 %) 118.0 (0.2 %) 117.3 (0.4 %) 117.8 (0.0 %) 123.9 O19-N22-O20 124.8 (0.8 %) 123.9 (0.0 %) 125.1 (1.0 %) 124.2 (0.3 %) 123.9 Ángulo de Torsión (°) C2-C1 -N21-C11 43.3 (13.3 %) 53.3 (6.8 %) 39.6 (20.8 %) 45.7 (8.4 %) 49.9 C2-C1-N21-C11 43.3 (13.4 %) 53.3 (14.9 %) 39.6 (36.9 %) 45.7 (27.0 %) 62.7 C3-C1-N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9 C2-C1 N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9 C3-C1-N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9 <td>C11-C12-C14</td> <td>109 1 (0.3 %)</td> <td>109.0 (0.4 %)</td> <td>109.0 (0.4 %)</td> <td>108 9 (0.5 %)</td> <td>109.4</td>	C11-C12-C14	109 1 (0.3 %)	109.0 (0.4 %)	109.0 (0.4 %)	108 9 (0.5 %)	109.4
C12-C14-H15 129.5 (3.1 %) 129.2 (2.8 %) 129.8 (3.3 %) 129.5 (3.0 %) 125.7 C14-C12-H13 129.5 (3.4 %) 129.2 (3.2 %) 129.8 (3.6 %) 129.5 (3.4 %) 125.3 C6-N22-O19 117.7 (0.5 %) 118.1 (0.1 %) 117.5 (0.7 %) 117.9 (0.3 %) 118.3 C6-N22-O20 117.5 (0.3 %) 118.0 (0.2 %) 117.3 (0.4 %) 117.8 (0.0 %) 117.8 O19-N22-O20 124.8 (0.8 %) 123.9 (0.0 %) 125.1 (1.0 %) 124.2 (0.3 %) 123.9 Ángulo de Torsión (°) C2-C1 -N21-C11 43.3 (13.3 %) 53.3 (6.8 %) 39.6 (20.8 %) 45.7 (8.4 %) 49.9 C2-C1-N21-C11 43.3 (31.0 %) 53.3 (14.9 %) 39.6 (36.9 %) 45.7 (27.0 %) 62.7 C3-C1-N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9 C2-C1 N21-C16 43.2 (13.4 %) 53.4 (45.2 %) 20.7 (20.5 %) 45.9 (8.1 %) 49.9	C16-C14-C12	109 1 (0.6 %)	109.0 (0.5 %)	109.0 (0.5 %)	108 9 (0 4 %)	108.5
C14-C12-H13 129.5 (3.4 %) 129.2 (3.2 %) 129.8 (3.6 %) 129.5 (3.4 %) 125.3 C6-N22-O19 117.7 (0.5 %) 118.1 (0.1 %) 117.5 (0.7 %) 117.9 (0.3 %) 118.3 C6-N22-O20 117.5 (0.3 %) 118.0 (0.2 %) 117.3 (0.4 %) 117.8 (0.0 %) 117.8 O19-N22-O20 124.8 (0.8 %) 123.9 (0.0 %) 125.1 (1.0 %) 124.2 (0.3 %) 123.9 Ángulo de Torsión (°) C2-C1 -N21-C11 43.3 (13.3 %) 53.3 (6.8 %) 39.6 (20.8 %) 45.7 (8.4 %) 49.9 C2-C1-N21-C11 43.3 (31.0 %) 53.3 (14.9 %) 39.6 (36.9 %) 45.7 (27.0 %) 62.7 C3-C1-N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9 C2-C1 N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9	C12-C14-H15	129.5 (3.1 %)	129 2 (2.8 %)	129 8 (3 3 %)	129 5 (3.0 %)	125.7
C6-N22-O19 117.7 (0.5 %) 118.1 (0.1 %) 117.5 (0.7 %) 117.9 (0.3 %) 118.3 C6-N22-O20 117.5 (0.3 %) 118.0 (0.2 %) 117.3 (0.4 %) 117.8 (0.0 %) 117.8 O19-N22-O20 124.8 (0.8 %) 123.9 (0.0 %) 125.1 (1.0 %) 124.2 (0.3 %) 123.9 Ángulo de Torsión (°) C2-C1 -N21-C11 43.3 (13.3 %) 53.3 (6.8 %) 39.6 (20.8 %) 45.7 (8.4 %) 49.9 C2-C1-N21-C11 43.3 (31.0 %) 53.3 (14.9 %) 39.6 (36.9 %) 45.7 (27.0 %) 62.7 C3-C1-N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9	C14-C12-H13	129.5 (3.4 %)	129.2 (2.0 %)	129.8 (3.6 %)	129.5 (3.4 %)	125.7
C6-N22-O20 117.5 (0.3 %) 118.0 (0.2 %) 117.3 (0.4 %) 117.8 (0.0 %) 117.8 (0.0 %) O19-N22-O20 124.8 (0.8 %) 123.9 (0.0 %) 125.1 (1.0 %) 124.2 (0.3 %) 123.9 Ángulo de Torsión (°) C2-C1 -N21-C11 43.3 (13.3 %) 53.3 (6.8 %) 39.6 (20.8 %) 45.7 (8.4 %) 49.9 C2-C1-N21-C11 43.3 (31.0 %) 53.3 (14.9 %) 39.6 (36.9 %) 45.7 (27.0 %) 62.7 C3-C1-N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9	C6-N22-O19	123.3 (3.4 %)	118 1 (0 1 %)	117 5 (0 7 %)	123.3 (0.4 %)	120.0
O19-N22-O20 124.8 (0.8 %) 123.9 (0.0 %) 125.1 (1.0 %) 124.2 (0.3 %) 123.9 Ángulo de Torsión (°) C2-C1 -N21-C11 43.3 (13.3 %) 53.3 (6.8 %) 39.6 (20.8 %) 45.7 (8.4 %) 49.9 C2-C1-N21-C11 43.3 (31.0 %) 53.3 (14.9 %) 39.6 (36.9 %) 45.7 (27.0 %) 62.7 C3-C1-N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9	C6-N22-O20	117.5 (0.3 %)	118.0 (0.2 %)	117.3 (0.4 %)	117.8 (0.0 %)	110.5
Ángulo de Torsión (°) 123.3 (0.0 %) <th)< td=""><td>019-N22-020</td><td>124.8 (0.8 %)</td><td>123 9 (0.0 %)</td><td>125 1 (1 0 %)</td><td>124.2 (0.3 %)</td><td>177.0</td></th)<>	019-N22-020	124.8 (0.8 %)	123 9 (0.0 %)	125 1 (1 0 %)	124.2 (0.3 %)	177.0
C2-C1 -N21-C11 43.3 (13.3 %) 53.3 (6.8 %) 39.6 (20.8 %) 45.7 (8.4 %) 49.9 C2-C1-N21-C11 43.3 (31.0 %) 53.3 (14.9 %) 39.6 (36.9 %) 45.7 (27.0 %) 62.7 C3-C1-N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9 C2-C1 N21-C16 43.2 (21.4 %) 53.4 (45.2 %) 20.7 (20.5 %) 45.9 (8.1 %) 49.9		124.0 (0.0 70)	120.0 (0.0 70)	123.1 (1.0 70)	124.2 (0.0 70)	120.0
C2-C1-N21-C11 43.3 (31.0 %) 53.3 (14.9 %) 39.6 (36.9 %) 45.7 (27.0 %) 62.7 C3-C1-N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9 C2-C1-N21-C16 43.2 (13.4 %) 53.4 (45.2 %) 20.7 (20.5 %) 45.9 (8.1 %) 49.9	C2-C1 -N21-C11	<u>433(133%)</u>	533(68%)	39 6 (20 8 %)	457 (81 %)	0 01
C3-C1-N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9 C3-C1-N21-C16 43.2 (13.4 %) 53.1 (6.4 %) 39.7 (20.5 %) 45.9 (8.1 %) 49.9	C2-C1-N21-C11	43 3 (31 0 %)	53 3 (14 9 %)	39.6 (36.9 %)	45 7 (27 0 %)	+J.J 62 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C1-N21-C16	43 2 (13 4 %)	53 1 (6 4 %)	39.7 (20.5 %)	45 Q (8 1 %)	10 Q
U.3-U.1-NZT-U.1D 4.3 Z [.3] T %) 5.3 T [15,3 %] 34 Z [36 Z %) 45 Y [26 X %] 62 Z	C3-C1-N21-C16	43 2 (31 1 %)	53 1 (15 3 %)	397 (367%)	45.9 (26.8 %)	+J.5 62 7

Nota. Fuente: Adaptado de Moreno-Fuquen, R., Valencia, H., Pardo, Z. D., D'Vries, R., & Kennedy, A. R. (2006a). CCDC 613626: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/ccnljd4
Anexo 11. Estructura optimizada de la *para*-nitrofenilmaleimida en fase gas por el método B3LYP/6-311+G(d,p).

Anexo 12. Errores promedio de los parámetros estructurales de la *para*-nitrofenilmaleimida, CCDC 212029.

		Valor			
Parámetro	B3LYP/6-311+G(d,p) M06-2X/6-311+G(d,p)		Experimental		
	fase gas	solvente	fase gas	solvente	
Longitud de enlace (A	Å)				
C1-C2	1.400 (1.1 %)	1.399 (1.0 %)	1.396 (0.8 %)	1.395 (0.7 %)	1.385
C1-C3	1.400 (1.1 %)	1.399 (1.0 %)	1.396 (0.8 %)	1.395 (0.7 %)	1.385
C2-C4	1.388 (0.9 %)	1.387 (0.8 %)	1.386 (0.7 %)	1.386 (0.7 %)	1.376
C3-C6	1.388 (0.9 %)	1.387 (0.8 %)	1.386 (0.7 %)	1.386 (0.7 %)	1.376
C4-C8	1.391 (1.1 %)	1.392 (1.2 %)	1.386 (0.7 %)	1.387 (0.8 %)	1.376
C6-C8	1.391 (1.1 %)	1.392 (1.2 %)	1.386 (0.7 %)	1.387 (0.8 %)	1.376
C2-H5	1.080 (16.2 %)	1.081 (16.2 %)	1.081 (16.2 %)	1.081 (16.2 %)	0.930
C3-H7	1.080 (16.2 %)	1.081 (16.2 %)	1.081 (16.2 %)	1.081 (16.2 %)	0.930
C4-H9	1.081 (16.2 %)	1.081 (16.2 %)	1.081 (16.3 %)	1.081 (16.2 %)	0.930
C6-H10	1.081 (16.2 %)	1.081 (16.2 %)	1.081 (16.3 %)	1.081 (16.2 %)	0.930
C8-N21	1.477 (1.2 %)	1.469 (0.7 %)	1.477 (1.2 %)	1.471 (0.8 %)	1.459
N21-O19	1.225 (0.1 %)	1.228 (0.2 %)	1.212 (1.2 %)	1.214 (1.0 %)	1.226
N21-O20	1.225 (0.1 %)	1.228 (0.2 %)	1.212 (1.2 %)	1.214 (1.0 %)	1.226
N22-C1	1.421 (0.0 %)	1.418 (0.2 %)	1.417 (0.3 %)	1.414 (0.5 %)	1.421
N22-C11	1.416 (0.8 %)	1.413 (0.6 %)	1.409 (0.3 %)	1.406 (0.1 %)	1.405
N22-C16	1.416 (0.8 %)	1.413 (0.6 %)	1.409 (0.3 %)	1.406 (0.1 %)	1.405
C11-C12	1.497 (1.0 %)	1.494 (0.8 %)	1.500 (1.2 %)	1.498 (1.1 %)	1.482
C14-C16	1.497 (1.0 %)	1.494 (0.8 %)	1.500 (1.2 %)	1.498 (1.1 %)	1.482
C12-C14	1.331 (2.1 %)	1.332 (2.2 %)	1.327 (1.7 %)	1.327 (1.8 %)	1.304
C11-O17	1.204 (0.3 %)	1.208 (0.6 %)	1.197 (0.3 %)	1.200 (0.0 %)	1.200
C16-O18	1.204 (0.3 %)	1.208 (0.6 %)	1.197 (0.3 %)	1.200 (0.0 %)	1.200
C12-H13	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	0.930
C14-H15	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	0.930

	Método					
Parámetro	B3LYP/6-311+G(d,p)		M06-2X/6-311+G(d,p)		- valor	
-	fase gas	solvente	fase gas	solvente	Experimental	
Longitud de enlace in	termolecular (Å)		_			
O17-H5	2.499 (3.7 %)	2.643 (1.8 %)	2.449 (5.6 %)	2.575 (0.8 %)	2.595	
O18-H7	2.499 (3.7 %)	2.643 (1.8 %)	2.449 (5.6 %)	2.575 (0.8 %)	2.595	
Ángulo de enlace (º)						
C1-C2-C4	119.9 (0.3 %)	119.9 (0.3 %)	119.7 (0.5 %)	119.6 (0.5 %)	120.2	
C1-C3-C6	119.9 (0.3 %)	119.9 (0.3 %)	119.7 (0.5 %)	119.6 (0.5 %)	120.2	
C2-C4-C8	119.1 (0.2 %)	118.9 (0.1 %)	118.8 (0.1 %)	118.6 (0.2 %)	118.8	
C3-C6-C8	119.1 (0.2 %)	118.9 (0.1 %)	118.8 (0.1 %)	118.6 (0.2 %)	118.8	
C2-C1-C3	120.3 (0.1 %)	120.5 (0.2 %)	120.8 (0.5 %)	120.9 (0.6 %)	120.2	
C4-C8-C6	121.8 (0.2 %)	121.9 (0.1 %)	122.4 (0.3 %)	122.6 (0.4 %)	122.1	
C1-C2-H5	120.2 (0.2 %)	120.2 (0.2 %)	120.1 (0.2 %)	120.2 (0.2 %)	120.0	
C1-C3-H7	120.2 (0.2 %)	120.2 (0.2 %)	120.1 (0.2 %)	120.2 (0.2 %)	120.0	
H5-C2-C4	119.9 (0.1 %)	119.9 (0.1 %)	120.2 (0.2 %)	120.2 (0.1 %)	120.0	
H7-C3-C6	119.9 (0.1 %)	119.9 (0.1 %)	120.2 (0.2 %)	120.2 (0.1 %)	120.0	
C2-C4-H9	121.2 (0.5 %)	120.9 (0.2 %)	121.4 (0.7 %)	121.1 (0.4 %)	120.6	
C3-C6-H10	121.2 (0.5 %)	120.9 (0.2 %)	121.4 (0.7 %)	121.1 (0.4 %)	120.6	
H9-C4-C8	119.8 (0.7 %)	120.2 (0.3 %)	119.8 (0.6 %)	120.4 (0.2 %)	120.6	
H10-C6-C8	119.8 (0.7 %)	120.2 (0.3 %)	119.8 (0.6 %)	120.4 (0.2 %)	120.6	
C4-C8-N21	119.1 (0.1 %)	119.0 (0.0 %)	118.8 (0.1 %)	118.7 (0.2 %)	119.0	
C6-C8-N21	119.1 (0.1 %)	119.0 (0.0 %)	118.8 (0.1 %)	118.7 (0.2 %)	119.0	
C1-N22-C11	125.3 (0.1 %)	125.3 (0.1 %)	125.1 (0.0 %)	125.1 (0.0 %)	125.2	
C1-N22-C16	125.3 (0.1 %)	125.3 (0.1 %)	125.1 (0.0 %)	125.1 (0.0 %)	125.2	
N22-C1-C2	119.9 (0.0 %)	119.8 (0.1 %)	119.6 (0.2 %)	119.5 (0.3 %)	119.9	
N22-C1-C3	119.9 (0.0 %)	119.8 (0.1 %)	119.6 (0.2 %)	119.5 (0.3 %)	119.9	
C11-N22-C16	109.4 (0.2 %)	109.4 (0.2 %)	109.7 (0.1 %)	109.7 (0.1 %)	109.6	
N22-C11-C12	106.1 (0.5 %)	106.2 (0.6 %)	106.1 (0.5 %)	106.2 (0.6 %)	105.6	
N22-C16-C14	106.1 (0.5 %)	106.2 (0.6 %)	106.1 (0.5 %)	106.2 (0.6 %)	105.6	
N22-C11-O17	126.3 (0.8 %)	125.7 (0.4 %)	126.2 (0.8 %)	125.6 (0.3 %)	125.2	
N22-C16-O18	126.3 (0.8 %)	125.7 (0.4 %)	126.2 (0.8 %)	125.6 (0.3 %)	125.2	
C12-C11-O17	127.6 (1.2 %)	128.1 (0.9 %)	127.6 (1.2 %)	128.2 (0.8 %)	129.2	
C14-C16-O18	127.6 (1.2 %)	128.1 (0.9 %)	127.6 (1.2 %)	128.2 (0.8 %)	129.2	
C11-C12-H13	121.3 (3.2 %)	121.7 (2.8 %)	121.2 (3.3 %)	121.6 (2.9 %)	125.3	
C16-C14-H15	121.3 (3.2 %)	121.7 (2.8 %)	121.2 (3.3 %)	121.6 (2.9 %)	125.3	
C11-C12-C14	109.1 (0.4 %)	109.0 (0.5 %)	109.0 (0.5 %)	108.9 (0.6 %)	109.6	
C16-C14-C12	109.1 (0.4 %)	109.0 (0.5 %)	109.0 (0.5 %)	108.9 (0.6 %)	109.6	
C12-C14-H15	129.6 (3.5 %)	129.2 (3.2 %)	129.8 (3.7 %)	129.5 (3.4 %)	125.2	
C14-C12-H13	129.6 (3.5 %)	129.2 (3.2 %)	129.8 (3.7 %)	129.5 (3.4 %)	125.2	
C8-N21-O19	117.6 (0.8 %)	118.2 (0.3 %)	117.5 (0.9 %)	117.9 (0.5 %)	118.6	
C8-N21-O20	117.6 (0.8 %)	118.2 (0.3 %)	117.5 (0.9 %)	117.9 (0.5 %)	118.6	
O19-N21-O20	124.7 (1.5 %)	123.7 (0.6 %)	125.0 (1.7 %)	124.1 (1.0 %)	122.9	
Ángulo de Torsión (º)						
C2-C1-N22-C11	38.7 (11.0 %)	45.2 (4.0 %)	37.4 (13.8 %)	43.3 (0.4 %)	43.4	
C3-C1-N22-C16	38.7 (11.0 %)	45.2 (4.0 %)	37.4 (13.8 %)	43.3 (0.4 %)	43.4	

Nota. Fuente: Adaptado de Fruk, L., & Graham, D. (2004). CCDC 212029: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/cc73mnl

		Valor			
Parámetro B3LYP/6		311+G(d,p) M06-2X		311+G(d,p)	Valui
-	fase gas	solvente	fase gas	solvente	Experimental
Longitud de enlace (Å)		_		
C1-C2	1.400 (1.1 %)	1.399 (1.1 %)	1.396 (0.8 %)	1.395 (0.8 %)	1.384
C1-C3	1.400 (1.1 %)	1.399 (1.1 %)	1.396 (0.8 %)	1.395 (0.8 %)	1.384
C2-C4	1.388 (0.7 %)	1.387 (0.6 %)	1.386 (0.5 %)	1.386 (0.5 %)	1.379
C3-C6	1.388 (0.7 %)	1.387 (0.6 %)	1.386 (0.5 %)	1.386 (0.5 %)	1.379
C4-C8	1.391 (0.9 %)	1.392 (1.1 %)	1.386 (0.6 %)	1.387 (0.7 %)	1.378
C6-C8	1.391 (0.9 %)	1.392 (1.1 %)	1.386 (0.6 %)	1.387 (0.7 %)	1.378
C2-H5	1.080 (16.2 %)	1.081 (16.2 %)	1.081 (16.2 %)	1.081 (16.2 %)	0.930
C3-H7	1.080 (16.2 %)	1.081 (16.2 %)	1.081 (16.2 %)	1.081 (16.2 %)	0.930
C4-H9	1.081 (16.2 %)	1.081 (16.2 %)	1.081 (16.3 %)	1.081 (16.2 %)	0.930
C6-H10	1.081 (16.2 %)	1.081 (16.2 %)	1.081 (16.3 %)	1.081 (16.2 %)	0.930
C8-N21	1.477 (1.0 %)	1.469 (0.5 %)	1.477 (1.0 %)	1.471 (0.6 %)	1,462
N21-O19	1.225 (0.2 %)	1.228 (0.5 %)	1.212 (0.8 %)	1.214 (0.7 %)	1.222
N21-O20	1.225 (0.2 %)	1.228 (0.5 %)	1.212 (0.8 %)	1.214 (0.7 %)	1.222
N22-C1	1.421 (0.1 %)	1.418 (0.3 %)	1.417 (0.4 %)	1.414 (0.6 %)	1.423
N22-C11	1.416 (0.8 %)	1.413 (0.6 %)	1.409 (0.3 %)	1.406 (0.1 %)	1.405
N22-C16	1.416 (0.8 %)	1.413 (0.6 %)	1.409 (0.3 %)	1.406 (0.1 %)	1.405
C11-C12	1.497 (0.7 %)	1.494 (0.5 %)	1.500 (0.9 %)	1.498 (0.7 %)	1.487
C14-C16	1.497 (0.7 %)	1.494 (0.5 %)	1.500 (0.9 %)	1.498 (0.7 %)	1.487
C12-C14	1.331 (2.0 %)	1.332 (2.1 %)	1.327 (1.7 %)	1.327 (1.7 %)	1.305
C11-O17	1.204 (0.5 %)	1.208 (0.8 %)	1.197 (0.1 %)	1.200 (0.2 %)	1.198
C16-O18	1.204 (0.5 %)	1.208 (0.8 %)	1.197 (0.1 %)	1.200 (0.2 %)	1.198
C12-H13	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	0.930
C14-H15	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	1.080 (16.1 %)	0.930
Longitud de enlace i	ntermolecular (Å)	· · · · ·	, ,	
017-H5	2.499 (3.5 %)	2.643 (2.0 %)	2.449 (5.5 %)	2.575 (0.6 %)	2.590
O18-H7	2.499 (3.5 %)	2.643 (2.0 %)	2.449 (5.5 %)	2.575 (0.6 %)	2.590
Ángulo de enlace (°)	(,	(/	- ()		
<u>C1-C2-C4</u>	119.9 (0.0 %)	119.9 (0.1 %)	1197(02%)	1196(03%)	120.0
C1-C3-C6	119.9 (0.0 %)	119.9 (0.1 %)	1197 (0.2 %)	1196(0.3%)	120.0
C2-C4-C8	119 1 (0 4 %)	118.9 (0.3 %)	118 8 (0 1 %)	1186(0.0%)	118.6
C3-C6-C8	119 1 (0 4 %)	118.9 (0.3 %)	118 8 (0 1 %)	1186(00%)	118.6
C2-C1-C3	120.3 (0.2 %)	120.5 (0.1 %)	120.8 (0.2 %)	120.9 (0.3 %)	120.6
C4-C8-C6	121.8 (0.4 %)	121.9 (0.3 %)	122.4 (0.1 %)	122.6 (0.2 %)	122.3
C1-C2-H5	120.2 (0.2 %)	120.2 (0.2 %)	120.1 (0.1 %)	120.2 (0.1 %)	120.0
C1-C3-H7	120.2 (0.2 %)	120.2 (0.2 %)	120.1 (0.1 %)	120.2 (0.1 %)	120.0
H5-C2-C4	119.9 (0.1 %)	119.9 (0.1 %)	120.2 (0.1 %)	120.2 (0.1 %)	120.0
H7-C3-C6	119.9 (0.1 %)	119.9 (0.1 %)	120.2 (0.1 %)	120.2 (0.1 %)	120.0
C2-C4-H9	121.2 (0.4 %)	120.9 (0.1 %)	121.4 (0.6 %)	121.1 (0.3 %)	120.7
C3-C6-H10	121.2 (0.4 %)	120.9 (0.1 %)	121.4 (0.6 %)	121.1 (0.3 %)	120.7
H9-C4-C8	119.8 (0.8 %)	120.2 (0.4 %)	119.8 (0.7 %)	120.4 (0.3 %)	120.7
H10-C6-C8	119.8 (0.8 %)	120.2 (0.4 %)	119.8 (0.7 %)	120.4 (0.3 %)	120.7
C4-C8-N21	119.1 (0.2 %)	119.0 (0.2 %)	118.8 (0.0 %)	118.7 (0.1 %)	118.8
C6-C8-N21	119.1 (0.2 %)	119.0 (0.2 %)	118.8 (0.0 %)	118.7 (0.1 %)	118.8
C1-N22-C11	125.3 (0.1 %)	125.3 (0.1 %)	125.1 (0.0 %)	125.1 (0.0 %)	125.1
C1-N22-C16	125.3 (0.1 %)	125.3 (0.1 %)	125.1 (0.0 %)	125.1 (0.0 %)	125.1

Anexo 13. Errores de los parámetros estructurales de la *para*-nitrofenilmaleimida, CCDC 226980.

		Valar				
Parámetro	B3LYP/6-311+G(d,p)		M06-2X/6-3	11+G(d,p)		
-	fase gas	solvente	fase gas	solvente	Experimental	
N22-C1-C2	119.9 (0.1 %)	119.8 (0.0 %)	119.6 (0.1 %)	119.5 (0.2 %)	119.7	
N22-C1-C3	119.9 (0.1 %)	119.8 (0.0 %)	119.6 (0.1 %)	119.5 (0.2 %)	119.7	
C11-N22-C16	109.4 (0.3 %)	109.4 (0.3 %)	109.7 (0.0 %)	109.7 (0.0 %)	109.8	
N22-C11-C12	106.1 (0.5 %)	106.2 (0.6 %)	106.1 (0.5 %)	106.2 (0.6 %)	105.6	
N22-C16-C14	106.1 (0.5 %)	106.2 (0.6 %)	106.1 (0.5 %)	106.2 (0.6 %)	105.6	
N22-C11-O17	126.3 (0.7 %)	125.7 (0.3 %)	126.2 (0.7 %)	125.6 (0.2 %)	125.3	
N22-C16-O18	126.3 (0.7 %)	125.7 (0.3 %)	126.2 (0.7 %)	125.6 (0.2 %)	125.3	
C12-C11-O17	127.6 (1.1 %)	128.1 (0.8 %)	127.6 (1.1 %)	128.2 (0.7 %)	129.1	
C14-C16-O18	127.6 (1.1 %)	128.1 (0.8 %)	127.6 (1.1 %)	128.2 (0.7 %)	129.1	
C11-C12-H13	121.3 (3.2 %)	121.7 (2.9 %)	121.2 (3.3 %)	121.6 (3.0 %)	125.3	
C16-C14-H15	121.3 (3.2 %)	121.7 (2.9 %)	121.2 (3.3 %)	121.6 (3.0 %)	125.3	
C11-C12-C14	109.1 (0.4 %)	109.0 (0.4 %)	109.0 (0.5 %)	108.9 (0.5 %)	109.5	
C16-C14-C12	109.1 (0.4 %)	109.0 (0.4 %)	109.0 (0.5 %)	108.9 (0.5 %)	109.5	
C12-C14-H15	129.6 (3.5 %)	129.2 (3.2 %)	129.8 (3.7 %)	129.5 (3.4 %)	125.2	
C14-C12-H13	129.6 (3.5 %)	129.2 (3.2 %)	129.8 (3.7 %)	129.5 (3.4 %)	125.2	
C8-N21-O19	117.6 (0.6 %)	118.2 (0.2 %)	117.5 (0.8 %)	117.9 (0.4 %)	118.4	
C8-N21-O20	117.6 (0.6 %)	118.2 (0.2 %)	117.5 (0.8 %)	117.9 (0.4 %)	118.4	
O19-N21-O20	124.7 (1.2 %)	123.7 (0.4 %)	125.0 (1.5 %)	124.1 (0.7 %)	123.2	
Ángulo de Torsión (º)						
C2-C1-N22-C11	38.7 (10.5 %)	45.2 (4.6 %)	37.4 (13.3 %)	43.3 (0.2 %)	43.2	
C3-C1-N22-C16	38.7 (10.5 %)	45.2 (4.6 %)	37.4 (13.3 %)	43.3 (0.2 %)	43.2	

Nota. Fuente: Adaptado de Moreno-Fuquen, R., Valencia, H., Abonia, R., Kennedy, A. R., & Graham, D. (2004). CCDC 226980: Experimental Crystal Structure Determination. *The Cambridge Crystallographic Data Centre*. https://doi.org/10.5517/cc7m5yy

Anexo 14. Espectro Infrarrojo de la estructura optimizada de la N-fenilmaleimida en fase gas por el método B3LYP/6-311+G(d,p).

Anexo 15. Espectro Infrarrojo de la estructura optimizada de la N-fenilmaleimida en solvente por el método B3LYP/6-311+G(d,p).

Anexo 16. Espectro Infrarrojo de la estructura optimizada de la N-fenilmaleimida en fase gas por el método M06-2X/6-311+G(d,p).

Anexo 17. Espectro Infrarrojo de la estructura optimizada de la N-fenilmaleimida en solvente por el método M06-2X/6-311+G(d,p).

Anexo 19. Espectro Infrarrojo de la estructura optimizada de la *para*-aminofenilmaleimida en solvente por el método B3LYP/6-311+G(d,p).

Anexo 21. Espectro Infrarrojo de la estructura optimizada de la *para*-aminofenilmaleimida en solvente por el método M06-2X/6-311+G(d,p).

Anexo 22. Espectro Infrarrojo de la estructura optimizada de la *para*-metoxifenilmaleimida en fase gas por el método B3LYP/6-311+G(d,p).

Anexo 23. Espectro Infrarrojo de la estructura optimizada de la *para*-metoxifenilmaleimida en solvente por el método B3LYP/6-311+G(d,p).

Anexo 24. Espectro Infrarrojo de la estructura optimizada de la *para*-metoxifenilmaleimida en fase gas por el método M06-2X/6-311+G(d,p).

Anexo 25. Espectro Infrarrojo de la estructura optimizada de la *para*-metoxifenilmaleimida en solvente por el método M06-2X/6-311+G(d,p).

Anexo 26. Espectro Infrarrojo de la estructura optimizada de la *para*-nitrofenilmaleimida en fase gas por el método B3LYP/6-311+G(d,p).

Anexo 27. Espectro Infrarrojo de la estructura optimizada de la *para*-nitrofenilmaleimida en solvente por el método B3LYP/6-311+G(d,p).

Anexo 29. Espectro Infrarrojo de la estructura optimizada de la *para*-nitrofenilmaleimida en solvente por el método M06-2X/6-311+G(d,p).

Anexo 30. Orbitales Moleculares LUMO de la N-fenilmaleimida y sus derivados.

Anexo 31. Orbitales Moleculares HOMO de la N-fenilmaleimida y sus derivados

•

91

Anexo 32. Potencial electrostático de la N-fenilmaleimida y sus derivados en fase gas y medio solvente por el método de B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p).

Anexo 33. Distribución de carga atómica NBO de la N-fenilmaleimida y sus derivados en fase gas y medio solvente por el método de B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p), átomos coloreado por carga

Anexo 34. Ángulos de torsión de los derivados de la N-FM en fase gas y medio solvente acetona para los métodos de B3LYP/6-311+G(d,p) y M06-2X/6-311+G(d,p).

	ANGULO DE TORSIÓN (º)				
Compuesto	Fase Gas		Medio Solvente		
•			Acetona		
	B3LYP/6-311+G(d,p)	M06-2X/6-311+G(d,p)	B3LYP/6-311+G(d,p)	M06-2X/6-311+G(d,p)	
N-fenilmaleimida	46,4	42,5	66,0	52,8	
orto-aminoFM	54,0	54,8	94,4	61,5	
<i>meta</i> -aminoFM	47,0	41,6	87,8	53,3	
para-aminoFM	53,5	45,1	90,0	60,7	
orto-carboxiFM	70,0	55,3	76,9	58,8	
meta-carboxiFM	46,7	41,6	58,1	49,7	
para-carboxiFM	41,4	39,0	51,1	45,5	
orto-fluorFM	66,9	57,1	73,3	60,8	
meta-fluorFM	43,9	39,7	61,3	49,0	
para-fluorFM	46,3	42,6	68,1	53,2	
orto-metoxiFM	84,8	62,9	90,0	72,6	
meta-metoxiFM	48,1	42,0	71,0	51,3	
para-metoxiFM	50,5	44,2	90,0	54,0	
orto-nitroFM	62,5	51,8	61,9	52,4	
<i>meta</i> -nitroFM	43,3	39,6	53,2	45,8	
para-nitroFM	38,7	37,4	45,2	43,3	