Mostrar el registro sencillo del ítem

Influence of the cross-section type in the hydrodynamics of solar collectors of tubular photobioreactors

dc.contributorPontificia Universidad Javeriana, Universidad Autónoma de Occidentees-ES
dc.creatorRamirez, José Luis
dc.creatorRamos Lucumi, Mabel Angélica
dc.date2019-06-19
dc.date.accessioned2019-11-08T21:21:51Z
dc.date.available2019-11-08T21:21:51Z
dc.identifierhttp://hemeroteca.unad.edu.co/index.php/riaa/article/view/2513
dc.identifier10.22490/21456453.2513
dc.identifier.urihttps://repository.unad.edu.co/handle/10596/29447
dc.descriptionSeveral studies in microalgae cultures show the relation between the photosynthetic efficiency and agitation, this effect was evaluated in solar collectors for tubular photobioreactors, which have different geometries in cross section (circular, octagonal, hexagonal and square). In this work, a computational study of microalgae culture (single-phase flow) for each of these solar collectors with a hydraulic diameter of 2 in, 100 in of length and six different culture inlet velocities to the collector (0.25 to 0.5 m/s) are performed to set the influence of profiles on the fluid behavior. The speed, pressure drop, secondary flow and shear stress was analyzed, establishing that the collector with hexagonal profile provides better agitation due to the irregular geometry, but the inlet velocities of the culture must be used in the collector for less than 0.3 m/s to ensure a continuous growth model of microalgae according to the literature tendency. It was found, under this operation regime, that the shear stress values do not cause damage to the wall cell of the microalgae making this implementation feasible in pilot plants.en-US
dc.descriptionDiversos estudios en los cultivos de microalgas muestran la relación de la eficiencia fotosintética con la agitación; esta incidencia fue evaluada en colectores solares para fotobiorreactores tubulares que poseen diversas geometrías en el perfil transversal –circular, octagonal, hexagonal y cuadrado. En este trabajo se realizó un estudio computacional de un cultivo de microalgas (flujo monofásico) para cada uno de estos colectores solares con un diámetro hidráulico de 2in, 100in de longitud y seis diferentes velocidades de entrada del cultivo al colector (de 0,25 a 0,5m/s), para establecer la influencia de los perfiles en el comportamiento del fluido. Se evaluaron los parámetros de velocidad, caída de presión, flujo secundario y esfuerzo cortante; estableciendo que el colector con perfil hexagonal proporciona la mejor agitación debido a la irregularidad geométrica, aunque se deben utilizar velocidades de entrada del cultivo menores a 0.3m/s para garantizar un modelo de crecimiento de las microalgas continuo, de acuerdo con la tendencia de la bibliografía. Bajo este régimen de operación se encontró que los valores de esfuerzos cortantes no causan daños en la pared celular de las microalgas haciendo viable su implementación en plantas piloto.es-ES
dc.formatapplication/pdf
dc.formattext/html
dc.languagespa
dc.publisherUniversidad Nacional Abierta y a Distancia, UNADes-ES
dc.relationhttp://hemeroteca.unad.edu.co/index.php/riaa/article/view/2513/3290
dc.relationhttp://hemeroteca.unad.edu.co/index.php/riaa/article/view/2513/3235
dc.relationhttp://hemeroteca.unad.edu.co/index.php/riaa/article/downloadSuppFile/2513/373
dc.relation/*ref*/Alpma, E. & Long, L.N. (2005). Separated turbulent flow simulations using a Reynolds stress model and unstructured meshes. In Processing of the 43rd Aerospace Sciences Meeting & Exhibit (AIAA), Reno, USA, p. 1-14.
dc.relation/*ref*/Aparecido, J.B. & Cotta R.M. (1990). Laminar flow inside hexagonal ducts. Computational Mechanics 6, 93-100.
dc.relation/*ref*/Belt, R.J., Van't Westende, J.M.C., Portela, L.M., Mudde R.F. & Oliemans, R.V.A. (2004). Particle-driven secondary flow in turbulent horizontal pipe flows. In Processing of the 3rd International symposium on two-phase flow modeling and experimentation. Pisa, Italia.
dc.relation/*ref*/Camacho Rubio,F., Acién Fernández, F.G., Sánchez Pérez, J.A., García Camacho, F. & Molina Grima, E. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering 5(1), 71-86.
dc.relation/*ref*/Chen, W.-y., Jiang, N., An, Y.-r., & Yuan, Q.-h. (2009). Study on numerical simulation of single-phase injection device flow flied. In Processing of the Second International Conference on Information and Computing Science, (ICIC). Manchester, Inglaterra, p. 358-361.
dc.relation/*ref*/Dai, Z. & Shen, S. (2006). Effect of hydrodynamic factors on erosion-corrosion destroy and structure optimization of high pressure air cooler tubes. Journal of Pressure Equipment and Systems, 4: 37-41.
dc.relation/*ref*/Eriksen, N.T. (2008). The technology of microalgal culturing. Biotechnol Lett 30, 1525-1536.
dc.relation/*ref*/García, F. & Haoulo, M. (2009). Estudio experimental de patrones de flujo bifásico aire-agua en tuberías horizontales y ligeramente inclinadas. Información Tecnológica 20 (3), 3-12.
dc.relation/*ref*/García Camacho, F., Contreras Gómez, A., Acién Fernández, F.G., Fernández Sevilla, J. & Molina Grima, E. (1999). Use of concentric-tube airlift photobioreactors for microalgal outdoor mass cultures. Enzyme and microbiol technology 24, 164-172.
dc.relation/*ref*/Gerasimov, A. (2006) Modelling turbulent flows with FLUENT. Europa : ANSYS, lnc.
dc.relation/*ref*/Hämäläinen, V. (2001). Implementing an explicit algebraic Reynolds stress model into the three-dimensional FINFLO flow solver. Helsinki University of technology, Laboratory of aerodynamics, Report No. B-52, Series B.
dc.relation/*ref*/Leeuwner, M.J. & Eksteen J.J. (2008). Computational fluid dynamic modeling of two phase flow in a hydrocyclone. The journal of the southern African institute of mining and metallurgy 106, 231-236
dc.relation/*ref*/Mazzuca Sobczuk, T., Garcıa Camacho, F., Molina Grima, E. & Chisti, Y. (2006). Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess Biosyst Eng 28, 243–250.
dc.relation/*ref*/Michels, M., van der Goot, J.A., Norsker, N.H., Wijffels, R.H. (2010). Effects of shear stress on the microalgae Chaetoceros muelleri. Bioprocess Biosyst Eng 33, 921–927.
dc.relation/*ref*/Mitsuhashi, S., Hosaka, K., Tomonaga, E., Muramatsu, H. & Tanishita, K. (1995). Effects of shear flow on photosynthesis in a dilute suspension of microalgae. Appl Microbiol Biotechnol 42, 744-749.
dc.relation/*ref*/Molina Grima, E., Acién Fernández, F.G., García Camacho, F. & Chisti, Y. (1999). Photobioreactors: light regime, mass transfer, and scaleup. Journal of Biotechnology 70, 231-247.
dc.relation/*ref*/Perner-Nochta, I., & Posten, C. (2007). Simulations of light intensity variation in photobioreactors. Journal of Biotechnology 131, 276–285.
dc.relation/*ref*/Pruvost, J., Cornet, J.-F. & Legrand, J. (2008). Hydrodynamics influence on light conversion in photobioreactors: An energetically consistent analysis. Chemical Engineering Science 63, 3679-3694.
dc.relation/*ref*/Sánchez Mirón, A., García Camacho, F., Contreras Gómez, A., Molina Grima, E. & Chisti, Y. (2000). Bubble-column and airlift photobioreactors for algal culture. AIChE Journal 46 (9), 1872-1887.
dc.relation/*ref*/Salim, S.M. & Cheah, S.C. (2009). Wall Y+ strategy for dealing with wall-bounded turbulent flows. In Processing of the International MultiConference of Engineers and Computer Scientists (IMECS), Hong Kong, China.
dc.relation/*ref*/Santamarina, A., Weydahl, E., Siegel, J.M. & Moore, J.E. (1998) Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature. Annals of Biomedical Engineering, 26: 944–954
dc.relation/*ref*/Ugwu, C.U., Ogbonna, J.C. & Tanaka, H. (2005). Characterization of light utilization and biomass yields of Chlorella sorokiniana in inclined outdoor tubular photobioreactors equipped with static mixers. Process Biochemistry 40, 3406–3411.
dc.relation/*ref*/Ugwu, C.U., Aoyagi, H., Uchiyama, H. (2008). Review: Photobioreactors for mass cultivations of algae. Process Biochemistry 99, 4021–4028.
dc.relation/*ref*/Vlaev, S., Georgiev, D., Nikon, I. & Elqotbi, M. (2007). The CFD approach for shear analysis of mixing reactor: verification and examples of use. Journal of Engineering Science and Technology 20 (2), 177-187.
dc.relation/*ref*/Wu, X. & Merchuk, J.C. (2004). Simulation of algae growth in a bench scale internal loop airlift reactor. Chemical Engineering Science 59, 2899–2912.
dc.relation/*ref*/Wu, Z.Y. & Shi, X.M. (2008) Rheological properties of Chlorella pyrenoidosa culture grown heterotrophically in a fermentor. J Appl Phycol 20, 279–282.
dc.relation/*ref*/Yue, P., Dooley, J. & Feng, J.J. (2008). A general criterion for viscoelastic secondary flow in pipes of noncircular cross section. Journal Rheol. 52 (1), 315-332.
dc.rightsCopyright (c) 2019 Revista de Investigación Agraria y Ambientales-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceRevista de Investigación Agraria y Ambiental; Vol. 10, Núm. 2 (2019); 163 - 172en-US
dc.sourceRevista de Investigación Agraria y Ambiental; Vol. 10, Núm. 2 (2019); 163 - 172es-ES
dc.source2145-6453
dc.source2145-6097
dc.subjectAgitation; Computational fluid dynamics (CFD); Microalgae biomass; Microalgae cultures; Shear stress;Tubular photobioreactors.en-US
dc.subjectAgitación; Biomasa microalgal; Cultivos microalgales; Dinámica de fluidos computacional (CFD); Esfuerzos cortantes; Fotobiorreactor tubular (TFBR)es-ES
dc.titleInfluence of the cross-section type in the hydrodynamics of solar collectors of tubular photobioreactorsen-US
dc.titleInfluencia del tipo de sección transversal en la hidrodinámica de los colectores solares de los fotobiorreactores tubulareses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeÁrea Ambientales-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem