Please use this identifier to cite or link to this item: https://repository.unad.edu.co/handle/10596/29537
Title: Especies reactivas de oxígeno y la enzima Superóxido Dismutasa como defensa de las plantas al estrés hídrico
metadata.dc.creator: Pulido Pulido, Sandra Yamile
Keywords: estrés abiótico, estrés por sequía, respuestas bioquímicas, sistemas antioxidantes
Publisher: Universidad Nacional Abierta y a Distancia, UNAD
metadata.dc.relation: http://hemeroteca.unad.edu.co/index.php/riaa/article/view/1342/1679
/*ref*/Abdul, C. B., Sankar, P.V., Murali, M., Gomathinayagam, G.M.A. & Lakshmanan, R. P. (2008). Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus; impacts on ajmalicine accumulation. Colloids and Surfaces. Biointerfaces (62):105–111.
/*ref*/Alscher, R. A., Erturk, N. & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. (53): 1331–1341
/*ref*/Anjum, S. A., Xie. X., Wang, L., Saleem, M.F., Man, C. & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research Vol. 6(9): 2026-2032.
/*ref*/Apel, K. & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. (55): 373-399.
/*ref*/Bannister, W.H., Bannister, J.V., Barra, D., Bond, J. & Bossa, F. (1991). Evolutionary aspects of superoxide dismutase: the copper/zinc enzyme. Free Radical Research Communications 12-13, 349-361.
/*ref*/Borsani, O., Díaz, P., Agius, M.F., Valpuesta, V. & Monza J. (2001). Water stress generate and stress oxidative through the induction a specific Cu/Zn superoxide dismutasa in Lotus corniculatus leaves. Plant Science (161): 757 -763.
/*ref*/Bowler, C., Van Camp, W., Van Montagnu, M. & Inzé, D. (1994). Superoxide dismutase in plants, Crit. Rev. Plant Sci. (13): 199 -218.
/*ref*/Bowler, C., Montagu, M. V. & Inzé, D. (1992). Superoxide Dismutase and stress tolerance. Annu. Rev. Plant Physiology (43):83 -116.
/*ref*/Chaves, M.M., Maroco, J.P. & Pereira, J.S. (2003). Understanding plant responses to drought – from genes to the whole plant. Functional Plant Biology (30): 239–264.
/*ref*/Chaves, M.M., Pereira, J.S., Maroco, J., Rodríguez, M.L., Ricardo, C.P.P. & Osorio, M.L. (2002). How plants cope with water stress in the field: photosynthesis and growth. Annals of Botany (89): 907–916.
/*ref*/Chopra R.N. & Selote D.S. (2007). Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than susceptible wheat cultivar under field conditions. Enviromental and Experimental Botany (60): 276 - 283.
/*ref*/Dalton, T.P., Shertzer, H.G. & Puga, A. (1999). Regulation of gene expression by reactive oxygen, Annu. Rev. Pharmacol. Toxicol. (39): 67-101
/*ref*/Del Rio, L.A., Sandalio, L.M., Corpas, F.J., Palma, J.M. & Barroso, J.B. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling, Plant Physiol. (141): 330-335.
/*ref*/Del Rio, L.A., Sandalio, L.M., Altomare, D.A. & Zilinskas, B.A. (2003). Mitochondrial and peroxisomal magnese superoxide dismutase: differential expression during leaf senescence, J. Exp. Bot. (54): 923-933
/*ref*/FAO, (2008). Redacción II 2008. Informe de la FAO. El agua y la seguridad alimentaria. Recuperado de: http://redaccionii2008.blogspot.com/2008/06/informe-de-lafao.html.
/*ref*/FAO, (2007). Electronic forum on biotechnology in food and agriculture: conference 14. Recuperado de: http:// www.fao.org/biotech/forum.asp.
/*ref*/Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, Sma. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. (29): 185-212.
/*ref*/Foyer, C.H. & Noctor, G. (2005). Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses, Plant Cell (17):1866-1875.
/*ref*/Gill,S.S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry (48): 909-930.
/*ref*/Guo, Z., Ou, W.K., Lu, S. & Zhong, Q. (2006). Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry, (44): 828-836.
/*ref*/Gupta, A.S., Heinen, J.L., Holaday, A.S., Burke, J.J. & Allen, R.D. (1993a). Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA (90): 1629–1633.
/*ref*/Gupta, A.S., Webb, R.P., Holaday, A.S. & Allen, R.D. (1993b). Overexpression of superoxide dismutase drotects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiol (103):1067–1673.
/*ref*/Hamid, G. B., Yamauchi, Y., Shimada, E., Sasaki, R., Kawano, N. & Tanaka, K. (2004). Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Science. (4): 919-928.
/*ref*/Huang, M. & Guo, Z. (2005). Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity, Biol. Plant. (49): 81–84.
/*ref*/Jaramillo, S., Villa, N. A., Pineda, A.F., Gallego, A.B., Tabares, P. Y. & Ceballos, A. (2005). Pesq. agropec. bras., Brasília,(40 ):1115-1121.
/*ref*/Jiang, M. & Zhang, J. (2002). Water stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulatesthe activities of antioxidant enzymes in maize leaves, J.Exp. Bot. (53):2401–2410
/*ref*/Kaminaka, H., Morita, S., Tokumoto, M., Masamura, T. & Tanka, K. (1999). Differential gene expression of rice superoxide dismutase isoforms to oxidative and enviromental stresses, Free. Radic.Res. (31): 219-225.
/*ref*/Kenis, J., Rouby, M., Edelman, M. & Silvente, S. (1994). Inhibition of nitrate reductase by water stress and oxygen in detached oat leaves: a possible mechanism of action, J. Plant Physiol. (144): 733-739.
/*ref*/Kliebenstein, R.A., Monde, R. & Last, R.L. (1998). Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization, Plant Physiol. (118): 637 - 658.
/*ref*/Martinez, L. (2003). Tesis Doctoral Biotecnología. Respuesta Bioquímica y molecular de la simbiosis Phaseolus vulgaris L. Glomus intraradices al estrés de agua.
/*ref*/Miao, Z. & Gaynor, J. (1999). Molecular cloning, characterization and expression of Mn-superoxide dismutase from the rubber tree (Hevea brasiliensis), Plant Mol. Biol. (23): 267–277.
/*ref*/Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance.Trends Plant Sci. (7): 405-410.
/*ref*/Mittler, R. & Zilinskas, A. (1994). Regulation of pea cytosolic ascorbate and other antioxidant enzymes during the progression of drought stress and following recovery from drought, Plant J. (5): 297-405.
/*ref*/Moller, I.M., Jensen, P.E. & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. (58): 459-481.
/*ref*/Muñoz, I.G., Moran, J.F., Becana, M. & Montoya, G. (2005). The crystal structure of an eukaryotic iron superoxide dismutase suggests intersubunit cooperation during catalysis. Protein Science. (14): 387-394.
/*ref*/Murgia., I., Tarantino, D., Vannini, C., Bracale, M., Carravieri, S. & Soave, C. (2004). Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J. (38): 940–53.
/*ref*/Navrot, N., Rouhier, N., Gelhaye, E. & Jaquot, J.P. (2007). Reactive oxygen species generation and antioxidant systems in plant mitochondria, Physiol. Plant. (129): 185-195
/*ref*/Panel Intergubernamental Sobre El Cambio Climático. (2007). Recuperado de: http://www.ipcc.ch.
/*ref*/Passioura, J. (2007). The drought environment: physical, biological and agricultural perspectives. Journal of Experimental Botany (58): 113–117. Perl, A., Perl-Treves, R., Galili, S., Aviv, D., Shalgi, E. & Malkin, S. (1993). Enhanced oxidative-stress defence in transgenic potato expressing tomato Cu, Zn superoxide dismutases. Theor Appl Genet. (85):568–76.
/*ref*/Prasad, M.N.V. (2004). Radicales Libres (FR) Y Especies Reactivas Del Oxígeno (ROS). En: Reigosa, M.J., Pedrol, N., Sánchez, A.M. (2004) La Ecofisiología Vegetal: Una Ciencia de Síntesis. Madrid: Thomson Editores Spain, p. 775-790.
/*ref*/Ramachandra, A. R., Viswanatha, K. C. & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology (161): 1189–1202
/*ref*/Shao, H.B., Chu, L.Y., Jaleel, C.A., Manivannan, P., Panneersel, V. R. & Shao, M.A. (2009). Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit. Rev. Biotechnol. (29): 131-151.
/*ref*/Shao, H.B., Liang, Z.S., Shao, M.A. & Sunc, Q. (2005). Dynamic changes of anti-oxidative enzymes of 10 wheat genotypes at soil water deficits Colloids and Surfaces B: Biointerfaces (42): 187–195.
/*ref*/Singh, B, & K. Usha (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress, Plant Growth Regul. (39): 137–141.
/*ref*/Slooten, L., Capiau, K., Camp, W.V., Montagu, M.V., Soybesma, C. & Inze, D. (1995). Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco over expressing manganese superoxide dismutase in the chloroplasts, Plant Physiol. 107: 373–380
/*ref*/Smirnof, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. (125): 27- 58.
/*ref*/Türkan, I., Bor, M., Özdemir, F. & Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L.subjected to olyethylene glycol mediated water stress. Plant Science. (168): 223 -231.
/*ref*/Wang, Z.F., Wang, O.B., Kwon, S.Y., Kwak, S.S. & Su, W.A. (2005). Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase, J. Plant Physiol. (162): 465–472.
/*ref*/Yong, T., Zongsuo, L., Hongboc, S. & Feng, D. (2004). Effect of water deficits on the activity of anti-oxidative enzymes and osmoregulation among three different genotypes of Radix Astragali at seeding stage. Colloids and Surfaces B: Biointerfaces. (49):60–65
/*ref*/Zhu, D. & Scandalios, John C. (1994). Differential Accumulation of Manganese-Superoxide Dismutase Transcripts in Maize in Response to Abscisic Acid and High Osmoticum. Plant Physiol. (106): 173-178.
metadata.dc.format.*: application/pdf
metadata.dc.type: info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Description:  El cambio climático a escala global y regional ha influido en la frecuencia e intensidad de fenómenos climáticos extremos como las sequías, incrementado las zonas áridas en el planeta, como consecuencia, los eventos de estrés por sequía han aumentado en las plantas. Esta investigación tiene como objetivo mostrar la habilidad y estrategia de las plantas para responder y adaptarse al estrés por sequía mediante la enzima Superóxido Dismutasa (SOD). Se encontró que las respuestas bioquímicas se constituyen en uno de los principales mecanismos de defensa contra este tipo de estrés, uno de estos mecanismos es la sobreproducciónde especies reactivas de oxígeno (ROS) el cual es controlado por sistemas antioxidantes. Dentro de estos sistemas antioxidantes se encuentra la enzima antioxidante Superóxido Dismutasa (SOD). Se concluye que las defensas antioxidantes isoformas de la enzima Superóxido Dismutasa (Mn-SOD, Cu/Zn-SOD, Fe-SOD), se hallan en diferentes especies vegetales y funcionan como eficientes detoxificadores de ROS. Por esto pueden ser una herramienta valiosa en los programas de mejoramiento genético de plantas buscando aumentar la tolerancia de éstas al déficit hídrico.
metadata.dc.source: Revista de Investigación Agraria y Ambiental; Vol. 5, Núm. 2 (2014); 269 - 276
Revista de Investigación Agraria y Ambiental; Vol. 5, Núm. 2 (2014); 269 - 276
2145-6453
2145-6097
URI: https://repository.unad.edu.co/handle/10596/29537
Other Identifiers: http://hemeroteca.unad.edu.co/index.php/riaa/article/view/1342
10.22490/21456453.1342
Appears in Collections:Revista RIAA

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.