Mostrar el registro sencillo del ítem

Filmes Biodegradáveis: Incorporação de Microfibras e Nanofibras de Celulose Obtidas de Fontes Vegetais

dc.creatorAndrade Mahecha, Margarita María
dc.creatorTapia Blácido, Delia Rita
dc.creatorMenegalli, Florencia Cecilia
dc.date2011-04-13
dc.date.accessioned2019-11-08T21:23:47Z
dc.date.available2019-11-08T21:23:47Z
dc.identifierhttp://hemeroteca.unad.edu.co/index.php/publicaciones-e-investigacion/article/view/593
dc.identifier10.22490/25394088.593
dc.identifier.urihttps://repository.unad.edu.co/handle/10596/29765
dc.descriptionDifferent studies have shown that cellulose incorporated into polymeric matrices acts as a reinforcing material that improves the mechanical strength of biodegradable films and, in some cases, the water vapor permeability. The efficacy of this reinforcement is associated with the nature of cellulose, its crystallinity, and the characteristics of the reinforcement/polymeric matrix interface. Studies on cellulose micro and nanofibers as a reinforcing phase in biodegradable films began 15 years ago. Since then there has been an increasing interest in the use of agricultural wastes and in the study of processes for the attainment and incorporation of these materials into polymeric matrices. Thus, this paper presents a literature review on cellulose microfibers and nanofibers as reinforcing materials in biodegradable films based on biopolymers. It addresses topics such as vegetable fibers, due to their lignocellulosic nature; differences between micro and nanofibers; the explored vegetable sources; and the methods developed over the last decade in order to obtain these materials. Finally, a compilation of recent works on biodegradable microcomposites and nanocomposites show promising results in terms of the mechanical and barrier properties of these polymeric structures. The presented information reveals the potential of this area for future research into the development of technology for the production of these materials on an industrial scale and their use as food packagingen-US
dc.descriptionDiferentes estudos têm evidenciado que a celulose incorporada a matrizes poliméricas atua como um material de reforço, melhorando a resistência mecânica de filmes biodegradáveis e em alguns casos, a permeabilidade ao vapor de água. A eficácia deste reforço está associada à natureza da celulose, sua cristalinidade e as características da interface reforço/matriz polimérica. O estudo de microfibras e nanofibras de celulose como uma fase de reforço em filmes biodegradáveis começou há 15 anos. Desde então, tem aumentado o interesse em desenvolver metodologias focadas ao aproveitamento de resíduos agrícolas para a obtenção de fibras e a incorporação desses materiais em matrizes poliméricas. Diante disto, este trabalho apresenta uma revisão bibliográfica sobre microfibras e nanofibras de celulose como materiais de reforço em filmes biodegradáveis a base de biopolímeros. Abordam-se tópicos como as fibras vegetais, dada sua natureza lignocelulósica, as diferenças entre microfibras e nanofibras, fontes vegetais exploradas e métodos desenvolvidos na última década para a obtenção desses materiais. Finalmente, uma compilação de trabalhos recentes sobre microcompósitos e nanocompósitos biodegradáveis mostra resultados promissores nas propriedades mecânicas e de barreira dessas estruturas poliméricas. A informação apresentada evidencia o potencial desta área de pesquisa para futuros trabalhos que podem ser conduzidos para desenvolvimento de tecnologia de produção desses materiais em escala industrial e sua utilização como embalagens de alimentoses-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Nacional Abierta y a Distancia, UNADes-ES
dc.relationhttp://hemeroteca.unad.edu.co/index.php/publicaciones-e-investigacion/article/view/593/1284
dc.relation/*ref*/Kramer M. E. (2009). Structure and Function of Starch-Based Edible Films and Coatings. In: Embuscado M. E., Huber K. C. (Eds). Edible Films and Coatings for Food Applications. New York: Springer. 115p.
dc.relation/*ref*/[2 Lourdin D., Della Valle G., Colonna P. (1995). Influence of amylose content on starch films and foams. Carbohydrate Polymers, Vol. 27 (4) 261 – 270.
dc.relation/*ref*/Hernández O., Emaldi U., Tovar J. (2008). In vitro digestibility of edible films from various starch sources. Carbohydrate Polymers, Vol. 71 (4) 648 – 655.
dc.relation/*ref*/Andrade-Mahecha M. M. (2009). Elaboração e caracterização de biofilmes de farina de biri (Canna indica L.). Dissertação (Mestrado em Engenharia de Alimentos) – Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 158p.
dc.relation/*ref*/Bergo P. V. A., Carvalho R. A., Sobral P. J. A., Dos Santos R. M. C., Da Silva F. B. R., Prison J. M., Solorza-Feria J., Habitante A. M. Q. B. (2008). Physical properties of edible films base on cassava starch as affected by the plasticizer concentration. Packaging Technology and Science. Vol. 21 (2) 85 – 89.
dc.relation/*ref*/Dias A. B., Müller C. M. O., Larotonda F. D. S., Laurindo J. (2010). Biodegradable films based on rice starch and rice flour. Journal of Cereal Science, Vol. 51 (2) 213 – 219.
dc.relation/*ref*/Araujo J. R., Waldman, W. R., De Paoli M. A. (2008). Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect. Polymer Degradation and Stability. Vol. 93 (10) 1770 – 1775.
dc.relation/*ref*/Tapia-Blácido D., Sobral P. J., Menegalli F. C. (2005a). Development and characterization of biofilms based on Amaranth flour (Amaranthus caudatus). Journal of Food Engineering, Vol. 67 (1/2) 215 – 223.
dc.relation/*ref*/Tapia-Blácido D., Sobral P. J. A., Menegalli F. C. (2005b). Effects of drying temperature and relative humidity on the mechanical properties of Amaranth flour films plasticized with glycerol. Brazilian Journal of Chemical Engineering, Vol. 22 (2) 249 – 256.
dc.relation/*ref*/Tapia-Blácido D., Sobral P. J. A., Menegalli F. C. (2011). Optimization of amaranth flour films plasticized with glycerol and sorbitol by multi-response analysis. LWT - Food Science and Technology, Vol. 44 (8) 1731– 1738.
dc.relation/*ref*/Silva D. J., D’almeida M. L. O. (2009). Nanocristais de celulose. O papel, Vol. 70 (7) 34 – 52.Silva R., Haraguchi S. K., Muniz E. C., Rubira A. F. (2009). Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos. Química Nova, Vol. 32 (3) 661 – 671.
dc.relation/*ref*/Araujo-Farro P. C., Podadera G., Sobral P. J. A., Menegalli F. C. (2010). Development of films based on quinoa (Chenopodium quinoa, Willdenow) starch. Carbohydrate Polymers. Vol. 81 (4) 839 – 848.
dc.relation/*ref*/Lu Y., Weng L., Cao X. (2006). Morphological, thermal and mechanical properties of ramie crystallitesreinforced plasticized starch biocomposites. Carbohydrate Polymers, Vol. 63 (2) 198 – 204.
dc.relation/*ref*/Azeredo H. M. C., Mattoso L. H. C., Wood F., Williams T. G., Avena-Bustillos R. J., McHugh T. H. (2009). Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. Journal of Food Science. Vol. 74 (5) 31 – 35.
dc.relation/*ref*/Favier V., Chanzy H., Cavaille J. Y. (1995). Polymer Nanocomposites Reinforced by Cellulose Whiskers. Macromolecules, Vol. 28 (18) 6365 – 6367.
dc.relation/*ref*/Dufresne A., Paillet M., Putaux J. L.; CANET, R.; CARMONA, F.; DELHAES, P.; CUI, S. Processing and characterization of carbon nanotube/poly (styrene-co-butyl acrylate) nanocomposites. Journal of Materials Science, v.37, p.3015 – 3023, 2002.
dc.relation/*ref*/Hubbe M. A., Rojas O. J., Lucia L. A., Sain M. (2008). Cellulosic nanocomposites: A review. Bioresources, Vol. 3 (3) 929 – 980.
dc.relation/*ref*/Yu L., Dean K., Li L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, Vol. 31 (6) 576 – 602.
dc.relation/*ref*/Joly C., Gauthier R., Escoubes M. (1996). Partial masking of cellulosic fiber hydrophilicity for composite applications. Water sorption by chemically modified fibers. Journal of Applied Polymer Science, Vol. 61 (1) 57 – 69.
dc.relation/*ref*/Araki J., Wada M., Kuga S., Okano T. (1998). Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Vol. 142 (1) 75 – 82.
dc.relation/*ref*/George J., Sreekala M. S., Thomas S. (2001). A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering and Science., Vol. 41 (9) 1471 – 1485.
dc.relation/*ref*/Bondeson D., Mathew A. & Oksman K. (2006). Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose. Vol. 13 (2) 171 – 180.
dc.relation/*ref*/Castro C., Palencia A., Gutiérrez I., Vargas G., Gañán P. (2007). Determination of optimal alkaline treatment conditions for fique fiber bundles as reinforcement of composites materials. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia. Vol. 30 (2) 136 – 142.
dc.relation/*ref*/Elazzouzi-Hafraoui S., Nishiyama Y., Putaux J.-L., Heux L., Dubreuil F., Rochas C. (2008). The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, Vol. 9 (1) 57 – 65.
dc.relation/*ref*/Van Den Berg O., Capadona J. R., Weder C. (2007). Preparation of Homogeneous Dispersions of Tunicate Cellulose Whiskers in Organic Solvents. Biomacromolecules, Vol. 8 (4) 1353 – 1357.
dc.relation/*ref*/John M. J., Thomas S. (2008). Biofibres and biocomposites. Carbohydrate Polymers. Vol.71 (3) 343 – 364.
dc.relation/*ref*/Berglund L. (2005). Cellulose-Based Nanocomposites. In: Mohanty A. K. M. M., Drzal L. (Editor). Natural fibers, biopolymers, and biocomposites. Taylor & Francis. 807 – 832.
dc.relation/*ref*/Dias A. B. (2008). Desenvolvimento e caracterização de filmes biodegradáveis obtidos de amido e de farinha de arroz. Dissertação (Mestrado em Engenharia de Alimentos). Universidade Federal de Santa Catarina, Florianópolis, 103p.
dc.relation/*ref*/Müller C. M. O., Laurindo J. B. (2009). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, Vol. 23 (5) 1328 – 1333.
dc.relation/*ref*/Dufresne A., Cavaille J., Vignon M. (1997). Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. Journal of Applied Polymer Science., Vol. 64 (6) 1185 – 1194.
dc.relation/*ref*/Avérous L., Fringant C., Moro L. (2001). Plasticized starch-cellulose interactions in polysaccharide composites. Polymers. Vol. 42 (15) 6565 – 6572.
dc.relation/*ref*/Fagury R. V. G. (2005). Avaliação de fibras naturais para a fabricação de compósitos: Açaí, coco e juta. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Federal do Para, Belém, 80p
dc.relation/*ref*/Jayaraman K. (2003). Manufacturing sisal-polypropylene composites with minimum fibre degradation. Composites Science and Technology, Vol. 63 (3-4) 367 – 374.
dc.relation/*ref*/Mohan D., Pittman C. U., Steele P. H. (2006). Pyrolysis of Wood/Biomass for Bio oil: A Critical Review. Energy & Fuels, Vol. 20 (3) 848 – 889.
dc.relation/*ref*/Araujo P. C. (2008). Desenvolvimento de filmes biodegradáveis a partir de derivados do grão de quinoa (Chenopodium quinoa Willdenow) da variedade “Real”. Tese (Doutorado em Engenharia de Alimentos) – Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 303 p.
dc.relation/*ref*/Savastano Jr. H. (2000). Materiais à base de cimento reforçados com fibra vegetal: Reciclagem de resíduos para a cosntrução de baixo custo. Tese (Concurso de Livre-Docência) Departamento de Engenharia de Construção Civil – Escola Politécnica, Universidade de São Paulo, São Paulo, 144p.
dc.relation/*ref*/Pietak A., Korte S., Tan E., Downard A., Staiger M. P. (2007). Atomic force microscopy characterization of the surface wettability of natural fibres. Applied Surface Science, Vol. 253 (7) 3627 – 3635.
dc.relation/*ref*/Hon D. N. S. (1994). Cellulose: A random walk along its historical path. Cellulose. Vol. 1 (1) 1 – 25.
dc.relation/*ref*/Moreira M. R. (2009). Natureza das interações celulose-água. Dissertação (Mestrado em Ciências) – Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 70p.
dc.relation/*ref*/Sedan D., Pagnoux C., Chotard T., Smith A., Lejolly D., Gloaguen V., Krausz P. (2007). Effect of calcium rich and alkaline solutions on the chemical behaviour of hemp fibres. Journal of Materials Science, Vol. 42 (22) 9336 – 9342.
dc.relation/*ref*/Eichhorn, S. J., Dufresne A., Aranguren M., Marcovich N. E., Capadona J. R., Rowan S. J., Weder C., Thielemans W., Roman M., Renneckar S., Gindl W., Veigel S., Keckes J., Yano H., Abe K., Nogi M., Nakagaito A. N., Mangalam A., Simonsen J., Benight A. S., Bismarck A., Berglund, L. A., Peijs T. (2010). Review: current international research into cellulose nanofibras and nanocomposites. Journal of Materials Science, Vol. 45 (1) 1 – 33.
dc.relation/*ref*/Siro I., Plackett D. (2010). Microfibrilated cellulose and new nanocomposite materials: a review. Cellulose, Vol. 17 (3) 459 – 494.
dc.relation/*ref*/Svagan A. J., Samir M., Berglund L. A. (2007). Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules, Vol. 8 (8) 2556 – 2563.
dc.relation/*ref*/Turbak A. F., Snyder F. W., Sandberg K. R. (1983). Microfibrillated cellulose, new cellulose product: Properties, uses, and commercial potential. Journal of Applied Polymer Science. Applied Polymer Symposium, Vol. 37 (9) 815 – 827.
dc.relation/*ref*/Gardner D. J., Oporto G. S., Mills R., Azizi Samir M. A. S. (2008). Adhesion and surface issues in cellulose and nanocellulose. Journal of Adhesion Science and Technology, Vol. 22 (5) 545 – 567.
dc.relation/*ref*/Levis S. R., Deasy P. B. (2001). Production and evaluation of size reduced grades of microcrystalline cellulose. International Journal of Pharmaceutics, Vol. 213 (1-2) 13 – 24.
dc.relation/*ref*/Souza M. M. L., Borsali R. (2004). Rodlike Cellulose Microcrystals: Structure, properties, and applications. Macromolecular Rapid Communications, Vol. 25 (7) 771 – 787.
dc.relation/*ref*/Janardhnan S., Sain M. M. (2006). Isolation of cellulose microfibrils- An enzymatic approach. BioResources, Vol. 1 (2) 176 – 188.
dc.relation/*ref*/Dufresne A. (2006). Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. Journal of Nanoscience and Nanotechnology, Vol. 6 (2) 322 – 330.
dc.relation/*ref*/Filson P. B., Dawson-Andoh B. E. (2009). Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresource Technology, Vol. 100 (7) 2259 – 2264.
dc.relation/*ref*/Terech P., Chazeau L., Cavaille J. Y. (1999). A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules, Vol. 32 (6) 1872 – 1875.
dc.relation/*ref*/Dinand E., Chanzy H., Vignon M. R. (1996). Parenchymal cell cellulose from sugar beet pulp: Preparation and properties. , Vol. 3 (1) 183 – 188.
dc.relation/*ref*/Heux L., Dinand E., Vignon M. R. (1999). Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR. Carbohydrate Polymers, Vol. 40 (2) 115 – 124.
dc.relation/*ref*/Saxena A., Elder T. J., Pan S., Ragauskas A. J. (2009). Novel nanocellulosic xylan composite film. Composites Part B. Engineering, Vol. 40 (8) 727 – 730.
dc.relation/*ref*/Dufresne A., Dupeyre D., Vignon M. R. (2000). Cellulose microfibrils from potato tuber cells: Processing and characterization of starch–cellulose microfibril composites. Journal of Applied Polymer Science. Vol. 76 (14) 2080 – 2092.
dc.relation/*ref*/Alvarez V. A., Vásquez A. (2006). Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Composites: Part A. Vol. 37 (10) 1672 – 1680.
dc.relation/*ref*/Morán J., Alvarez V. A., Cyras V. P., Vásquez A. (2008). Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, Vol. 15 (1) 14 – 159.
dc.relation/*ref*/Gañán P., Mondragón I. (2005). Effect of fiber treatments on mechanical behavior of short fique fiberreinforced polyacetal composites. Journal of Composite Materials, Vol. 39 (7) 633 – 646.
dc.relation/*ref*/Cao X., Chen, Y., Chang P. R., Stumborg M., Huneault M. A. (2008a). Green composites reinforced with hemp nanocrystals in plasticized starch. Journal of Applied Polymer Science. Vol. 109 (6) 3804 – 3810.
dc.relation/*ref*/Cao, X., Chen Y., Chang P. R., Muir A. D., Falk G. (2008b). Starch-based nanocomposites reinforced with flax cellulose nanocrystals. EXPRESS Polymer Letters, Vol. 2 (7) 502 – 510.
dc.relation/*ref*/Zuluaga R., Putaux J. L., Cruz J., Vélez J., Mondragon I., Gañán P. (2009). Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydrate Polymers, Vol. 76 (1) 51 – 59.
dc.relation/*ref*/Chen Y., Liu C., Chang P., Cao X., Anderson D. P. (2009a). Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time. Carbohydrate Polymers.,Vol. 76 (4) 607 – 615
dc.relation/*ref*/Chen Y., Liu C., Chang P. R., Anderson D. P., Huneault M. A. (2009). Pea starch-based composite films with pea hull fibers and Pea hull fiber-derived nanowhiskers. Polymer Engineering and Science, Vol. 49 (2) 369 – 378.
dc.relation/*ref*/Santiago B. H., Selvam P. V. P. (2006/2007). Tratamento superficial da fibra do coco: estudo de caso baseado numa alternativa econômica para fabricação de materiais compósitos. Revista Analytica. (26) 42 – 45.
dc.relation/*ref*/Da Luz S. M., Gonçalves A., Del Arco, A. P. J. (2006). Microestrutura e Propriedades Mecânicas de Compósitos de Polipropileno Reforçado com Celulose de Bagaço e Palha de Cana. Revista Matéria, Vol. 11 (2) 101 – 110.
dc.relation/*ref*/Teixeira E. M., Pasquini D., Curvelo A. A. S., Corradini E., Belgacem M. N., Dufresne A. (2009). Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydrate Polymers, Vol. 78 (3) 422 – 431.
dc.relation/*ref*/Newman R. H., Staiger M. P. (2008). Cellulose nanocomposites. In: Pickering K. L. (Ed.). Properties and performance of natural-fibre composites. CRC press, USA, 209 – 217.
dc.relation/*ref*/Beck-Candanedo S., Roman M., Gray D. G. (2005). Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules. Vol. 6 (2) 1048 – 1054.
dc.relation/*ref*/Habibi Y., Foulon L., Aguié-Béghin V., Molinari M., Douillard R. (2007). Langmuir–Blodgett films of cellulose nanocrystals: Preparation and characterization. Journal of Colloid and Interface Science, Vol. 316 (2) 388 – 397.
dc.relation/*ref*/IPT/SENAI. Celulose e Papel. (1988). Tecnología de fabricação da pasta celulósica. (2da ed.) SãoPaulo:, Vol. I. 559p.
dc.relation/*ref*/Michalowski R. J., Christiansen S. H., Myers J., Wilson D. A. (1988). The Dow Chemical Company (United States). Bleaching of cellulosic pulps using hydrogen Peroxid. Patent number: 4,732,650, 22 mar.1988.
dc.relation/*ref*/Loureiro P. E. G., Domingues E. F., Evtuguin D. V., Carvalho M. G. V. S. (2010). ECF bleaching with a final hydrogen peroxide stage: Impact of the chemical composition of Eucalyptus globulus kraft pulps. BioResources, Vol. 5 (4) 2567 – 2580.
dc.relation/*ref*/Mussatto S. I., Rocha G. J. M., Roberto I. C. (2008). Hydrogen peroxide bleaching of cellulose pulps obtained from brewer’s spent grain. Cellulose, Vol. 15 (4) 641 – 649.
dc.relation/*ref*/Ziaie-Shirkolaee Y. (2009). Comparative study on hydrogen peroxide bleaching of soda-organosolv and kraft rice straw pulps. Indian Journal of Chemical and Technology, Vol. 16 (2) 181 – 187.
dc.relation/*ref*/Potek F., Milichovský M. (2000). Kraft Pulp Bleaching with Hydrogen Peroxide and Peracetic Acid. Chemical Papers, Vol. 54 (6a) 406 – 411.
dc.relation/*ref*/Brasileiro L. B., Colodette J. L., Piló-Veloso D. (2001). A utilização de perácidos na deslignificação e no branqueamento de polpas celulósicas. Química Nova, Vol. 24 (6) 819 – 829.
dc.relation/*ref*/Pires De Barros D. (2008). Aplicação do Àcido Periacètico no Branqueamento da Polpa de Eucalipto e o Impacto na sua Qualidade. Disertação (Mestrado em Agroquímica) – Programa de Póst-Graduação em Agroquimica, Universidade Federal de Viçosa, Viçosa, 165p.
dc.relation/*ref*/Dong X. M., Revol J-F., Gray D. (1998). Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose, Vol. 5 (1) 19 – 32.
dc.relation/*ref*/Dogan N., McHugh T. H. (2007). Effects of Microcrystalline Cellulose on Functional Properties of Hydroxy PropylMethyl Cellulose Microcomposite Films. Journal of Food Science, Vol. 72 (1) 16 – 22.
dc.relation/*ref*/Wittaya T. (2009). Microcomposites of rice starch film reinforced with microcristalline cellulose from palm pressed fiber. International Food Research Journal, Vol. 16 (4) 493 – 500.
dc.relation/*ref*/Chuayjuljit S., Su-Uthai S., Charuchinda S. (2010). Poly (vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: properties and biodegradability study. Waste Management & Research, Vol. 28 (2) 109 –117.
dc.relation/*ref*/Kvien I., Tanem B. S., Oksman K. (2005). Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules, Vol. 6 (6) 3160 – 3165.
dc.relation/*ref*/Paralikar S. A., Simonsen J., Lombardi John. (2008). Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. Journal of Membrane Science, Vol. 320 (1-2) 248 – 258.
dc.rightsCopyright (c) 2011 Publicaciones e Investigaciónes-ES
dc.rightshttp://creativecommons.org/licenses/by-sa/4.0es-ES
dc.sourceMagazine specialized in Engineering; Vol. 5 (2011); 11-28en-US
dc.sourcePublicaciones e Investigación; Vol. 5 (2011); 11-28es-ES
dc.source2539-4088
dc.source1900-6608
dc.subjectbiodegradable films; microfibers; microcomposites; nanofibers; nanocomposites; celluloseen-US
dc.subjectfilmes biodegradáveis; microfibras; microcompósitos; nanofibras; nanocompósitos; celulosees-ES
dc.subjectSIN INFORMACIONes-ES
dc.titleFilmes Biodegradáveis: Incorporação de Microfibras e Nanofibras de Celulose Obtidas de Fontes Vegetaisen-US
dc.titlePelículas biodegradables: la incorporación de microfibras y nanofibras de celulosa obtenido a partir de fuentes vegetaleses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeSIN INFORMACIONes-ES
dc.coverageSIN INFORMACIONes-ES
dc.coverageSIN INFORMACIONes-ES
dc.coverageSIN INFORMACIONes-ES


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem