Mostrar el registro sencillo del ítem

dc.creatorCampos Gaona, Rómulo
dc.creatorCorrea Orozco, Adriana
dc.creatorZambrano Burbano, Gema Lucia
dc.creatorOspina Cordoba, Paola Andrea
dc.date2018-07-05
dc.date.accessioned2019-11-08T21:22:15Z
dc.date.available2019-11-08T21:22:15Z
dc.identifierhttp://hemeroteca.unad.edu.co/index.php/riaa/article/view/2123
dc.identifier10.22490/21456453.2123
dc.identifier.urihttps://repository.unad.edu.co/handle/10596/29578
dc.descriptionLa genética moderna ha logrado la selección de vacas con alta capacidad de producción de leche por lactancia, sin embargo, esta selección generó desajustes homeostáticos en el periodo de transición lo cual ha conllevado a la presentación de desórdenes metabólicos y fallas reproductivas, que inciden negativamente en la rentabilidad de los sistemas lecheros. El periodo de transición constituye una etapa de profundos cambios metabólicos y endocrinos que generan un desafío fisiológico en el final de la gestación y el inicio de la lactancia. Para establecer estrategias que disminuyan la presentación o severidad de las enfermedades metabólicas y su impacto en el desempeño reproductivo, es necesario conocer los mecanismos bioquímicos que son afectados, principalmente sobre el metabolismo energético y lipídico que estimulan rutas compensatorias como la gluconeogénesis. El objetivo de la presente revisión fue describir las principales alteraciones bioquímicas que ocurren durante el periodo de transición en vacas lecheras, la ocurrencia de balance energético negativo y algunos síndromes metabólicos que éstas presentan.es-ES
dc.formatapplication/pdf
dc.formattext/html
dc.languagespa
dc.publisherUniversidad Nacional Abierta y a Distancia, UNADes-ES
dc.relationhttp://hemeroteca.unad.edu.co/index.php/riaa/article/view/2123/2841
dc.relationhttp://hemeroteca.unad.edu.co/index.php/riaa/article/view/2123/2566
dc.relation/*ref*/Aguirre, G. A., Rodríguez De Ita, J., de la Garza, R. G., & Castilla-Cortazar, I. (2016). Insulin-like growth factor-1 deficiency and metabolic syndrome. Journal of Translational Medicine, 14(1), 3. Ahmadi, M., Safi, S., Mortazavi, P., & Rokni, N. (2016). Evaluation of the enzyme changes in different grades of fatty liver syndrome in dairy cows. International Journal of Pharmaceutical Research & Allied Sciences, 5(3), 476–488. Akins, M. S. (2016). Dairy heifer development and nutrition management. Veterinary Clinics of North America - Food Animal Practice, 32(2), 303–317. Aschenbach, J. R., Kristensen, N. B., Donkin, S. S., Hammon, H. M., & Penner, G. B. (2010). Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough. IUBMB Life, 62(12), 869–877. Baumgard, L. H., Collier, R. J., & Bauman, D. E. (2017). A 100-Year Review: Regulation of nutrient partitioning to support lactation. Journal of Dairy Science, 100(12), 10353–10366. Berry, D. P., Friggens, N. C., Lucy, M. C., & Roche, J. R. (2016). Milk production and fertility in cattle. Annual Review of Animal Biosciences, 4, 269–290. Bisinotto, R. S., Greco, L. F., Ribeiro, E. S., Martinez, N., Lima, F. S., Staples, C. R., … Santos, J. E. P. (2012). Influences of nutrition and metabolism on fertility of dairy cows. Animal Reproduction, 9(3), 260–272. Bruckmaier, R. M., & Gross, J. J. (2017). Lactational challenges in transition dairy cows. Animal Production Science, 57(7), 1471–1481. Butler, S. T. (2014). Nutritional management to optimize fertility of dairy cows in pasture-based systems. Animal, 8(s1), 15–26. Ceciliani, F., Lecchi, C., Urh, C., & Sauerwein, H. (2017). Proteomics and metabolomics characterizing the pathophysiology of adaptive reactions to the metabolic challenges during the transition from late pregnancy to early lactation in dairy cows. Journal of Proteomics. Cheong, S. H., Sá Filho, O. G., Absalón-Medina, V. A., Pelton, S. H., Butler, W. R., & Gilbert, R. O. (2016). Metabolic and endocrine differences between dairy cows that do or do not ovulate first postpartum dominant follicles. Biology of Reproduction, 94(1)(18), 1–11. Cohick, W. S. (2016). Physiology and endocrinology symposium: Effects of insulin on mammary gland differentiation during pregnancy and lactation. Journal of Animal Science, 94(5), 1812–1820. Contreras, G. A., Strieder-Barboza, C., & Raphael, W. (2017). Adipose tissue lipolysis and remodeling during the transition period of dairy cows. Journal of Animal Science and Biotechnology, 8(1), 41. Cooper, R. (2014). Ketosis in dairy cattle. Livestock, 19(2), 74–82. Cooper, R., Green, M., Macrae, A., Hayton, A., & Patton, I. (2011). Clinical forum: Strategies in metabolic monitoring. Livestock, 16(3), 14–21. Cuervo Vivas, W. A. (2017). Factores limitantes de la gluconeogenesis en el Periodo de transición de la vaca lechera (No. 2). Bogotá D.C, Colombia. Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati, & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: A review. Veterinary World, 9(3), 260–268. Dieho, K., van den Bogert, B., Henderson, G., Bannink, A., Ramiro-Garcia, J., Smidt, H., & Dijkstra, J. (2017). Changes in rumen microbiota composition and in situ degradation kinetics during the dry period and early lactation as affected by rate of increase of concentrate allowance. Journal of Dairy Science, 100(4), 2695–2710. Djokovic, R., Samanc, H., Jovanovic, M., Fratric, N., Doskovic, V., & Stanimirovic, Z. (2013). Relationship among blood indicators of hepatic function and lipid content in the liver during transitional period in high-yielding dairy cows. Acta Scientiae Veterinariae, 41, 1128. Donkin, S. S. (2016). Control of hepatic gluconeogenesis during the transition period. In 2016 Florida Ruminant Nutrition Symposium 27th Annual Meeting (pp. 111–123). Gainesville, Florida: Department of Animal Sciences University of Florida Institute of Food and Agricultural Sciences. Farman, M., Nandi, S., Girish Kumar, V., Tripathi, S. K., & Gupta, P. S. P. (2016). Effect of metabolic stress on ovarian activity and reproductive performance of dairy cattle: A review. Iranian Journal of Applied Animal Science, 6(1), 1–7. Feijó, J. O., Mattei, P., Oliviera, A. M., Jacometo, C. B., Tabeleão, V. C., Pereira, R. A., … Corrêa, M. N. (2016). Parâmetros bioquímicos clínicos de vacas de alta e média produção de leite, criadas em sistema freestall. Revista Brasileira de Ciência Veterinária, 23(3–4), 180–185. Fenwick, M. A., Fitzpatrick, R., Kenny, D. A., Diskin, M. G., Patton, J., Murphy, J. J., & Wathes, D. C. (2008). Interrelationships between negative energy balance (NEB) and IGF regulation in liver of lactating dairy cows. Domestic Animal Endocrinology, 34(1), 31–44. Fiore, E., Piccione, G., Perillo, L., Barberio, A., Manuali, E., Morgante, M., & Gianesella, M. (2017). Hepatic lipidosis in high-yielding dairy cows during the transition period: Haematochemical and histopathological findings. Animal Production Science, 57, 74–80. Galmessa, U., Kimothi, S. P., Mohammed, S., & Dang, A. K. (2017). Changes occurring in some biochemical markers of fat supplemented dairy cows during transition period under tropical conditions. Journal of Science and Sustainable Development, 5(2), 1–17. Gerspach, C., Imhasly, S., Gubler, M., Naegeli, H., Ruetten, M., & Laczko, E. (2017). Altered plasma lipidome profile of dairy cows with fatty liver disease. Research in Veterinary Science, 110, 47–59. Gómez, L., & Campos, R. (2016). Control del balance energético negativo y comportamiento productivo y metabólico en vacas doble propósito bajo suplementación energética. Revista de Investigación Agraria Y Ambiental, 7(1), 147–156. González, F. D., Muiño, R., Pereira, V., Campos, R., & Benedito, J. L. (2011). Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. Journal of Veterinary Science, 12(3), 251–255. Gualdrón-Duarte, L. B., & Allen, M. S. (2017). Increased anaplerosis of the tricarboxylic acid cycle decreased meal size and energy intake of cows in the postpartum period. Journal of Dairy Science, 100(6), 4425–4434. Han van der Kolk, J. H., Gross, J. J., Gerber, V., & Bruckmaier, R. M. (2017). Disturbed bovine mitochondrial lipid metabolism: a review. Veterinary Quarterly, 37(1), 262–273. Kuhla, B., Metges, C. C., & Hammon, H. M. (2016). Endogenous and dietary lipids influencing feed intake and energy metabolism of periparturient dairy cows. Domestic Animal Endocrinology, 56, S2–S10. Lacasse, P., Vanacker, N., Ollier, S., & Ster, C. (2017). Innovative dairy cow management to improve resistance to metabolic and infectious diseases during the transition period. Research in Veterinary Science, http://dx.doi.org/10.1016/j.rvsc.2017.06.020. Leroy, J. L. M. R., Vanholder, T., Van Knegsel, A. T. M., Garcia-Ispierto, I., & Bols, P. E. J. (2008). Nutrient prioritization in dairy cows early postpartum: Mismatch between metabolism and fertility? Reproduction in Domestic Animals, 43(s2), 96–103. Li, X., Guan, Y., Li, Y., Wu, D., Liu, L., Deng, Q., … Liu, G. (2016). Effects of insulin-like growth factor-1 on the assembly and secretion of very low-density lipoproteins in cow hepatocytes in vitro. General and Comparative Endocrinology, 226, 82–87. Livingstone, C. (2013). Insulin-like growth factor-I (IGF-I) and clinical nutrition. Clinical Science, 125(6), 265–280. Lucy, M. C. (2012). Growth hormone regulation of follicular growth. Reproduction, Fertility and Development, 24(1), 19–28. Lucy, M. C., Butler, S. T., & Garverick, H. A. (2014). Endocrine and metabolic mechanisms linking postpartum glucose with early embryonic and foetal development in dairy cows. Animal, 8(s1), 82–90. Mann, S., Yepes Leal, F. A., Duplessis, M., Wakshlag, J. J., Overton, T. R., Cummings, B. P., & Nydam, D. . . (2016). Dry period plane of energy: Effects on glucose tolerance in transition dairy cows. Journal of Dairy Science, 99(1), 701–717. Markantonatos, X., & Varga, G. A. (2017). Effects of monensin on glucose metabolism in transition dairy cows. Journal of Dairy Science, 100(11), 9020–9035. Marutsova, V., Binev, R., & Marutsov, P. (2015). Comparative clinical and haematological investigations in lactating cows with subclinical and clinical ketosis. Macedonian Veterinary Review, 38(2), 159–166. McArt, J. A. A., Nydam, D. V., Oetzel, G. R., Overton, T. R., & Ospina, P. A. (2013). Elevated non-esterified fatty acids and β-hydroxybutyrate and their association with transition dairy cow performance. The Veterinary Journal, 198(3), 560–570. McFadden, J. W. (2017). Developing practical approaches to modify hepatic fatty acid processing and lipid mediator biosynthesis in dairy cattle: the emerging role of lipidomics (Cornell Nutrition Conference). Ithaca. Meléndez, P., & Bartolome, J. (2017). Avances sobre nutrición y fertilidad en ganado lechero: Revisión. Revista Mexicana de Ciencias Pecuarias, 8(4), 407–417. Miller-Cushon, E. K., & DeVries, T. J. (2017). Feed sorting in dairy cattle: Causes, consequences, and management. Journal of Dairy Science, 100(5), 4172–4183. Nicolini, M. P. (2014). Estudio del efecto del SNP IGF-1/SnaBI sobre fertilidad y perfil endocrino-metabólico de la vaca lechera en sistemas semi-pastoriles. Universidad de la República, Uruguay. Nowroozi-Asl, A., Aarabi, N., & Rowshan-Ghasrodashti, A. (2016). Ghrelin and its correlation with leptin, energy related metabolites and thyroidal hormones in dairy cows in transitional period. Polish Journal of Veterinary Sciences, 19(1), 197–204. Oliveira, L. H., Nascimento, A. B., Monteiro Jr, P. L. J., Guardieiro, M. M., Wiltbank, M. C., & Sartori, R. (2016). Development of insulin resistance in dairy cows by 150 days of lactation does not alter oocyte quality in smaller follicles. Journal of Dairy Science, 99(11), 9174–9183. Overton, T. R., McArt, J. A. A., & Nydam, D. V. (2017). A 100-Year Review: Metabolic health indicators and management of dairy cattle. Journal of Dairy Science, 100(12), 10398–10417. Pérez-Mendoza, M., De Ita-Pérez, D., & Díaz-Muñoz, M. (2012). Gluconeogénesis: una visión contemporánea de una vía metabólica antigua. Revista de Educación Bioquímica, 31(1), 10–20. Piechotta, M., Kedves, K., Gil Araujo, M., Hoeflich, A., Metzger, F., Heppelmann, M., … Kaske, M. (2013). Hepatic mRNA expression of acid labile subunit and deiodinase 1 differs between cows selected for high versus low concentrations of insulin-like growth factor 1 in late pregnancy. Journal of Dairy Science, 96(6), 3737–3749. Pryce, J. E., Gaddis, K. L. P., Koeck, A., Bastin, C., Abdelsayed, M., Gengler, N., … Cole, J. B. (2016). Invited review: Opportunities for genetic improvement of metabolic diseases. Journal of Dairy Science, 99(9), 6855–6873. Rivas, P. C., Suárez, A., & Ramírez, E. (2011). Influencia de las hormonas metabólicas y la nutrición en el desarrollo folicular en el ganado bovino: implicaciones prácticas. Revista de Medicina Veterinaria, 21, 155–173. Ruoff, J., Borchardt, S., & Heuwieser, W. (2017). Short communication: Associations between blood glucose concentration, onset of hyperketonemia, and milk production in early lactation dairy cows. Journal of Dairy Science, 100(7), 5462–5467. Seymour, W. M. (2016). Role of Methionine and Methionine Precursors in Transition Cow Nutrition with Emphasis on Liver Function. In 2016 Florida Ruminant Nutrition Symposium (pp. 11–16). Gainesville, Florida: University of Florida. Sun, F., Cao, Y., Cai, C., Li, S., Yu, C., & Yao, J. (2016). Regulation of nutritional metabolism in transition dairy cows: Energy homeostasis and health in response to post-ruminal choline and methionine. PLoS ONE, 11(8), e0160659. Sundrum, A. (2015). Metabolic disorders in the transition period Indicate that the dairy cows’ ability to adapt is overstressed. Animals, 5(4), 978–1020. Takada, Y., Takada, Y. K., & Fujita, M. (2017). Crosstalk between insulin-like growth factor (IGF) receptor and integrins through direct integrin binding to IGF1. Cytokine & Growth Factor Reviews, 34, 67–72. Vailati-Riboni, M., Elolimy, A., & Loor, J. J. (2016). Nutritional systems biology to elucidate adaptations in lactation physiology of dairy cows. In H. N. Kadarmideen (Ed.), Systems biology in animal production and health, Vol. 2 (Vol. 2, pp. 97–125). Cham, Switzerland: Springer. van Knegsel, A. T. M., Hammon, H. M., Bernabucci, U., Bertoni, G., Bruckmaier, R. M., Goselink, R. M. A., … van Vuuren, A. M. (2014). Metabolic adaptation during early lactation: key to cow health, longevity and a sustainable dairy production chain. CAB Reviews, 9(2), 1–15. Wang, Y., Hou, Q., Cai, G., Hu, Z., Shi, K., Yan, Z., … Wang, Z. (2017). Effects of dietary energy density in the dry period on the production performance and metabolism of dairy cows. Advances in Bioscience and Biotechnology, 8, 104–126. Weaver, S. R., & Hernandez, L. L. (2016). Autocrine-paracrine regulation of the mammary gland. Journal of Dairy Science, 99(1), 842–853. White, H. M. (2015). The role of TCA cycle anaplerosis in ketosis and fatty liver in periparturient dairy cows. Animals, 5(3), 793–802. White, H. M., Carvalho, E. R., Koser, S. L., Schmelz-Roberts, N. S., Pezzanite, L. M., Slabaugh, A. C., … Donkin, S. S. (2016). Short communication: Regulation of hepatic gluconeogenic enzymes by dietary glycerol in transition dairy cows. Journal of Dairy Science, 99(1), 812–817. Zarrin, M., Grossen-Rösti, L., Bruckmaier, R. M., & Gross, J. J. (2017). Elevation of blood β-hydroxybutyrate concentration affects glucose metabolism in dairy cows before and after parturition. Journal of Dairy Science, 100(3), 2323–2333.
dc.rightsCopyright (c) 2018 Revista de Investigación Agraria y Ambientales-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceRevista de Investigación Agraria y Ambiental; Vol. 9, Núm. 2 (2018); 165 - 179en-US
dc.sourceRevista de Investigación Agraria y Ambiental; Vol. 9, Núm. 2 (2018); 165 - 179es-ES
dc.source2145-6453
dc.source2145-6097
dc.subjectácidos grasos no esterificados; cetosis; factor I del crecimiento similar a la insulina; gluconeogénesis; hígado graso.es-ES
dc.titleAlteraciones bioquímicas y metabólicas en el periodo de transición en vacas lecherases-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeÁrea Pecuariaes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem